

The background of the slide is a blurred, abstract image of a bridge at night. The bridge's structure is visible as a dark silhouette against a bright, colorful sky filled with streaks of light and glowing spots, resembling a fireworks display or a city skyline at night.

Andreas Krause

Capital Asset Pricing Model

Portfolio theory

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a **portfolio of risky assets**

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (**optimal risky portfolio**)

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (optimal risky portfolio) and combine this with the **risk-free asset**

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (optimal risky portfolio) and combine this with the risk-free asset
- ▶ Based on these investment decisions, we are able to derive an **equilibrium** in which all assets are held

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (optimal risky portfolio) and combine this with the risk-free asset
- ▶ Based on these investment decisions, we are able to derive an equilibrium in which all assets are held
- ▶ This equilibrium will restrict the returns of assets as a **too high** return would result in a **too high** weight for this asset

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (optimal risky portfolio) and combine this with the risk-free asset
- ▶ Based on these investment decisions, we are able to derive an equilibrium in which all assets are held
- ▶ This equilibrium will restrict the returns of assets as a **too high (low)** return would result in a **too high (low)** weight for this asset

Portfolio theory

- ▶ Portfolio theory suggests that investors hold a portfolio of risky assets (optimal risky portfolio) and combine this with the risk-free asset
- ▶ Based on these investment decisions, we are able to derive an equilibrium in which all assets are held
- ▶ This equilibrium will restrict the returns of assets as a too high (low) return would result in a too high (low) weight for this asset

Sharpe ratio

Sharpe ratio

- The slope of the Capital Market Line in portfolio selection theory is given by

$$s = \frac{\mu_p - r}{\sigma_p}$$

Sharpe ratio

- ▶ The slope of the Capital Market Line in portfolio selection theory is given by
- $$s = \frac{\mu_p - r}{\sigma_p}$$
- ▶ This is known as the **Sharpe ratio**

Sharpe ratio

- ▶ The slope of the Capital Market Line in portfolio selection theory is given by
$$s = \frac{\mu_p - r}{\sigma_p}$$
- ▶ This is known as the Sharpe ratio
- ▶ The optimal portfolio will consist of the **optimal risky portfolio**
- ▶ $\mu_P = \omega^T \mu$

Sharpe ratio

- ▶ The slope of the Capital Market Line in portfolio selection theory is given by
$$s = \frac{\mu_p - r}{\sigma_p}$$
- ▶ This is known as the Sharpe ratio
- ▶ The optimal portfolio will consist of the **optimal risky portfolio** and the **risk-free asset**
- ▶ $\mu_P = \omega^T \mu + (1 - \omega^T \iota) r$

Sharpe ratio

- ▶ The slope of the Capital Market Line in portfolio selection theory is given by
$$s = \frac{\mu_p - r}{\sigma_p}$$
- ▶ This is known as the Sharpe ratio
- ▶ The optimal portfolio will consist of the **optimal risky portfolio** and the **risk-free asset**
- ▶ $\mu_P = \omega^T \mu + (1 - \omega^T \iota) r$
- ▶ $\sigma_p^2 = \omega^T \Sigma \omega$

Sharpe ratio

- ▶ The slope of the Capital Market Line in portfolio selection theory is given by
$$s = \frac{\mu_p - r}{\sigma_p}$$
- ▶ This is known as the Sharpe ratio
- ▶ The optimal portfolio will consist of the optimal risky portfolio and the risk-free asset
- ▶ $\mu_P = \omega^T \mu + (1 - \omega^T \iota) r$
- ▶ $\sigma_p^2 = \omega^T \Sigma \omega$

Maximizing the Sharpe ratio

Maximizing the Sharpe ratio

- The Capital Market Line is **tangential** to the efficient frontier

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the **slope** being maximal

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the slope being maximal
- ⇒ $\frac{\partial s}{\partial \omega} = 0$

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the slope being maximal

$$\Rightarrow \frac{\partial s}{\partial \omega} = 0$$

$$\Rightarrow \boldsymbol{\mu} = r\boldsymbol{\iota} + \frac{\boldsymbol{\Sigma}\boldsymbol{\omega}}{\sigma_P^2} (\mu_P - r)$$

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the slope being maximal
 - ⇒ $\frac{\partial s}{\partial \omega} = 0$
 - ⇒ $\mu = r\mathbf{1} + \frac{\Sigma\omega}{\sigma_P^2} (\mu_P - r)$
- ▶ We define $\beta = \frac{\Sigma\omega}{\sigma_P^2}$

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the slope being maximal

$$\Rightarrow \frac{\partial s}{\partial \omega} = 0$$

$$\Rightarrow \mu = r\iota + \frac{\Sigma\omega}{\sigma_P^2} (\mu_P - r)$$

- ▶ We define $\beta = \frac{\Sigma\omega}{\sigma_P^2}$

$$\Rightarrow \mu = r\iota + \beta (\mu_P - r)$$

Maximizing the Sharpe ratio

- ▶ The Capital Market Line is tangential to the efficient frontier, this is equivalent to the slope being maximal

$$\Rightarrow \frac{\partial s}{\partial \omega} = 0$$

$$\Rightarrow \mu = r\iota + \frac{\Sigma\omega}{\sigma_P^2} (\mu_P - r)$$

- ▶ We define $\beta = \frac{\Sigma\omega}{\sigma_P^2}$

$$\Rightarrow \mu = r\iota + \beta (\mu_P - r)$$

The CAPM equation

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the **covariance** of the assets with the optimal risky portfolio

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the covariance of the assets with the optimal risky portfolio
- ▶ The optimal risky portfolio is **identical for all investors**

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the covariance of the assets with the optimal risky portfolio
- ▶ The optimal risky portfolio is identical for all investors, it must be the **market portfolio**

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the covariance of the assets with the optimal risky portfolio
 - ▶ The optimal risky portfolio is identical for all investors, it must be the market portfolio
- ⇒ $\mu_i = r + \beta_i (\mu_M - r)$

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the covariance of the assets with the optimal risky portfolio
- ▶ The optimal risky portfolio is identical for all investors, it must be the market portfolio

$$\Rightarrow \mu_i = r + \beta_i (\mu_M - r)$$

$$\beta_i = \frac{\sigma_{iM}}{\sigma_M^2}$$

The CAPM equation

- ▶ The term $\Sigma\omega$ represents the covariance of the assets with the optimal risky portfolio
- ▶ The optimal risky portfolio is identical for all investors, it must be the market portfolio

$$\Rightarrow \mu_i = r + \beta_i (\mu_M - r)$$

$$\beta_i = \frac{\sigma_{iM}}{\sigma_M^2}$$

Problems with the market portfolio

Problems with the market portfolio

- The market portfolio should include **all possible investments**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: **stocks**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, **bonds**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, **real estate**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, **private equity**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, **hedge funds**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, **commodities**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, **foreign exchange**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, **cryptoassets**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, **human capital**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, human capital, ...

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, human capital, ...
- ▶ Many investments are **not available** to all investors

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, human capital, ...
- ▶ Many investments are not available to all investors, for others **no data** are available

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, human capital, ...
- ▶ Many investments are not available to all investors, for others no data are available
- ▶ For the optimal risky portfolio to be the market portfolio, all investors need to **agree** on the properties of **all assets**

Problems with the market portfolio

- ▶ The market portfolio should include all possible investments: stocks, bonds, real estate, private equity, hedge funds, commodities, foreign exchange, cryptoassets, human capital, ...
- ▶ Many investments are not available to all investors, for others no data are available
- ▶ For the optimal risky portfolio to be the market portfolio, all investors need to agree on the properties of all assets

Systematic risk

Systematic risk

- The CAPM only considers the **covariance** of an asset with the market

Systematic risk

- The CAPM only considers the covariance of an asset with the market, not its **variance** as a risk measure

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the **systematic risk** of an asset

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the systematic risk of an asset and measures how much it varies **with the market** as a whole

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the systematic risk of an asset and measures how much it varies with the market as a whole
- ▶ **Unsystematic risk** is the risk **unique to the asset**

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the systematic risk of an asset and measures how much it varies with the market as a whole
- ▶ Unsystematic risk, or **idiosyncratic risk**, is the risk unique to the asset

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the systematic risk of an asset and measures how much it varies with the market as a whole
- ▶ Unsystematic risk, or idiosyncratic risk, is the risk unique to the asset
- ▶ Idiosyncratic risk can be eliminated through **diversification**

Systematic risk

- ▶ The CAPM only considers the covariance of an asset with the market, not its variance as a risk measure
- ▶ The covariance is regarded as the systematic risk of an asset and measures how much it varies with the market as a whole
- ▶ Unsystematic risk, or idiosyncratic risk, is the risk unique to the asset
- ▶ Idiosyncratic risk can be eliminated through diversification

Copyright © by Andreas Krause

Picture credits:

Cover: Premier regard, Public domain, via Wikimedia Commons, [https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_\(1\).jpg](https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_(1).jpg)

Back: Rhododendrites, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_\(11263p\).jpg](https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_(11263p).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk