

► The yield of risk-free bonds changes with its time to maturity

► The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates

- ► The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- ▶ The graphical representation of the term structure is known as the yield curve

- ► The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- The graphical representation of the term structure is known as the yield curve
- The yield curve also changes over time and such changes to future yield curves can be predicted from the current yield curve

- ► The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- The graphical representation of the term structure is known as the yield curve
- ► The yield curve also changes over time and such changes to future yield curves can be predicted from the current yield curve

- ► The yield of risk-free bonds changes with its time to maturity, this is referred to as the term structure of interest rates
- The graphical representation of the term structure is known as the yield curve
- ► The yield curve also changes over time and such changes to future yield curves can be predicted from the current yield curve

Investors can invest into a single bond with a long maturity

Investors can invest into a single bond with a long maturity, yielding a total return of $(1 + r_{0,T})^T$

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- ▶ Investors can invest into a bond with a shorter maturity first

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $\left(1+r_{0,T_1}\right)^{T_1}$

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $\left(1+r_{0,T_1}\right)^{T_1}$
- Investors can after this bond has matured, invest into another bond with a short maturity

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $\left(1+r_{0,T_1}\right)^{T_1}$
- Investors can after this bond has matured, invest into another bond with a short maturity
- ▶ The yield he receives is not known, but expectations can be formed

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $(1+r_{0,T_1})^{T_1}$
- Investors can after this bond has matured, invest into another bond with a short maturity
- The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + \mathsf{E}[r_{T_1,T-T_1}])^{T-T_1}$

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $(1+r_{0,T_1})^{T_1}$
- Investors can after this bond has matured, invest into another bond with a short maturity
- The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + \mathsf{E}[r_{T_1,T-T_1}])^{T-T_1}$
- ▶ The total return of the investor is then $(1 + r_{0,T_1})^{T_1} (1 + \mathbb{E}[r_{T_1,T-T_1}])^{T-T_1}$

- Investors can invest into a single bond with a long maturity, yielding a total return of $\left(1+r_{0,T}\right)^T$
- Investors can invest into a bond with a shorter maturity first, yielding a return of $(1+r_{0,T_1})^{T_1}$
- Investors can after this bond has matured, invest into another bond with a short maturity
- The yield he receives is not known, but expectations can be formed, yielding a return of $(1 + \mathsf{E}[r_{T_1,T-T_1}])^{T-T_1}$
- ▶ The total return of the investor is then $(1 + r_{0,T_1})^{T_1} (1 + \mathbb{E}[r_{T_1,T-T_1}])^{T-T_1}$

► Such that long-term and short-term bonds are demanded, the total return of both investment strategies much be the same

► Such that long-term and short-term bonds are demanded, the total return of both investment strategies much be the same

$$\Rightarrow (1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + \mathsf{E} [r_{T_1,T-T_1}])^{T-T_1}$$

► Such that long-term and short-term bonds are demanded, the total return of both investment strategies much be the same

$$\Rightarrow (1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + \mathsf{E}\left[r_{T_1,T-T_1}\right])^{T-T_1}$$

$$\Rightarrow 1 + \mathsf{E}\left[r_{T_1,T-T_1}
ight] = \sqrt[T-T_1]{rac{\left(1 + r_{0,T}
ight)^T}{\left(1 + r_{0,T_1}
ight)^{T_1}}}$$

Such that long-term and short-term bonds are demanded, the total return of both investment strategies much be the same

$$\Rightarrow \ (1+r_{0,T})^T = (1+r_{0,T_1})^{T_1} \left(1+\mathsf{E}\left[r_{T_1,T-T_1}\right]\right)^{T-T_1}$$

$$\Rightarrow 1 + \mathsf{E}\left[r_{T_1, T - T_1}\right] = \sqrt[T - T_1]{\frac{\left(1 + r_{0, T}\right)^T}{\left(1 + r_{0, T_1}\right)^{T_1}}}$$

We can now interpret the yield curve as showing expectations about future interest rates

Such that long-term and short-term bonds are demanded, the total return of both investment strategies much be the same

$$\Rightarrow (1 + r_{0,T})^T = (1 + r_{0,T_1})^{T_1} (1 + \mathsf{E}\left[r_{T_1,T-T_1}\right])^{T-T_1}$$

$$\Rightarrow 1 + \mathsf{E}\left[r_{T_1, T - T_1}\right] = \sqrt[T - T_1]{\frac{\left(1 + r_{0, T}\right)^T}{\left(1 + r_{0, T_1}\right)^{T_1}}}$$

We can now interpret the yield curve as showing expectations about future interest rates

Yield curves as predictors

► Short-term interest rates are heavily influenced by monetary policy

- Short-term interest rates are heavily influenced by monetary policy
- Expectations about short-term interest rates will reflect expectations about monetary policy

- Short-term interest rates are heavily influenced by monetary policy
- Expectations about short-term interest rates will reflect expectations about monetary policy
- Monetary policy is influenced by inflation and the growth of the economy

- Short-term interest rates are heavily influenced by monetary policy
- Expectations about short-term interest rates will reflect expectations about monetary policy
- Monetary policy is influenced by inflation and the growth of the economy
- ► The yield curve can be used to predict macroeconomic performance of an economy

- Short-term interest rates are heavily influenced by monetary policy
- Expectations about short-term interest rates will reflect expectations about monetary policy
- Monetary policy is influenced by inflation and the growth of the economy
- ▶ The yield curve can be used to predict macroeconomic performance of an economy

lacktriangle Consider two bonds with short maturities T_1 and $T-T_1$

Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is upward slowing, longer times to maturity have a higher yield

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
 - Assume the yield curve is upward slowing, longer times to maturity have a higher yield: $\max\{r_{0,T_1},r_{0,T-T_1}\} < r_{0,T}$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is upward slowing, longer times to maturity have a higher yield: $\max\{r_{0,T_1},r_{0,T-T_1}\} < r_{0,T}$

$$\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is upward slowing, longer times to maturity have a higher yield: $\max\{r_{0,T_1},r_{0,T-T_1}\} < r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- $\Rightarrow \ \mathsf{E}\left[r_{T_{1},T-T_{1}}\right] > r_{0,T-T_{1}}$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is upward slowing, longer times to maturity have a higher yield: $\max\{r_{0,T_1},r_{0,T-T_1}\} < r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- $\Rightarrow \mathsf{E}[r_{T_1,T-T_1}] > r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to rise

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is upward slowing, longer times to maturity have a higher yield: $\max\{r_{0,T_1},r_{0,T-T_1}\} < r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} < (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T < (1 + r_{0,T})^T$
- $\Rightarrow \mathsf{E}[r_{T_1,T-T_1}] > r_{0,T-T_1}$
- ⇒ Short-term interest rates are expected to rise

lacktriangle Consider two bonds with short maturities T_1 and $T-T_1$

Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield: $\min\{r_{0,T_1},r_{0,T-T_1}\} > r_{0,T}$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield: $\min\{r_{0,T_1},r_{0,T-T_1}\} > r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield: $\min\{r_{0,T_1},r_{0,T-T_1}\} > r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- $\Rightarrow \ \mathsf{E}\left[r_{T_1, T T_1}\right] < r_{0, T T_1}$

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield: $\min\{r_{0,T_1},r_{0,T-T_1}\}>r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- $\Rightarrow \mathsf{E}[r_{T_1, T T_1}] < r_{0, T T_1}$
- ⇒ Short-term interest rates are expected to fall

- Consider two bonds with short maturities T_1 and $T-T_1$ and a bond with long maturity T
- $(1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \min\{r_{0,T_1}, r_{0,T-T_1}\})^T$
- Assume the yield curve is downward slowing, longer times to maturity have a lower yield: $\min\{r_{0,T_1},r_{0,T-T_1}\} > r_{0,T}$
- $\Rightarrow (1 + r_{0,T_1})^{T_1} (1 + r_{0,T-T_1})^{T-T_1} > (1 + \max\{r_{0,T_1}, r_{0,T-T_1}\})^T > (1 + r_{0,T})^T$
- $\Rightarrow \mathsf{E}[r_{T_1, T T_1}] < r_{0, T T_1}$
- ⇒ Short-term interest rates are expected to fall

► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- ▶ Upward sloping yield curves indicate future short-term interest rates to rise

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- Upward sloping yield curves indicate future short-term interest rates to rise
- ⇒ The market expects the economy to perform well

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- Upward sloping yield curves indicate future short-term interest rates to rise
- → The market expects the economy to perform well
- Downward sloping yield curves indicate future short-term interest rates to fall

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- Upward sloping yield curves indicate future short-term interest rates to rise
- → The market expects the economy to perform well
- Downward sloping yield curves indicate future short-term interest rates to fall
- ⇒ The market expects a recession

- ► The expectations theory of the yield curve asserts that the term structure reflects expectations about future short-term interest rates
- ► The steepness of the slope indicates the magnitude of the change in the short-term interest rate
- Upward sloping yield curves indicate future short-term interest rates to rise
- → The market expects the economy to perform well
- Downward sloping yield curves indicate future short-term interest rates to fall
- → The market expects a recession

Copyright (1) by Andreas Krause

Picture credits

Cover: Premier regard, Public domain, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:DALL-E__Financial_markets.(1).jpg

ack: Rhododendrites, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan-at-night.south-of-Rockefeller-Center-panorama-(11263p).jpj

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk