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(G0} 1 uCy—dCy
A= St d% B = +r“d =C=AS+1B
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Solving the binomial tree through backward induction

Cyu—C Cpgqg—dC
Au = S:u(u—:i‘)d’ Bu = lj-r “ ui—d wt = Cu = AuSu+ By
Cgq.,—C, Cgyq—dC,
Ag = Gaoogt By = 7 *4= = Ca = AgSa+ Ba
_ Cu—Cy _ 1 uCy—dCy _
A_S(u—d)’B_1+r =7 =C=AS+B
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