

SHIVE BMORE

12.15

ICe

NEW YORK STOCK EXCHANG

NYES

tion of Surgers

110

Ice

Andreas Krause

Exploiting market inefficiencies	Sharpe ratio	Jensen's α	Portfolio return decomposition	Summary
	0000	0000	0000	0000

Outline

- Exploiting market inefficiencies
 - Sharpe ratio
 - Jensen's α
- Portfolio return decomposition

Copyright 🕜 by Andreas Krause

Exploiting market inefficiencies	Sharpe ratio	Jensen's α	Portfolio return decomposition	Summary
•000	0000	0000		0000

Sharpe ratio

Jensen's α

Portfolio return decomposition

Copyright 🔘 by Andreas Krause

Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α	Portfolio return decomposition	Summary 0000

Trading on information

- Investors may seek to exploit information they have obtained, believing markets are inefficient
- ▶ They might buy assets they believe are undervalued or will increase in value
- ▶ They might sell assets they believe are overvalued or will decrease in value

Exploiting market inefficiencies	Sharpe ratio	Jensen's α	Portfolio return decomposition	Summary
00●0	0000	0000		0000
Considering risks				

- Trying to exploit perceived market inefficiencies will change the return on their investments
- As they will deviate from their optimal portfolio, the risk of their portfolio will also change
- ▶ To assess the performance of investors, we need to take this risk into account

Exploiting market inefficiencies 000●	Sharpe ratio 0000	Jensen's $lpha$ 0000	Portfolio return decomposition	Summary 0000
Risk types				

Systematic risk The risk affecting the market as a whole Unsystematic risk The risk affecting only an individual asset

- To assess the performance of an investor, we need to adjust their returns by the risk they are taking
- Depending on the relevant risk, we need to make different adjustments

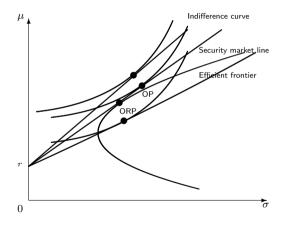
Exploiting market inefficiencies	Sharpe ratio ●000	Jensen's α 0000	Portfolio return decomposition	Summary 0000

Sharpe ratio

Jensen's α

Portfolio return decomposition

Copyright 🔘 by Andreas Krause


Exploiting market inefficiencies	Sharpe ratio ○●○○	Jensen's $lpha$ 0000	Portfolio return decomposition	Summary 0000

Considering total risk

- If we are concerned about the total risk, we use variance as a risk measure
- From portfolio theory we know that decisions are made using the mean return and return variance
- We can compare returns and risks building on portfolio selection theory

Exploiting market inefficiencies	Sharpe ratio 00●0	Jensen's α 0000	Portfolio return decomposition	Summary 0000

Portfolio selection

Copyright (C) by Andreas Krause

Exploiting market inefficiencies	Sharpe ratio 000●	Jensen's α 0000	Portfolio return decomposition	Summary 0000

Slope as performance measure

- ► A higher slope corresponds to a higher utility level
- We use the slope as a performance measure
- ▶ The vertical direction gives the excess return of the investor over the risk-free rate
- ▶ The horizontal direction represents the risk
- $\triangleright SR_i = \frac{\mu_i r}{\sigma_i}$
- The Sharpe ratio measures the excess return relative to the total risk the investor takes

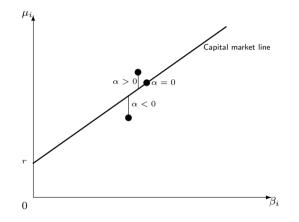
Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α	Portfolio return decomposition	Summary 0000

Sharpe ratio

Jensen's lpha

Portfolio return decomposition

Copyright 🔘 by Andreas Krause


Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α 0●00	Portfolio return decomposition	Summary 0000

Using asset pricing benchmark

- If their portfolio is well-diversified, the investor will not be concerned with idiosyncratic risk
- Rather than total risk, the risk assessment will be based on systematic risk only
- We can use the Capital Asset Pricing Model (CAPM) to determine the return required for a given systematic risk

Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α οο●ο	Portfolio return decomposition	Summary 0000

Using the CAPM as a benchmark

Copyright (C) by Andreas Krause

Exploiting market inefficiencies	Sharpe ratio	Jensen's α 000●	Portfolio return decomposition	Summary 0000
D .(2)				

Differences in returns

The CAPM gives the excess return of an asset as the excess return of the market, adjusted for systematic risk

$$\hat{\mu}_i - r = \beta_i \left(\mu_M - r \right)$$

The performance measure is the difference of the actual return and the return implied by the CAPM

$$\blacktriangleright \ \alpha = \mu_i - \hat{\mu_i}$$

 \blacktriangleright Jensen's α only considers systematic risk, any idiosyncratic risk will be ignored

Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α	Portfolio return decomposition ●000	Summary 0000

Sharpe ratio

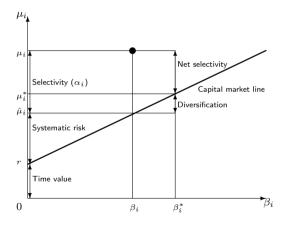
Jensen's α

Portfolio return decomposition

Copyright 🔘 by Andreas Kraus

	Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α 0000	Portfolio return decomposition 0●00	Summary 0000
--	----------------------------------	----------------------	---------------------------	--	-----------------

Adjusting performance for idiosyncratic risk


- The Sharpe ratio takes into account systematic and idiosyncratic risk, while Jensen's α only takes into account systematic risk
- A main shortcoming using Jensen's α is that it does not consider the potential for an investor incurring additional idiosyncratic risks
- ▶ If actual returns follow the CAPM, then $\hat{R}_i = r + \beta_i (R_M r)$

$$\Rightarrow$$
 Total risk: $\sigma_i^2 = eta_i^2 \sigma_M^2$

▶ If an investor now incurs total risk σ_i , then the systematic risk equivalent to this total risk is $\beta_i^* = \frac{\sigma_i}{\sigma_M}$

Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's $lpha$ 0000	Portfolio return decomposition 00●0	Summary 0000

Determining net selectivity

Copyright 🔘 by Andreas Krause

Exploiting market inefficiencies	Sharpe ratio	Jensen's α	Portfolio return decomposition	Summary 0000

Net selectivity

- \blacktriangleright The selectivity is Jensen's α
- \blacktriangleright Investors may take additional idiosyncratic risk, equivalent to a total systematic risk of β_i^*
- ▶ This will increase the benchmark return to μ_i^*
- Taking into account the idiosyncratic risk, the net selectivity represents the value added by investors

Exploiting market inefficiencies	Sharpe ratio	Jensen's α	Portfolio return decomposition	Summary ●000

Sharpe ratio

Jensen's α

Portfolio return decomposition

Copyright 🔘 by Andreas Kraus

Exploiting market inefficiencies	Sharpe ratio 0000	Jensen's α 0000	Portfolio return decomposition	Summary ○●○○

Importance of risk adjustments

- Investors exploiting market inefficiencies may generate higher returns
- Higher returns might be associated with higher risks
- Taking into account the additional risks, shows if investors generate economic profits
- Risk adjustments can be made for systematic risk only or for all risks
- Systematic risk is appropriate if a portfolio is well diversified
- Total risk should be used if a portfolio is not well diversified

Exploiting market inefficiencies Sharpe ratio Jensen's α 0000 0000 0000	Portfolio return decomposition	Summary 00●0
--	--------------------------------	-----------------

Choice of performance measure

- Adjusting returns with different risk measures can lead to different results
- An investor might generate a high Jensen's α
- The same investor might increase its idiosyncratic risk and this can lead to a low performance if measured by the Sharpe ratio
- Determining which performance measure to use will depend on which type of risk is relevant

Picture credits

Control Controls Demi, CC BY-SA 4.0 https://creativecommons.org/licenses/by-aa/4.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/2/26/Gaming-Wall-Street.BTS.Prodigium-266.jpg Back: Michael Vadon, CC BY 2.0 (https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/9/97/Manhattan(NYC-New-York-City)Skyline(1176)153946).jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk