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Problem and model assumptions
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Maturity mismatch

» Borrowers prefer long-term loans to meet the time horizon of their investments

» Depositors prefer the ability access their funds easily if needed

= Banks need to be able to pay back deposits if requested, but lend out at long
terms

> We show that bank lending provides the optimal solution to overcoming this
maturity mismatch
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Problem and model assumptions
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Model specifications

» Loans are repaid after 2 time periods with probability 7

» Depositors can withdraw either after 1 or 2 time periods, earning interest r}) and
b

» A fraction p of depositors withdraws in time period 1

> If banks have to raise cash to repay deposits, they only get a fraction A of the
loan value

» Depositor utility: FE [U (D)] = pu ((1 + rlD) D) +(1—-pu ((1 + 7"%)) D)
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Social optimum
0®0

Repaying deposits

» The cash held will be paid out for deposits withdrawn in time period 1
» p(l+rp)D=D—L

» The loan repayments are used to repay the deposits left in time period 2
> (1-p)(1+r3)D=m(1+ry)L

. . 1 _ (1+r3) _
» Combined: p (1 + ’f’D) +(1-p) m(itrr) 1
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Social optimum
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Optimal deposit rates

» First order condition of maximizing the utility of depositors gives

ou((1+rL)D ou((1+r2)D
6(((1-:;11:))D ) (1+7) a((g;ﬂff))p )
» With the combined constraint this can be solved for the optimal deposit rates to
be paid
» This social optimum is the benchmark with which we compare other lending
arrangements
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Direct lending
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Wealth after early withdrawal

> If depositors lend directly, they will have the liquidated loan and cash if they want
to consume in time period 1

» (1+rp)D=D—L+ AL

» Depositors not liquidating their loan will in period 2 obtain their cash and the loan
repayments

> (1+7r3)D=D—L+w(1+ry)L
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Direct lending
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Stricter constraint

2
» Combining these two constraints we get p (1 + rb) +(1-p) 722;:’2)) <1

> If A < 1 this constraint is stricter than the social optimum, where it was an
equality

= Direct lending is not optimal for depositors
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Direct lending with trading
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Wealth after trading

» Loans can be sold at price P, rather than be liquidated at a loss

> If needing to liquidate the loan early to withdraw funds, it is sold:
(1+rp)D=D—L+7(1+ry)LP

» If keeping the loan, the cash can be used to buy additional loans:
(1+T,23)D: %+W(1+TL)L

Chapter 3.1: Maturity transformation of deposits Slide 13 of 23

Theoretical Foundations of Banking



Direct lending with trading
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Loan price

_ 1
> P= e
> If P> m all deposits are invested into loans, as

(1+7p)D=D—L+7(1+ry)LP would increase in L

= No cash remains to buy loans that are sold to raise cash for withdrawals

> If P < W(l}rm) all deposits are kept in cash, as

(1+7p)D=D—L+7(1+ry)LP would decrease in L
= No loans are given
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Direct lending with trading
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Market clearing

» Loans from those selling have to equal the cash kept by those not selling
> pPr(1+rp)L=(1-p)(D-L)
= L=(1-p)D
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Direct lending with trading
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Constraints for optimum

P> Repayments in time periods 1 and 2 become
(1+rp)D=D
(1+r12))D:7r(1+7°L)D

2
The combined constraint is then p (1 +73,) + (1 — p) % =1

The deposits rates are given and do not depend on the amount of lending
ou(D) Ou(mw(1+ry)D)
a(i+rh) " (L+7z) a(1+r2)

This will only be fulfilled for a specific utility function

>
>
» First order conditions require
>

= Direct lending with trading is not optimal

Chapter 3.1: Maturity transformation of deposits Slide 16 of 23

Theoretical Foundations of Banking



Bank lending
[ leJe]e]

B Bank lending
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Bank lending
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Obtaining the social optimum

» All deposits are made with banks and the bank retains p (1 + r})) D as cash to
pay withdrawals, the remainder given as loans

» This recovers the social optimum as the arrangement is identical

= Banks are optimal
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Bank lending
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Banking equilibrium

> We need rb < r% to prevent depositors withdrawing funds early
ou((147})D) ou((1473)D)

> ) .
The first order condition is 5(15,)D 5(153,)D

:7T(1+7”L)

ou((1rb)0) _ ou((14r3)D)
> We need S(i+r1) D > 5(153,)D ifr(14+7)>1

> This is fulfilled if r}, < 72,

> It is also not optimal for depositors to withdraw funds and force the bank to sell
loans to raise cash, which depositors then buy

» Banks are an equilibrium outcome
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Bank lending
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Alternative equilibrium

» No depositor has an incentive to withdraw deposits if they do not need to
» But if they expect other depositors to do so, they have an incentive to withdraw
to avoid losses

= A bank run equilibrium exists

Slide 20 of 23

Chapter 3.1: Maturity transformation of deposits

Theoretical Foundations of Banking



Summary
©000

B Summary

Chapter 3.1: Maturity transformation of deposits Slide 21 of

Theoretical Foundations of Banking



Summary
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Optimality of banks

» Banks are implementing the social optimum to address the maturity mismatch

> Their existence is an equilibrium
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The threat of bank runs

> An alternative equilibrium with bank runs exists
» Bank runs cause banks to fail and impose high costs on economies
» This reduces the benefits of banks
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