

Andreas Krause

Value-at-risk

Outline

■ Measuring risk

■ Value-at-Risk

■ Managing portfolio risk

■ Discussion

■ Measuring risk

■ Value-at-Risk

■ Managing portfolio risk

■ Discussion

Limits to volatility as a risk measure

Limits to volatility as a risk measure

- ▶ Risk is the **possibility** of a loss

Limits to volatility as a risk measure

- ▶ Risk is the possibility of a loss

Limits to volatility as a risk measure

- ▶ Risk is the possibility of a loss
- ▶ **Volatility** does not only capture negative outcomes below the mean, but also positive outcomes above the mean

Limits to volatility as a risk measure

- ▶ Risk is the possibility of a loss
- ▶ Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- ▶ A risk measure is needed that focuses exclusively on **losses**

Limits to volatility as a risk measure

- ▶ Risk is the possibility of a loss
- ▶ Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- ▶ A risk measure is needed that focuses exclusively on losses
- ▶ The risk measure should capture the **size losses** better than volatility, especially **fat tails**

Limits to volatility as a risk measure

- ▶ Risk is the possibility of a loss
- ▶ Volatility does not only capture negative outcomes below the mean, but also positive outcomes above the mean
- ▶ A risk measure is needed that focuses exclusively on losses
- ▶ The risk measure should capture the size losses better than volatility, especially fat tails

Desirable properties of a risk measure

Desirable properties of a risk measure

- ▶ A risk measure could be the **reasonable amount** that can be **lost**

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the **implications** losses have

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the implications losses have and the **risk aversion** of the user

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the implications losses have and the risk aversion of the user
- ▶ The more severe the impact and the more risk averse the user is, the **smaller** the loss beyond what is reasonable should be

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the implications losses have and the risk aversion of the user
- ▶ The more severe the impact and the more risk averse the user is, the smaller the loss beyond what is reasonable should be
- ▶ Reporting risk as potential losses has the advantage that the result is **intuitively** understood by decision-makers

Desirable properties of a risk measure

- ▶ A risk measure could be the reasonable amount that can be lost within a given time horizon
- ▶ What is reasonable will depend on the implications losses have and the risk aversion of the user
- ▶ The more severe the impact and the more risk averse the user is, the smaller the loss beyond what is reasonable should be
- ▶ Reporting risk as potential losses has the advantage that the result is intuitively understood by decision-makers

■ Measuring risk

■ Value-at-Risk

■ Managing portfolio risk

■ Discussion

Probability of large losses

Probability of large losses

- ▶ The **Value-at-Risk** is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be **larger** than the Value-at-Risk with probability $1 - c$

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a **benchmark**

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the **status quo**

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the status quo (**absolute loss**)

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the **expected outcome**

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (**relative loss**)

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (relative loss)
- ▶ In financial markets returns are small and for simplicity the **relative loss** is commonly used

Probability of large losses

- ▶ The Value-at-Risk is a statement that the loss will not exceed this amount with a probability of c over the next T time periods.
- ▶ Losses will only be larger than the Value-at-Risk with probability $1 - c$
- ▶ A loss needs to be defined relative to a benchmark, which could be the status quo (absolute loss) or the expected outcome (relative loss)
- ▶ In financial markets returns are small and for simplicity the relative loss is commonly used

Definition of Value-at-Risk

Definition of Value-at-Risk

- ▶ Define a **threshold** such that the **probability** that the **outcome** is below this threshold is given by a **certain value**
- ▶ $Prob(V < \hat{V}) = 1 - c$

Definition of Value-at-Risk

- ▶ Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- ▶ $Prob(V < \hat{V}) = 1 - c$
- ▶ The **Value-at-Risk** is then given as the difference between this **threshold** and the **expected outcome**
- ▶ $VaR = E[V] - \hat{V}$

Definition of Value-at-Risk

- ▶ Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- ▶ $Prob(V < \hat{V}) = 1 - c$
- ▶ The Value-at-Risk is then given as the difference between this threshold and the expected outcome
- ▶ $VaR = E[V] - \hat{V}$
- ▶ Value-at-Risk is the estimation of the **$1 - c$ -quantile** of the distribution of outcomes

Definition of Value-at-Risk

- ▶ Define a threshold such that the probability that the outcome is below this threshold is given by a certain value
- ▶ $Prob(V < \hat{V}) = 1 - c$
- ▶ The Value-at-Risk is then given as the difference between this threshold and the expected outcome
- ▶ $VaR = E[V] - \hat{V}$
- ▶ Value-at-Risk is the estimation of the $1 - c$ -quantile of the distribution of outcomes

Value-at-Risk as a quantile

Value-at-Risk as a quantile

Value-at-Risk as a quantile

Value-at-Risk as a quantile

Value-at-Risk as a quantile

Value-at-Risk for normal distributions

Value-at-Risk for normal distributions

- ▶ If the distribution is normal, the $1 - c$ -quantile can be determined using the quantiles of the **standard normal distribution**

Value-at-Risk for normal distributions

- ▶ If the distribution is normal, the $1 - c$ -quantile can be determined using the quantiles of the standard normal distribution
- ▶ The **standard normal distribution** needs to be adjusted by the **standard deviation of outcomes** and the **amount invested**
- ▶ $VaR = \alpha\sigma V_0$

Value-at-Risk for normal distributions

- ▶ If the distribution is normal, the $1 - c$ -quantile can be determined using the quantiles of the standard normal distribution
- ▶ The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- ▶ $VaR = \alpha\sigma V_0$
- ▶ The choice of quantile will depend on the **risk aversion** of the investor

Value-at-Risk for normal distributions

- ▶ If the distribution is normal, the $1 - c$ -quantile can be determined using the quantiles of the standard normal distribution
- ▶ The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- ▶ $VaR = \alpha\sigma V_0$
- ▶ The choice of quantile will depend on the risk aversion of the investor
- ▶ The more risk averse an investor is, the **lower the quantile** to cover a wider range of possible losses

Value-at-Risk for normal distributions

- ▶ If the distribution is normal, the $1 - c$ -quantile can be determined using the quantiles of the standard normal distribution
- ▶ The standard normal distribution needs to be adjusted by the standard deviation of outcomes and the amount invested
- ▶ $VaR = \alpha\sigma V_0$
- ▶ The choice of quantile will depend on the risk aversion of the investor
- ▶ The more risk averse an investor is, the lower the quantile to cover a wider range of possible losses

Quantiles with a normal distribution

Quantiles with a normal distribution

Quantiles with a normal distribution

Quantiles with a normal distribution

■ Measuring risk

■ Value-at-Risk

■ Managing portfolio risk

■ Discussion

Impact of assets on portfolio risk

Impact of assets on portfolio risk

- ▶ Investors usually hold a **portfolio of assets** and using its standard deviation we obtain the Value-at-Risk

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha\sigma_p V_0$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance: $\sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij}$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance:
$$\begin{aligned} \sigma_P^2 &= \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij} \\ &= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij} \end{aligned}$$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance:
$$\begin{aligned}\sigma_P^2 &= \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij} \\ &= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}\end{aligned}$$

⇒
$$\frac{\partial \sigma_P^2}{\partial \omega_i} = 2\omega_i \sigma_i^2 + 2 \sum_{j=1, j \neq i}^N \omega_j \sigma_{ij}$$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance:
$$\begin{aligned}\sigma_P^2 &= \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij} \\ &= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}\end{aligned}$$
- ⇒
$$\begin{aligned}\frac{\partial \sigma_P^2}{\partial \omega_i} &= 2\omega_i \sigma_i^2 + 2 \sum_{j=1, j \neq i}^N \omega_j \sigma_{ij} \\ &= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right]\end{aligned}$$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance:
$$\begin{aligned}\sigma_P^2 &= \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij} \\ &= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}\end{aligned}$$
- ⇒
$$\begin{aligned}\frac{\partial \sigma_P^2}{\partial \omega_i} &= 2\omega_i \sigma_i^2 + 2 \sum_{j=1, j \neq i}^N \omega_j \sigma_{ij} \\ &= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right] \\ &= 2Cov[R_i, R_P] \equiv 2\sigma_{iP}\end{aligned}$$

Impact of assets on portfolio risk

- ▶ Investors usually hold a portfolio of assets and using its standard deviation we obtain the Value-at-Risk: $VaR = \alpha \sigma_p V_0$
- ▶ Portfolio variance:
$$\begin{aligned}\sigma_P^2 &= \sum_{i=1}^N \sum_{j=1}^N \omega_i \omega_j \sigma_{ij} \\ &= \sum_{i=1}^N \omega_i^2 \sigma_i^2 + \sum_{i=1}^N \sum_{j=1, j \neq i}^N \omega_i \omega_j \sigma_{ij}\end{aligned}$$
- ⇒
$$\begin{aligned}\frac{\partial \sigma_P^2}{\partial \omega_i} &= 2\omega_i \sigma_i^2 + 2 \sum_{j=1, j \neq i}^N \omega_j \sigma_{ij} \\ &= 2Cov \left[R_i, \omega_i R_i + \sum_{j=1, j \neq i}^N \omega_j R_j \right] \\ &= 2Cov[R_i, R_P] \equiv 2\sigma_{iP}\end{aligned}$$

Marginal Value-at-Risk

Marginal Value-at-Risk

- We are interested in how the **Value-at-Risk changes** as the **weight of assets** in the portfolio **changes**

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i}$$

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} = \alpha \frac{\partial \sigma_P}{\partial \omega_i} = \alpha \sigma_P \beta_i$$

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\begin{aligned}\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} &= \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ &= \alpha \sigma_P \beta_i \\ &= \beta_i \frac{VaR}{V}\end{aligned}$$

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\begin{aligned}\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} &= \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ &= \alpha \sigma_P \beta_i \\ &= \beta_i \frac{VaR}{V}\end{aligned}$$

- ▶ This expression is referred to as the **marginal Value-at-Risk**

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\begin{aligned}\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} &= \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ &= \alpha \sigma_P \beta_i \\ &= \beta_i \frac{VaR}{V}\end{aligned}$$

- ▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\begin{aligned}\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} &= \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ &= \alpha \sigma_P \beta_i \\ &= \beta_i \frac{VaR}{V}\end{aligned}$$

- ▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i
- ▶ If we **change the weight** of asset i by a small amount, the Value-at-Risk changes by ∂VaR_i

Marginal Value-at-Risk

- ▶ We are interested in how the Value-at-Risk changes as the weight of assets in the portfolio changes

- ▶
$$\begin{aligned}\frac{\partial \frac{VaR}{V_0}}{\partial \omega_i} &= \alpha \frac{\partial \sigma_P}{\partial \omega_i} \\ &= \alpha \sigma_P \beta_i \\ &= \beta_i \frac{VaR}{V}\end{aligned}$$

- ▶ This expression is referred to as the marginal Value-at-Risk, ∂VaR_i
- ▶ If we change the weight of asset i by a small amount, the Value-at-Risk changes by ∂VaR_i

Changes to the Value-at-Risk of a portfolio

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a **linear approximation** of the change

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$
- ▶ The total change in the Value-at-Risk is equal to the sum of the changes for **each individual asset**

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$
- ▶ The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset
- ▶ $\Delta VaR = \sum_{i=1}^N \Delta VaR_i = VaR \sum_{i=1}^N \beta_i \Delta \omega_i$

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$
- ▶ The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset
- ▶ $\Delta VaR = \sum_{i=1}^N \Delta VaR_i = VaR \sum_{i=1}^N \beta_i \Delta \omega_i$
- ▶ If we only rearrange the weights, the total changes in the weights must be zero

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$
- ▶ The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset
- ▶ $\Delta VaR = \sum_{i=1}^N \Delta VaR_i = VaR \sum_{i=1}^N \beta_i \Delta \omega_i$
- ▶ If we only rearrange the weights, the total changes in the weights must be zero:
$$\sum_{i=1}^N \Delta \omega_i = 0$$

Changes to the Value-at-Risk of a portfolio

- ▶ If we change the weight more than marginally, we can use a linear approximation of the change
- ▶ $\Delta VaR_i = \partial VaR_i V \Delta \omega_i = \beta_i \Delta \omega_i VaR$
- ▶ The total change in the Value-at-Risk is equal to the sum of the changes for each individual asset
- ▶ $\Delta VaR = \sum_{i=1}^N \Delta VaR_i = VaR \sum_{i=1}^N \beta_i \Delta \omega_i$
- ▶ If we only rearrange the weights, the total changes in the weights must be zero:
 $\sum_{i=1}^N \Delta \omega_i = 0$

Changing portfolio risk

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with **high marginal Value-at-Risks**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, **high β_i**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with **low marginal Value-at-Risk**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, **low β_i**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i **reduces the Value-at-Risk considerably**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i **increases it by less**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a **reduction** in the Value-at-Risk

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The **larger the difference** between these two assets is, the **bigger the impact** on the Value-at-Risk

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is **unique**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets **many solutions** exist

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- ▶ Not always is it **desirable or possible** to change the weight of an asset

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- ▶ Not always is it desirable or possible to change the weight of an asset, **strategic investment decisions** might become relevant

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- ▶ Not always is it desirable or possible to change the weight of an asset, strategic investment decisions might become relevant
- ▶ The marginal Value-at-Risk gives indication which assets to choose **most efficiently**

Changing portfolio risk

- ▶ To reduce the risk of a portfolio, reduce the weight of those assets with high marginal Value-at-Risks, high β_i , and increase those with low marginal Value-at-Risk, low β_i
- ▶ Reducing the weight of an asset with a high β_i reduces the Value-at-Risk considerably and increasing the weight of an asset with low β_i increases it by less, leading to a reduction in the Value-at-Risk
- ▶ The larger the difference between these two assets is, the bigger the impact on the Value-at-Risk
- ▶ For two assets the solution is unique, but for more assets many solutions exist
- ▶ Not always is it desirable or possible to change the weight of an asset, strategic investment decisions might become relevant
- ▶ The marginal Value-at-Risk gives indication which assets to choose most efficiently

■ Measuring risk

■ Value-at-Risk

■ Managing portfolio risk

■ Discussion

The benefits of using Value-at-Risk

The benefits of using Value-at-Risk

- ▶ Value-at-Risk can be used to measure risk in an **intuitive way** by focussing exclusively on losses

The benefits of using Value-at-Risk

- ▶ Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- ▶ It provides a **framework** in which risks of individual assets in a portfolio can be assessed

The benefits of using Value-at-Risk

- ▶ Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- ▶ It provides a framework in which risks of individual assets in a portfolio can be assessed
- ▶ Portfolios can be re-arranged to **meet risk limits**

The benefits of using Value-at-Risk

- ▶ Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- ▶ It provides a framework in which risks of individual assets in a portfolio can be assessed
- ▶ Portfolios can be re-arranged to meet risk limits and the **marginal Value-at-Risk** can be used to identify assets that should change weights

The benefits of using Value-at-Risk

- ▶ Value-at-Risk can be used to measure risk in an intuitive way by focussing exclusively on losses
- ▶ It provides a framework in which risks of individual assets in a portfolio can be assessed
- ▶ Portfolios can be re-arranged to meet risk limits and the marginal Value-at-Risk can be used to identify assets that should change weights

Limits of Value-at-Risk

Limits of Value-at-Risk

- ▶ You have a **single loan** worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
- ⇒ 99% VaR: **£-0.9m**

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have **two loans** of £50m each with the same default rate and defaults are independent

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)})$

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$
- ▶ $\text{Prob (2 defaults occur)} = \text{Prob (default)}^2$

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$
- ▶ $\text{Prob (2 defaults occur)} = \text{Prob (default)}^2 = 0.000081$

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$
- ▶ $\text{Prob (2 defaults occur)} = \text{Prob (default)}^2 = 0.000081$
⇒ 99% VaR: **£49.1m**

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
 - ⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$
- ▶ $\text{Prob (2 defaults occur)} = \text{Prob (default)}^2 = 0.000081$
- ⇒ 99% VaR: £49.1m
- ⇒ The VaR **increases** with diversification

Limits of Value-at-Risk

- ▶ You have a single loan worth £100m with a probability of default 0.9%, the amount lost in case of default is the full amount
⇒ 99% VaR: £-0.9m
- ▶ Suppose now we have two loans of £50m each with the same default rate and defaults are independent
- ▶ $\text{Prob (1 default occurs)} = 2 \times \text{Prob (default)} (1 - \text{Prob (default)}) = 0.017838$
- ▶ $\text{Prob (2 defaults occur)} = \text{Prob (default)}^2 = 0.000081$
- ⇒ 99% VaR: £49.1m
- ⇒ The VaR increases with diversification

Diversification increasing Value-at-Risk

Diversification increasing Value-at-Risk

Diversification increasing Value-at-Risk

Diversification increasing Value-at-Risk

Copyright © by Andreas Krause

Picture credits:

Cover: Tobias Deml, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, <https://upload.wikimedia.org/wikipedia/commons/2/26/Gaming-Wall-Street.BTS.Prodigium-266.jpg>

Back: Michael Vadon, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/9/97/Manhattan\(NYC-New_York_City\)Skyline\(31769153946\).jpg](https://upload.wikimedia.org/wikipedia/commons/9/97/Manhattan(NYC-New_York_City)Skyline(31769153946).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk