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Using the binomial option pricing model

▶ In each time step, the price of the asset will either increase to uS

or decrease to
dS

▶ The probability that the price increases is p

▶ The price will therefore have a binomial distribution

▶ For a given time period, the number of steps is increased

with the size of asset
price increases and decreases becoming smaller

▶ Asset increases and decreases are symmetric: u = 1
d

⇒ Asset prices become log-normally distributed
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Increasing the number of steps per time period
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Increasing the number of steps per time period

2 steps
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Increasing the number of steps per time period

4 steps
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Increasing the number of steps per time period

8 steps
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Increasing the number of steps per time period

16 steps
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Increasing the number of steps per time period
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Increasing the number of steps per time period
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The Black-Scholes formula

▶ For a large number of steps in the binomial option pricing formula then converges
to

▶ C = SN (d1)−Ke−rTN (d2)

d1 =
ln S

K
+(r+ 1

2
σ2)T

σ
√
T

d2 = d1 − σ
√
T

▶ This is known as the Black-Scholes formula of option pricing

▶ The variance of the asset replaces the size of the increases and decreases of the

asset values

: u = 1
d = e

σ
√

T
N

▶ The asset prices themselves are replaced by the cumulative normal distribution
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Similarity of Black-Scholes formula and binomial option pricing

▶ The structure of the results from binomial option pricing are retained

▶ Black-Scholes formula: C = SN (d1)−Ke−rTN (d2)

▶ Binomial option pricing formula: C = ∆S +B

▶ The option price is composed of a number of underlying assets

and a loan to
finance the holding of these assets
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Replicating options

▶ Options are written by some investors to obtain the premium as revenue

, often
banks, insurance companies, or hedge funds

▶ This exposes them to risks if the price movement of the underlying asset causes
the option to be exercised

▶ Option writers may want to hedge their risks

▶ If creating their own option, they can develop an off-setting position

▶ They can do so by holding N (d1) of the underlying asset

and obtain a loan of
Ke−rTN (d2)

▶ This is known as option replication
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