

Andreas Krause

Market efficiency

Definition of market efficiency

Definition of market efficiency

A market is **efficient** if prices include all relevant information

Definition of market efficiency

A market is **efficient** if prices include all relevant information

Weak form efficiency Prices reflect information from **past prices**

Definition of market efficiency

A market is **efficient** if prices include all relevant information

Weak form efficiency Prices reflect information from past prices

Semi-strong form efficiency Prices reflect all **publicly available information**

Definition of market efficiency

A market is **efficient** if prices include all relevant information

Weak form efficiency Prices reflect information from past prices

Semi-strong form efficiency Prices reflect all publicly available information

Strong form efficiency Prices reflect **all available information**, including private information

Definition of market efficiency

A market is **efficient** if prices include all relevant information

Weak form efficiency Prices reflect information from past prices

Semi-strong form efficiency Prices reflect all publicly available information

Strong form efficiency Prices reflect all available information, including private information

Asset returns

Asset returns

- ▶ Asset values are derived from the **future income** they generate
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau}]}{}$$

Asset returns

- ▶ Asset values are derived from the **future income** they generate, **discounted** to the present value
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau}]}{\rho^\tau}$$

Asset returns

- ▶ Asset values are derived from the **future income** they generate, **discounted** to the present value
- ▶ The future income is determined using the **information available at the time**
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{\mathbb{E}[D_{t+\tau} | \Omega_t]}{\rho^\tau}$$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time
- ▶ $P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$
- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$
- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

⇒ $\rho = \frac{E[P_{t+1} | \Omega_t]}{P_t}$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$
- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

⇒ $\rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time

$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$

- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

$$\Rightarrow \rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$$

$$\Rightarrow \rho = E \left[\frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}} | \Omega_t \right]$$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time
- ▶
$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$
- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

⇒ $\rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$

⇒ $\rho = E \left[\frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}} | \Omega_t \right] \approx \frac{E[P_{t+2} | \Omega_t]}{E[P_{t+1} | \Omega_t]}$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time

$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$

- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

$$\Rightarrow \rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$$

$$\Rightarrow \rho = E \left[\frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}} | \Omega_t \right] \approx \frac{E[P_{t+2} | \Omega_t]}{E[P_{t+1} | \Omega_t]} = \frac{E[P_{t+2} | \Omega_t]}{\rho P_t}$$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time

$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$

- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

$$\Rightarrow \rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$$

$$\Rightarrow \rho = E \left[\frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}} | \Omega_t \right] \approx \frac{E[P_{t+2} | \Omega_t]}{E[P_{t+1} | \Omega_t]} = \frac{E[P_{t+2} | \Omega_t]}{\rho P_t}$$

$$\Rightarrow \rho^2 = \frac{E[P_{t+2} | \Omega_t]}{P_t}$$

Asset returns

- ▶ Asset values are derived from the future income they generate, discounted to the present value
- ▶ The future income is determined using the information available at the time

$$P_t = \sum_{\tau=0}^{+\infty} \frac{E[D_{t+\tau} | \Omega_t]}{\rho^\tau} = D_t + \frac{E[P_{t+1} | \Omega_t]}{\rho}$$

- ▶ For short-term returns, we can neglect the future income and set $E[d_{t+\tau} | \Omega_t] = 0$

$$\Rightarrow \rho = \frac{E[P_{t+1} | \Omega_t]}{P_t} = \frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}}$$

$$\Rightarrow \rho = E \left[\frac{E[P_{t+2} | \Omega_{t+1}]}{P_{t+1}} | \Omega_t \right] \approx \frac{E[P_{t+2} | \Omega_t]}{E[P_{t+1} | \Omega_t]} = \frac{E[P_{t+2} | \Omega_t]}{\rho P_t}$$

$$\Rightarrow \rho^2 = \frac{E[P_{t+2} | \Omega_t]}{P_t}$$

Serial correlation of returns

Serial correlation of returns

$$\blacktriangleright \text{Cov} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] = \mathbb{E} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}$$

Serial correlation of returns

$$\begin{aligned}\blacktriangleright \text{Cov} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+2}|\Omega_t]}{P_t} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}\end{aligned}$$

Serial correlation of returns

$$\begin{aligned}\blacktriangleright \text{Cov} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+2}|\Omega_t]}{P_t} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \rho^2 - \rho\rho\end{aligned}$$

Serial correlation of returns

$$\begin{aligned}\blacktriangleright \text{Cov} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \mathbb{E} \left[\frac{\mathbb{E}[P_{t+2}|\Omega_t]}{P_t} \right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \rho^2 - \rho \rho = 0\end{aligned}$$

Serial correlation of returns

$$\begin{aligned}\mathbf{\nabla} \operatorname{Cov}\left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}\right] &= \mathbb{E}\left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}\right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \mathbb{E}\left[\frac{\mathbb{E}[P_{t+2}|\Omega_t]}{P_t}\right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \rho^2 - \rho\rho = 0\end{aligned}$$

⇒ Returns are **serially uncorrelated**

Serial correlation of returns

$$\begin{aligned}\mathbf{\nabla} \operatorname{Cov}\left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t}, \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}\right] &= \mathbb{E}\left[\frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]}\right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \mathbb{E}\left[\frac{\mathbb{E}[P_{t+2}|\Omega_t]}{P_t}\right] - \frac{\mathbb{E}[P_{t+1}|\Omega_t]}{P_t} \frac{\mathbb{E}[P_{t+2}|\Omega_t]}{\mathbb{E}[P_{t+1}|\Omega_t]} \\ &= \rho^2 - \rho\rho = 0\end{aligned}$$

⇒ Returns are serially uncorrelated

Random returns

Random returns

- ▶ If returns are **uncorrelated**, they will fluctuate randomly around the expected return

Random returns

- ▶ If returns are uncorrelated, they will fluctuate randomly around the expected return
- ▶ $\frac{P_{t+1}}{P_t} = \rho + \varepsilon_t$

Random returns

- ▶ If returns are uncorrelated, they will fluctuate randomly around the expected return
- ▶ $\frac{P_{t+1}}{P_t} = \rho + \varepsilon_t$
- ▶ The **error term** will have a mean of 0 and a variance of σ_ε^2

Random returns

- ▶ If returns are uncorrelated, they will fluctuate randomly around the expected return
- ▶ $\frac{P_{t+1}}{P_t} = \rho + \varepsilon_t$
- ▶ The error term will have a mean of 0 and a variance of σ_ε^2

⇒ $E\left[\frac{P_{t+1}}{P_t}\right] = \rho$

Random returns

- ▶ If returns are uncorrelated, they will fluctuate randomly around the expected return
- ▶ $\frac{P_{t+1}}{P_t} = \rho + \varepsilon_t$
- ▶ The error term will have a mean of 0 and a variance of σ_ε^2

⇒ $E\left[\frac{P_{t+1}}{P_t}\right] = \rho$

Var $\left[\frac{P_{t+1}}{P_t}\right] = \sigma_\varepsilon^2$

Random returns

- ▶ If returns are uncorrelated, they will fluctuate randomly around the expected return
- ▶ $\frac{P_{t+1}}{P_t} = \rho + \varepsilon_t$
- ▶ The error term will have a mean of 0 and a variance of σ_ε^2

⇒ $E\left[\frac{P_{t+1}}{P_t}\right] = \rho$

$\text{Var}\left[\frac{P_{t+1}}{P_t}\right] = \sigma_\varepsilon^2$

Profitability of trading strategies

Profitability of trading strategies

- If returns are **unpredictable**, then investors cannot make profits from any trading strategy

Profitability of trading strategies

- ▶ If returns are unpredictable, then investors cannot make profits from any trading strategy
- ▶ In **strong form** efficient markets, even insiders could not make any profits

Profitability of trading strategies

- ▶ If returns are unpredictable, then investors cannot make profits from any trading strategy
- ▶ In strong form efficient markets, even insiders could not make any profits
- ▶ In **semi-strong form** efficient markets, fundamental analysis of assets cannot lead to profits

Profitability of trading strategies

- ▶ If returns are unpredictable, then investors cannot make profits from any trading strategy
- ▶ In strong form efficient markets, even insiders could not make any profits
- ▶ In semi-strong form efficient markets, fundamental analysis of assets cannot lead to profits
- ▶ In **weak form** efficient markets, technical trading could not be profitable

Profitability of trading strategies

- ▶ If returns are unpredictable, then investors cannot make profits from any trading strategy
- ▶ In strong form efficient markets, even insiders could not make any profits
- ▶ In semi-strong form efficient markets, fundamental analysis of assets cannot lead to profits
- ▶ In weak form efficient markets, technical trading could not be profitable

Copyright © by Andreas Krause

Picture credits:

Cover: Premier regard, Public domain, via Wikimedia Commons, [https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_\(1\).jpg](https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_(1).jpg)

Back: Rhododendrites, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_\(11263p\).jpg](https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_(11263p).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk