

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000000	00000	00000

Outline

Value-at-Risk

Managing portfolio risk

Measuring risk

Value-at-Risk

Managing portfolio risk

Limits to volatility as a risk measure

Limits to volatility as a risk measure

Risk is the possibility of a loss

Limits to volatility as a risk measure

Risk is the possibility of a loss

- Risk is the possibility of a loss
- Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean

- Risk is the possibility of a loss
- Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- A risk measure is needed that focuses exclusively on losses

- Risk is the possibility of a loss
- Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- A risk measure is needed that focuses exclusively on losses
- The risk measure should capture the size losses better than volatility, especially fat tails

- Risk is the possibility of a loss
- Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- A risk measure is needed that focuses exclusively on losses
- The risk measure should capture the size losses better than volatility, especially fat tails

Discussion 00000

Desirable properties of a risk measure

A risk measure could be the reasonable amount that can be lost

Desirable properties of a risk measure

A risk measure could be the reasonable amount that can be lost within a given time horizon

- A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the implications losses have

- A risk measure could be the reasonable amount that can be lost within a given time horizon
- What is reasonable will depend on the implications losses have and the risk aversion of the user

- A risk measure could be the reasonable amount that can be lost within a given time horizon
- What is reasonable will depend on the implications losses have and the risk aversion of the user
- The more severe the impact and the more risk averse the user is, the smaller the loss beyond what is reasonable should be

- A risk measure could be the reasonable amount that can be lost within a given time horizon
- What is reasonable will depend on the implications losses have and the risk aversion of the user
- The more severe the impact and the more risk averse the user is, the smaller the loss beyond what is reasonable should be
- Reporting risk as potential losses has the advantage that the result is intuitively understood by decision-makers

- A risk measure could be the reasonable amount that can be lost within a given time horizon
- What is reasonable will depend on the implications losses have and the risk aversion of the user
- The more severe the impact and the more risk averse the user is, the smaller the loss beyond what is reasonable should be
- Reporting risk as potential losses has the advantage that the result is intuitively understood by decision-makers

▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of *c* over the next *T* time periods.

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- Losses will only be larger than the Value-at-Risk with probability 1-c

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- \blacktriangleright Losses will only be larger than the Value-at-Risk with probability 1-c
- ► A loss needs to be defined relative to a benchmark

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss)

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- \blacktriangleright Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (relative loss)

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- \blacktriangleright Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (relative loss)
- In financial markets returns are small and for simplicity the relative loss is commonly used

- The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- \blacktriangleright Losses will only be larger than the Value-at-Risk with probability 1-c
- A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (relative loss)
- In financial markets returns are small and for simplicity the relative loss is commonly used

Definition of Value-at-Risk

- Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- $\blacktriangleright Prob(V < \hat{V}) = 1 c$

- Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- $\blacktriangleright Prob(V < \hat{V}) = 1 c$
- The Value-at-Risk is then given as the difference between this threshold and the expected outcome
- $\blacktriangleright \ \mathsf{VaR} = E[V] \hat{V}$

- Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- $\blacktriangleright Prob(V < \hat{V}) = 1 c$
- The Value-at-Risk is then given as the difference between this threshold and the expected outcome

$$\blacktriangleright \ \mathsf{VaR} = E[V] - \hat{V}$$

Value-at-Risk is the estimation of the 1 – c-quantile of the distribution of outcomes

- Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- $\blacktriangleright Prob(V < \hat{V}) = 1 c$
- The Value-at-Risk is then given as the difference between this threshold and the expected outcome

$$\blacktriangleright \ \mathsf{VaR} = E[V] - \hat{V}$$

► Value-at-Risk is the estimation of the 1 - c-quantile of the distribution of outcomes

Value-at-Risk as a quantile

Measuring risk 000	Value-at-Risk 000●00	Managing portfolio risk 00000	Discussion 00000
Value-at-Risk as	s a quantile		

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000
Value-at-Risk as a qu	iantile		

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000●00	00000	00000

Managing portfolio risl

Value-at-Risk for normal distributions

Managing portfolio risl

Value-at-Risk for normal distributions

• If the distribution is normal, the 1 - c-quantile can be determined using the quantiles of the standard normal distribution

Managing portfolio risk

- \blacktriangleright If the distribution is normal, the 1-c-quantile can be determined using the quantiles of the standard normal distribution
- The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- $\blacktriangleright VaR = \alpha \sigma V_0$

- If the distribution is normal, the 1 c-quantile can be determined using the quantiles of the standard normal distribution
- The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- $\blacktriangleright VaR = \alpha \sigma V_0$
- ▶ The choice of quantile will depend on the risk aversion of the investor

- If the distribution is normal, the 1 c-quantile can be determined using the quantiles of the standard normal distribution
- The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- $\blacktriangleright VaR = \alpha \sigma V_0$
- > The choice of quantile will depend on the risk aversion of the investor
- The more risk averse an investor is, the lower the quantile to cover a wider range of possible losses

- If the distribution is normal, the 1 c-quantile can be determined using the quantiles of the standard normal distribution
- The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- $\blacktriangleright VaR = \alpha \sigma V_0$
- > The choice of quantile will depend on the risk aversion of the investor
- The more risk averse an investor is, the lower the quantile to cover a wider range of possible losses

Managing portfolio risl

Quantiles with a normal distribution

Managing portfolio ris

Quantiles with a normal distribution

Managing portfolio ris

Quantiles with a normal distribution

Managing portfolio ris

Quantiles with a normal distribution

Value-at-Risk

Managing portfolio risk

Managing portfolio risk

Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk

► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$ = $\sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$ = $\sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}$

$$\Rightarrow \frac{\partial \sigma_P^2}{\partial \omega_i} = 2\omega_i \sigma_i^2 + 2\sum_{j=1, j \neq i}^N \omega_j \sigma_{ij}$$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ► Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$ $= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}$ $\Rightarrow \frac{\partial \sigma_P^2}{\partial \omega_i} = 2\omega_i \sigma_i^2 + 2 \sum_{j=1, j \neq i}^N \omega_j \sigma_{ij}$ $= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right]$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ► Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$ = $\sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}$

$$\Rightarrow \frac{\partial \sigma_P^2}{\partial \omega_i} = 2\omega_i \sigma_i^2 + 2\sum_{j=1, j \neq i}^N \omega_j \sigma_{ij}$$
$$= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right]$$
$$= 2Cov [R_i, R_P] \equiv 2\sigma_{iP}$$

- ► Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ► Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$ = $\sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}$

$$\Rightarrow \frac{\partial \sigma_P^2}{\partial \omega_i} = 2\omega_i \sigma_i^2 + 2\sum_{j=1, j \neq i}^N \omega_j \sigma_{ij}$$
$$= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right]$$
$$= 2Cov [R_i, R_P] \equiv 2\sigma_{iP}$$

Managing portfolio risk

Marginal Value-at-Risk

$$\mathbf{\flat} \quad \frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ = \alpha \sigma_P \beta_i \\ = \beta_i \frac{VaR}{V}$$

We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

$$\begin{array}{l} \bullet \quad \frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ = \alpha \sigma_P \beta_i \\ = \beta_i \frac{VaR}{V} \end{array} \end{array}$$

This expression is referred to as the marginal Value-at-Risk

We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

$$\begin{array}{l} \bullet \quad \frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ = \alpha \sigma_P \beta_i \\ = \beta_i \frac{VaR}{V} \end{array} \end{array}$$

▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i

$$\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i}$$
$$= \alpha \sigma_P \beta_i$$
$$= \beta_i \frac{VaR}{V}$$

- ▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i
- ▶ If we change the weight of asset i by a small amount, the Value-at-Risk changes by ∂VaR_i

$$\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i}$$
$$= \alpha \sigma_P \beta_i$$
$$= \beta_i \frac{VaR}{V}$$

- ▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i
- ▶ If we change the weight of asset i by a small amount, the Value-at-Risk changes by ∂VaR_i
Changes to the Value-at-Risk of a portfolio

Copyright 🔘 by Andreas Krause

If we change the weight more than marginally, we can use a linear approximation of the change

- If we change the weight more than marginally, we can use a linear approximation of the change
- $\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$

Copyright 🔘 by Andreas Krause

If we change the weight more than marginally, we can use a linear approximation of the change

$$\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$$

The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset

If we change the weight more than marginally, we can use a linear approximation of the change

$$\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$$

- The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset
- $\blacktriangleright \Delta VaR = \sum_{i=1}^{N} \Delta VaR_i = VaR \sum_{i=1}^{N} \beta_i \Delta \omega_i$

If we change the weight more than marginally, we can use a linear approximation of the change

$$\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$$

The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset

$$\blacktriangleright \Delta VaR = \sum_{i=1}^{N} \Delta VaR_i = VaR \sum_{i=1}^{N} \beta_i \Delta \omega_i$$

If we only rearrange the weights, the total changes in the weights must be zero

If we change the weight more than marginally, we can use a linear approximation of the change

$$\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$$

The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset

$$\blacktriangleright \Delta VaR = \sum_{i=1}^{N} \Delta VaR_i = VaR \sum_{i=1}^{N} \beta_i \Delta \omega_i$$

► If we only rearrange the weights, the total changes in the weights must be zero: $\sum_{i=1}^{N} \Delta \omega_i = 0$

If we change the weight more than marginally, we can use a linear approximation of the change

$$\blacktriangleright \Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$$

The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset

$$\blacktriangleright \Delta VaR = \sum_{i=1}^{N} \Delta VaR_i = VaR \sum_{i=1}^{N} \beta_i \Delta \omega_i$$

▶ If we only rearrange the weights, the total changes in the weights must be zero: $\sum_{i=1}^{N} \Delta \omega_i = 0$

Copyright 🔘 by Andreas Krause

Measuring risk 000	Value-at-Risk 000000	Managing portfolio risk 0000●	Discussion 00000
Changing p	ortfolio risk		
► To re marg	duce the risk of a portfolio, rea inal Value-at-Risks	duce the weight of those assets with	high

Copyright (C) by Andreas Krause

Measuring risk	Value-at-Risk 000000	Managing portfolio risk 0000●	Discussion 00000
Changi	ng portfolio risk		
►	To reduce the risk of a port marginal Value-at-Risks, hig	tfolio, reduce the weight of those assets with high gh eta_i	

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000000	0000●	00000
Changing portf	olio risk		
To reduce	the risk of a portfolio, red	uce the weight of those assets wit	ch high
marginal	/alue-at-Risks, high β_i , and	d increase those with low margina	

Value-at-Risk

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000000	0000●	00000
Changing portf	olio risk		
To reduce	the risk of a portfolio, red	uce the weight of those assets wit	h high
marginal	/alue-at-Risks, high β_i , and	I increase those with low margina	I

Value-at-Risk, low β_i

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- For two assets the solution is unique

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- ▶ Not always is it desirable or possible to change the weight of an asset

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- Not always is it desirable or possible to change the weight of an asset, strategic investment decisions might become relevant

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- Not always is it desirable or possible to change the weight of an asset, strategic investment decisions might become relevant
- The marginal Value-at-Risk gives indication which assets to choose most efficiently

Value-at-risk

- To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i, and increase those with low marginal Value-at-Risk, low β_i
- Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- Not always is it desirable or possible to change the weight of an asset, strategic investment decisions might become relevant
- ▶ The marginal Value-at-Risk gives indication which assets to choose most efficiently

Value-at-risk

Value-at-Risk

Managing portfolio risk

Copyright 🔘 by Andreas Krause

The benefits of using Value-at-Risk

Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses

- Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- It provides a framework in which risks of individual assets in a portfolio can be assessed

- Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- It provides a framework in which risks of individual assets in a portfolio can be assessed
- Portfolios can be re-arranged to meet risk limits

- Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- It provides a framework in which risks of individual assets in a portfolio can be assessed
- Portfolios can be re-arranged to meet risk limits and the marginal Value-at-Risk can be used to identify assets that should change weights

- Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- It provides a framework in which risks of individual assets in a portfolio can be assessed
- Portfolios can be re-arranged to meet risk limits and the marginal Value-at-Risk can be used to identify assets that should change weights

Copyright (C) by Andreas Krause

► You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount

- ► You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ Prob (1 default occurs)= $2 \times \text{Prob}(\text{default})(1 \text{Prob}(\text{default}))$

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- **Prob** (1 default occurs) = $2 \times \text{Prob} (\text{default}) (1 \text{Prob} (\text{default})) = 0.017838$
- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ Prob (1 default occurs)= $2 \times \text{Prob} (\text{default}) (1 \text{Prob} (\text{default})) = 0.017838$
- Prob (2 defaults occur) = Prob (default)²

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ Prob (1 default occurs)= $2 \times \text{Prob} (\text{default}) (1 \text{Prob} (\text{default})) = 0.017838$
- ▶ Prob (2 defaults occur) = Prob $(default)^2 = 0.000081$

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ Prob (1 default occurs)= $2 \times \text{Prob} (\text{default}) (1 \text{Prob} (\text{default})) = 0.017838$
- ▶ Prob (2 defaults occur) = Prob $(default)^2 = 0.000081$
- \Rightarrow 99% VaR: £49.1m

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- $\blacktriangleright \ \mathsf{Prob} \left(1 \ \mathsf{default} \ \mathsf{occurs} \right) = 2 \times \mathsf{Prob} \left(\mathsf{default} \right) \left(1 \mathsf{Prob} \left(\mathsf{default} \right) \right) = 0.017838$
- ▶ Prob (2 defaults occur) = Prob $(default)^2 = 0.000081$
- \Rightarrow 99% VaR: £49.1m
- \Rightarrow The VaR increases with diversification

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- \Rightarrow 99% VaR: £-0.9m
- Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- $\blacktriangleright \ \mathsf{Prob} \ (1 \ \mathsf{default} \ \mathsf{occurs}) = 2 \times \mathsf{Prob} \ (\mathsf{default}) \ (1 \mathsf{Prob} \ (\mathsf{default})) = 0.017838$
- ▶ Prob (2 defaults occur) = Prob $(default)^2 = 0.000081$
- \Rightarrow 99% VaR: £49.1m
- $\Rightarrow~$ The VaR increases with diversification

Managing portfolio risl

Diversification increasing Value-at-Risk

Managing portfolio ris

Diversification increasing Value-at-Risk

Managing portfolio ris

Discussion

Diversification increasing Value-at-Risk

Measuring risk	Value-at-Risk	Managing portfolio risk
000	000000	00000

Discussion

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
000	000000	00000	00000

leasuring risk	Value-at-Risk	Managing portfolio risk	Discussio
100	000000	00000	000●0

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
	000000	00000	○○○●○

Measuring risk	Value-at-Risk	Managing portfolio risk	Discussion
	000000	00000	○○○●○

leasuring risk	Value-at-Risk	Managing portfolio risk	Discussio
00	000000	00000	000●0

Picture credits

Control Controls Demi, CC BY-SA 4.0 https://creativecommons.org/licenses/by-aa/4.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/2/26/Gaming-Wall-Street.BTS.Prodigium-266.jpg Back: Michael Vadon, CC BY 2.0 (https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/9/97/Manhattan(NYC-New-York-City)Skyline(1176)153946).jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk