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Price development of the underlying asset
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Arbitrage portfolio for a single time period

S
���*p

Su

HHHj1 − p

Sd

▶ The value of the option at maturity can be determined from the contract itself
▶ For a European call option this is the difference of the asset price and the strike

price: CT = max {0;ST −K}
▶ Assume the value of the option is given by a combination of the underlying asset

and a risk-free asset

▶ C = ∆S

+B

▶ After one time step this portfolio is worth Cu = ∆Su + (1 + r)B if the asset
value increases

▶ After one time step this portfolio is worth Cd = ∆Sd + (1 + r)B if the asset
value decreases
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Option value for a single time period

▶ Cu and Cd are the possible payments of the option at maturity, which are known

▶ Cu = max {0;uS −K} for a call option

Cd = max {0; dS −K} for a call option

⇒ ∆ = Cu−Cd
S(u−d)

B = 1
1+r

uCd−dCu

u−d

< 0

⇒ C = ∆S +B

▶ The option value is given by holding the underlying asset, financed by a loan
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Option value for a multiple time period

▶ Options mature generally only after multiple time periods

▶ Starting with the payments received at maturity, the option value in the previous
time period can be determined

▶ Having established the option in the penultimate time period, these option values
can be taken to determine the option value in the preceding time period

▶ The option price can be solved by backwards induction
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Solving the binomial tree through backward induction
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Absence of expected return of the underlying asset

▶ The option price does not depend on the probability of the asset price increasing

▶ This implies the option price does not depend on the expected return of the
underlying asset

▶ Arbitrage eliminates any risk

, the value of the option is perfectly matched and no
risk premium is payable

▶ The option value over time will be affected by the expected return as the
underlying asset is included into its value
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