

Adverse selection

Asymmetric information

Asymmetric information

- ▶ Some individuals are **better informed** than others about the properties of a good or service

Asymmetric information

- ▶ Some individuals are better informed than others about the properties of a good or service
- ▶ The better informed individual could now **exploit** their **informational advantage**

Asymmetric information

- ▶ Some individuals are better informed than others about the properties of a good or service
- ▶ The better informed individual could now exploit their informational advantage
- ▶ The better informed individual would profit **at the expense** of the less-well informed individual

Asymmetric information

- ▶ Some individuals are better informed than others about the properties of a good or service
- ▶ The better informed individual could now exploit their informational advantage
- ▶ The better informed individual would profit at the expense of the less-well informed individual
- ▶ The less-well informed individual **knows** that they are exploited and might not want to enter the market

Asymmetric information

- ▶ Some individuals are better informed than others about the properties of a good or service
- ▶ The better informed individual could now exploit their informational advantage
- ▶ The better informed individual would profit at the expense of the less-well informed individual
- ▶ The less-well informed individual knows that they are exploited and might not want to enter the market

Examples of asymmetric information

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer
- ▶ Home-owner vs. home-buyer

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer
- ▶ Home-owner vs. home-buyer
- ▶ Policyholder vs. insurance company

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer
- ▶ Home-owner vs. home-buyer
- ▶ Policyholder vs. insurance company
- ▶ **Investment advisor vs. investor**

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer
- ▶ Home-owner vs. home-buyer
- ▶ Policyholder vs. insurance company
- ▶ Investment advisor vs. investor
- ▶ **Company managers vs. banks**

Examples of asymmetric information

- ▶ Used-car dealer vs. car buyer
- ▶ Home-owner vs. home-buyer
- ▶ Policyholder vs. insurance company
- ▶ Investment advisor vs. investor
- ▶ Company managers vs. banks

Bank lending

Bank lending

- We have **two types** of companies, one repays a loan with a high probability and the other with a low probability

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ **Companies** know their type

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the **fraction** of each type in the market

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to **low-risk companies** are **repaid their loans**

- ▶ $\Pi_B = \pi_H(1 + r_L)L$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to **low-risk companies** are **repaid their loans** and **repay their depositors**
- ▶
$$\Pi_B = \pi_H(1 + r_L)L - (1 + r_D)D$$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to **low-risk companies** are **repaid their loans** and **repay their depositors**
- ▶ Banks lending to **high-risk** companies are **repaid their loans**

$$\nabla \Pi_B = \pi_H(1 + r_L)L - (1 + r_D)D + \pi_L(1 + r_L)L$$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to **low-risk companies** are **repaid their loans** and **repay their depositors**
- ▶ Banks lending to **high-risk** companies are **repaid their loans** and **repay their depositors**
- ▶
$$\Pi_B = \pi_H(1 + r_L)L - (1 + r_D)D + \pi_L(1 + r_L)L - (1 + r_D)D$$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to **low-risk companies** are **repaid their loans** and **repay their depositors**
- ▶ Banks lending to **high-risk** companies are **repaid their loans** and **repay their depositors**
- ▶ Banks only know the **proportion** of low-risk and high-risk companies
- ▶ $\Pi_B = p (\pi_H(1 + r_L) L - (1 + r_D) D) + (1 - p) (\pi_L(1 + r_L) L - (1 + r_D) D)$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to low-risk companies are repaid their loans and repay their depositors
- ▶ Banks lending to high-risk companies are repaid their loans and repay their depositors
- ▶ Banks only know the proportion of low-risk and high-risk companies
- ▶
$$\begin{aligned}\Pi_B &= p(\pi_H(1 + r_L)L - (1 + r_D)D) + (1 - p)(\pi_L(1 + r_L)L - (1 + r_D)D) \\ &= (p\pi_H + (1 - p)\pi_L)(1 + r_L)L - (1 + r_D)D\end{aligned}$$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to low-risk companies are repaid their loans and repay their depositors
- ▶ Banks lending to high-risk companies are repaid their loans and repay their depositors
- ▶ Banks only know the proportion of low-risk and high-risk companies
- ▶
$$\begin{aligned}\Pi_B &= p(\pi_H(1 + r_L)L - (1 + r_D)D) + (1 - p)(\pi_L(1 + r_L)L - (1 + r_D)D) \\ &= (p\pi_H + (1 - p)\pi_L)(1 + r_L)L - (1 + r_D)D\end{aligned}$$
- ▶ We assume that loans are fully financed through deposits, $L = D$

Bank lending

- ▶ We have two types of companies, one repays a loan with a high probability and the other with a low probability
- ▶ Companies know their type, but banks only know the fraction of each type in the market
- ▶ Banks lending to low-risk companies are repaid their loans and repay their depositors
- ▶ Banks lending to high-risk companies are repaid their loans and repay their depositors
- ▶ Banks only know the proportion of low-risk and high-risk companies
- ▶
$$\begin{aligned}\Pi_B &= p(\pi_H(1 + r_L)L - (1 + r_D)D) + (1 - p)(\pi_L(1 + r_L)L - (1 + r_D)D) \\ &= (p\pi_H + (1 - p)\pi_L)(1 + r_L)L - (1 + r_D)D\end{aligned}$$
- ▶ We assume that loans are fully financed through deposits, $L = D$

Loan rates

Loan rates

- If banks are competitive, they make no profits: $\Pi_B = 0$

Loan rates

- If banks are competitive, they make no profits: $\Pi_B = 0$

$$\Rightarrow 1 + r_L = \frac{1 + r_D}{p\pi_H + (1-p)\pi_L}$$

Loan rates

- ▶ If banks are competitive, they make no profits: $\Pi_B = 0$
- ⇒ $1 + r_L = \frac{1+r_D}{p\pi_H + (1-p)\pi_L}$
- ▶ Banks would charge this loan rate based on the **average risk** of the companies

Loan rates

- ▶ If banks are competitive, they make no profits: $\Pi_B = 0$
- ⇒ $1 + r_L = \frac{1+r_D}{p\pi_H + (1-p)\pi_L}$
- ▶ Banks would charge this loan rate based on the average risk of the companies

Company profits

Company profits

- The company invests the loans and obtains a return
- $\Pi_C^i = ((1 + R_i) I \quad)$

Company profits

- ▶ The company invests the loans and **obtains a return**, provided the investment is **successful**
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I \quad)$

Company profits

- ▶ The company invests the loans and **obtains a return**, provided the investment is **successful**, and then **repays the loan**
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$

Company profits

- ▶ The company invests the loans and obtains a return, provided the investment is successful, and then repays the loan
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$
- ▶ Low-risk companies borrow if it is profitable: $\Pi_C^H \geq 0$

Company profits

- ▶ The company invests the loans and obtains a return, provided the investment is successful, and then repays the loan
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$
- ▶ Low-risk companies borrow if it is profitable: $\Pi_C^H \geq 0$

$\Rightarrow p \geq p^* = \frac{(1+r_D)-\pi_L(1+R_H)}{(\pi_H-\pi_L)(1+R_H)}$

Company profits

- ▶ The company invests the loans and obtains a return, provided the investment is successful, and then repays the loan
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$
- ▶ Low-risk companies borrow if it is profitable: $\Pi_C^H \geq 0$
- ⇒ $p \geq p^* = \frac{(1+r_D) - \pi_L(1+R_H)}{(\pi_H - \pi_L)(1+R_H)}$
- ▶ Only if **sufficient low-risk companies** are present, will they make a profit

Company profits

- ▶ The company invests the loans and obtains a return, provided the investment is successful, and then repays the loan
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$
- ▶ Low-risk companies borrow if it is profitable: $\Pi_C^H \geq 0$
- ⇒ $p \geq p^* = \frac{(1+r_D) - \pi_L(1+R_H)}{(\pi_H - \pi_L)(1+R_H)}$
- ▶ Only if sufficient low-risk companies are present, will they make a profit
- ▶ If less low-risk companies are present, the loan rate is **exceeding** their investment return

Company profits

- ▶ The company invests the loans and obtains a return, provided the investment is successful, and then repays the loan
- ▶ $\Pi_C^i = \pi_i ((1 + R_i) I - (1 + r_L) L)$
- ▶ Low-risk companies borrow if it is profitable: $\Pi_C^H \geq 0$
- ⇒ $p \geq p^* = \frac{(1+r_D) - \pi_L(1+R_H)}{(\pi_H - \pi_L)(1+R_H)}$
- ▶ Only if sufficient low-risk companies are present, will they make a profit
- ▶ If less low-risk companies are present, the loan rate is exceeding their investment return

Borrowing by high-risk companies

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have **higher returns** if successful

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are **not demanding loans**

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are not demanding loans
- ▶ Finally assume that returns for high-risk companies are sufficiently high such that they are **profitable**

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are not demanding loans
- ▶ Finally assume that returns for high-risk companies are sufficiently high such that they are profitable: $\Pi_C^L \geq 0$

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are not demanding loans
- ▶ Finally assume that returns for high-risk companies are sufficiently high such that they are profitable: $\Pi_C^L \geq 0$

⇒ **High-risk companies** demand loans

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are not demanding loans
- ▶ Finally assume that returns for high-risk companies are sufficiently high such that they are profitable: $\Pi_C^L \geq 0$

⇒ High-risk companies demand loans, but **low-risk companies** demand no loans

Borrowing by high-risk companies

- ▶ Assume now that high-risk companies have higher returns if successful: $R_L > R_H$
- ▶ Further assume that $p < p^*$ and low-risk companies are not demanding loans
- ▶ Finally assume that returns for high-risk companies are sufficiently high such that they are profitable: $\Pi_C^L \geq 0$
- ⇒ High-risk companies demand loans, but low-risk companies demand no loans

Market breakdown

Market breakdown

- ▶ If **only** high-risk companies demand loans, banks charge a too low loan rate to be profitable

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as **adverse selection**

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the **market breaks down**

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is **socially desirable** that low-risk companies obtain loans if their expected return is sufficiently high

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$
- ▶ It is **socially not desirable** that low-risk companies obtain loans if their expected return is sufficiently low

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$
- ▶ It is socially not desirable that low-risk companies obtain loans if their expected return is sufficiently low: $1 + r_D \geq \pi_L (1 + R_L)$

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$
- ▶ It is socially not desirable that low-risk companies obtain loans if their expected return is sufficiently low: $1 + r_D \geq \pi_L (1 + R_L)$
- ▶ As banks cannot distinguish between company types, **no loans are given**

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$
- ▶ It is socially not desirable that low-risk companies obtain loans if their expected return is sufficiently low: $1 + r_D \geq \pi_L (1 + R_L)$
- ▶ As banks cannot distinguish between company types, no loans are given or **all company types** obtain loans

Market breakdown

- ▶ If only high-risk companies demand loans, banks charge a too low loan rate to be profitable
- ▶ This situation is commonly referred to as adverse selection
- ⇒ Banks would not offer any loans and the market breaks down
- ▶ It is socially desirable that low-risk companies obtain loans if their expected return is sufficiently high: $\pi_H (1 + R_H) \geq 1 + r_D$
- ▶ It is socially not desirable that low-risk companies obtain loans if their expected return is sufficiently low: $1 + r_D \geq \pi_L (1 + R_L)$
- ▶ As banks cannot distinguish between company types, no loans are given or all company types obtain loans

Preventing market breakdown

Preventing market breakdown

- ▶ If banks **could distinguish** the types of companies, market breakdown could be prevented

Preventing market breakdown

- ▶ If banks could distinguish the types of companies, market breakdown could be prevented
- ▶ Banks need to devise a mechanism, which **reveals** the type of company through their own choices

Preventing market breakdown

- ▶ If banks could distinguish the types of companies, market breakdown could be prevented
- ▶ Banks need to devise a mechanism, which reveals the type of company through their own choices
- ▶ In this specific case the mechanism could be the provision of **collateral**

Preventing market breakdown

- ▶ If banks could distinguish the types of companies, market breakdown could be prevented
- ▶ Banks need to devise a mechanism, which reveals the type of company through their own choices
- ▶ In this specific case the mechanism could be the provision of collateral
- ▶ **Other mechanisms** giving companies choices can be developed that have the same effect

Preventing market breakdown

- ▶ If banks could distinguish the types of companies, market breakdown could be prevented
- ▶ Banks need to devise a mechanism, which reveals the type of company through their own choices
- ▶ In this specific case the mechanism could be the provision of collateral
- ▶ Other mechanisms giving companies choices can be developed that have the same effect

Copyright © by Andreas Krause

Picture credits:

Cover: Premier regard, Public domain, via Wikimedia Commons, [https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_\(1\).jpg](https://commons.wikimedia.org/wiki/File:DALL-E_2_Financial_markets_(1).jpg)

Back: Rhododendrites, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_\(11263p\).jpg](https://upload.wikimedia.org/wikipedia/commons/0/04/Manhattan_at_night_south_of_Rockefeller_Center_panorama_(11263p).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk