

Yield curves

Term structures and yield curves

Term structures and yield curves

- The yield of risk-free bonds **changes** with its time to maturity

Term structures and yield curves

- ▶ The yield of risk-free bonds changes with its time to maturity, this is referred to as the **term structure** of interest rates

Term structures and yield curves

- ▶ The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- ▶ The graphical representation of the term structure is known as the **yield curve**

Term structures and yield curves

- ▶ The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- ▶ The graphical representation of the term structure is known as the yield curve
- ▶ The yield curve also **changes over time**

Term structures and yield curves

- ▶ The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- ▶ The graphical representation of the term structure is known as the yield curve
- ▶ The yield curve also changes over time and such changes to future yield curves can be **predicted from the current yield curve**

Term structures and yield curves

- ▶ The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- ▶ The graphical representation of the term structure is known as the yield curve
- ▶ The yield curve also changes over time and such changes to future yield curves can be predicted from the current yield curve

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Typical yield curves

Investing into long-term and short-term bonds

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a **long maturity**

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a **shorter maturity** first

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$
- ▶ Investors can after this bond has matured, invest into **another bond** with a short maturity

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$
- ▶ Investors can after this bond has matured, invest into another bond with a short maturity
- ▶ The yield he receives is not known, but **expectations** can be formed

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$
- ▶ Investors can after this bond has matured, invest into another bond with a short maturity
- ▶ The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + E[r_{T_1, T-T_1}])^{T-T_1}$

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$
- ▶ Investors can after this bond has matured, invest into another bond with a short maturity
- ▶ The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + E[r_{T_1, T-T_1}])^{T-T_1}$
- ▶ The total return of the investor is then $(1 + r_{0,T_1})^{T_1} (1 + E[r_{T_1, T-T_1}])^{T-T_1}$

Investing into long-term and short-term bonds

- ▶ Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$
- ▶ Investors can invest into a bond with a shorter maturity first, yielding a return of $(1 + r_{0,T_1})^{T_1}$
- ▶ Investors can after this bond has matured, invest into another bond with a short maturity
- ▶ The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + E[r_{T_1, T-T_1}])^{T-T_1}$
- ▶ The total return of the investor is then $(1 + r_{0,T_1})^{T_1} (1 + E[r_{T_1, T-T_1}])^{T-T_1}$

Expected future yields

Expected future yields

- ▶ Such that long-term and short-term bonds are demanded, the **total return** of both investment strategies must be the **same**

Expected future yields

- ▶ Such that long-term and short-term bonds are demanded, the total return of both investment strategies must be the same

⇒ $(1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + E[r_{T_1, T-T_1}])^{T-T_1}$

Expected future yields

- ▶ Such that long-term and short-term bonds are demanded, the total return of both investment strategies must be the same

$$\Rightarrow (1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + \mathbb{E}[r_{T_1, T-T_1}])^{T-T_1}$$

$$\Rightarrow 1 + \mathbb{E}[r_{T_1, T-T_1}] = \sqrt[T-T_1]{\frac{(1+r_{0,T})^T}{(1+r_{0,T_1})^{T_1}}}$$

Expected future yields

- ▶ Such that long-term and short-term bonds are demanded, the total return of both investment strategies must be the same

$$\Rightarrow (1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + \mathbb{E}[r_{T_1, T-T_1}])^{T-T_1}$$

$$\Rightarrow 1 + \mathbb{E}[r_{T_1, T-T_1}] = \sqrt[T-T_1]{\frac{(1+r_{0,T})^T}{(1+r_{0,T_1})^{T_1}}}$$

- ▶ We can now interpret the yield curve as showing **expectations about future interest rates**

Expected future yields

- ▶ Such that long-term and short-term bonds are demanded, the total return of both investment strategies must be the same
- ⇒ $(1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + E[r_{T_1, T-T_1}])^{T-T_1}$
- ⇒ $1 + E[r_{T_1, T-T_1}] = \sqrt[T-T_1]{\frac{(1+r_{0,T})^T}{(1+r_{0,T_1})^{T_1}}}$
- ▶ We can now interpret the yield curve as showing expectations about future interest rates

Yield curves as predictors

Yield curves as predictors

- Short-term interest rates are heavily influenced by **monetary policy**

Yield curves as predictors

- ▶ Short-term interest rates are heavily influenced by monetary policy
- ▶ Expectations about short-term interest rates will reflect **expectations about monetary policy**

Yield curves as predictors

- ▶ Short-term interest rates are heavily influenced by monetary policy
- ▶ Expectations about short-term interest rates will reflect expectations about monetary policy
- ▶ Monetary policy is influenced by **inflation** and the **growth of the economy**

Yield curves as predictors

- ▶ Short-term interest rates are heavily influenced by monetary policy
- ▶ Expectations about short-term interest rates will reflect expectations about monetary policy
- ▶ Monetary policy is influenced by inflation and the growth of the economy
- ▶ The yield curve can be used to **predict macroeconomic performance** of an economy

Yield curves as predictors

- ▶ Short-term interest rates are heavily influenced by monetary policy
- ▶ Expectations about short-term interest rates will reflect expectations about monetary policy
- ▶ Monetary policy is influenced by inflation and the growth of the economy
- ▶ The yield curve can be used to predict macroeconomic performance of an economy

Upward sloping yield curve

Upward sloping yield curve

- ▶ Consider two bonds with **short maturities** T_1 and $T - T_1$

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with **long maturity** T

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is **upward slowing**, longer times to maturity have a higher yield

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is upward sloping, longer times to maturity have a higher yield: $\max \{r_{0,T_1}, r_{0,T-T_1}\} < r_{0,T}$

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is upward sloping, longer times to maturity have a higher yield: $\max \{r_{0,T_1}, r_{0,T-T_1}\} < r_{0,T}$

⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is upward sloping, longer times to maturity have a higher yield: $\max \{r_{0,T_1}, r_{0,T-T_1}\} < r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- ⇒ $\mathbb{E}[r_{T_1, T-T_1}] > r_{0,T-T_1}$

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is upward sloping, longer times to maturity have a higher yield: $\max \{r_{0,T_1}, r_{0,T-T_1}\} < r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- ⇒ $E[r_{T_1, T-T_1}] > r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to **rise**

Upward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is upward sloping, longer times to maturity have a higher yield: $\max \{r_{0,T_1}, r_{0,T-T_1}\} < r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- ⇒ $E[r_{T_1, T-T_1}] > r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to rise

Downward sloping yield curve

Downward sloping yield curve

- ▶ Consider two bonds with **short maturities** T_1 and $T - T_1$

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with **long maturity** T

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is **downward sloping**, longer times to maturity have a lower yield

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is downward sloping, longer times to maturity have a lower yield: $\min \{r_{0,T_1}, r_{0,T-T_1}\} > r_{0,T}$

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is downward sloping, longer times to maturity have a lower yield: $\min \{r_{0,T_1}, r_{0,T-T_1}\} > r_{0,T}$

⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is downward sloping, longer times to maturity have a lower yield: $\min \{r_{0,T_1}, r_{0,T-T_1}\} > r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- ⇒ $\mathbb{E}[r_{T_1, T-T_1}] < r_{0,T-T_1}$

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is downward sloping, longer times to maturity have a lower yield: $\min \{r_{0,T_1}, r_{0,T-T_1}\} > r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- ⇒ $E[r_{T_1, T-T_1}] < r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to **fall**

Downward sloping yield curve

- ▶ Consider two bonds with short maturities T_1 and $T - T_1$ and a bond with long maturity T
- ▶ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min \{r_{0,T_1}, r_{0,T-T_1}\})^T$
- ▶ Assume the yield curve is downward sloping, longer times to maturity have a lower yield: $\min \{r_{0,T_1}, r_{0,T-T_1}\} > r_{0,T}$
- ⇒ $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max \{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- ⇒ $E[r_{T_1, T-T_1}] < r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to fall

Expected interest rate changes for normal yield curves

Expected interest rate changes for normal yield curves

Expected interest rate changes for normal yield curves

Expected interest rate changes for normal yield curves

Expected interest rate changes for normal yield curves

Expected interest rate changes for inverted yield curves

Expected interest rate changes for inverted yield curves

Expected interest rate changes for inverted yield curves

Expected interest rate changes for inverted yield curves

Expected interest rate changes for inverted yield curves

Expected interest rate changes for flat yield curves

Expected interest rate changes for flat yield curves

Expected interest rate changes for flat yield curves

Expected interest rate changes for flat yield curves

Expected interest rate changes for flat yield curves

Expected interest rate changes for humped yield curves

Expected interest rate changes for humped yield curves

Expected interest rate changes for humped yield curves

Expected interest rate changes for humped yield curves

Expected interest rate changes for humped yield curves

Prediction macroeconomic performance

Prediction macroeconomic performance

- The **expectations theory** of the yield curve asserts that the term structure reflects expectations about future short-term interest rates

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The **steepness** of the slope indicates the **magnitude of the change** in the short-term interest rate

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ **Upward sloping yield curves** indicate future short-term interest rates to rise

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ Upward sloping yield curves indicate future short-term interest rates to rise
- ⇒ The market expects the **economy to perform well**

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ Upward sloping yield curves indicate future short-term interest rates to rise
- ⇒ The market expects the economy to perform well
- ▶ **Downward sloping yield curves** indicate future short-term interest rates to fall

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ Upward sloping yield curves indicate future short-term interest rates to rise
- ⇒ The market expects the economy to perform well
- ▶ Downward sloping yield curves indicate future short-term interest rates to fall
- ⇒ The market expects a **recession**

Prediction macroeconomic performance

- ▶ The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ▶ The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ Upward sloping yield curves indicate future short-term interest rates to rise
⇒ The market expects the economy to perform well
- ▶ Downward sloping yield curves indicate future short-term interest rates to fall
⇒ The market expects a recession

Copyright © by Andreas Krause

Picture credits:

Cover: Premier regard, Public domain, via Wikimedia Commons, [https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_\(1\).jpg](https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_(1).jpg)

Back: Rhododendrites, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_\(11263p\).jpg](https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_(11263p).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk