Chapter 3.1 Maturity transformation of deposits

S.

Andreas Krause

Outline				
	Outline			

- Problem and model assumptions
 - Social optimum
- Direct lending
- Direct lending with trading
- Bank lending

Copyright 🔘 by Andreas Krause

Problem and model assumptions ●○○			Summary 0000

Social optimum

Direct lending

Direct lending with trading

Bank lending

Summary

Copyright 🔘 by Andreas Krause

Maturity mismatch

- Borrowers prefer long-term loans to meet the time horizon of their investments
- Depositors prefer the ability access their funds easily if needed
- ⇒ Banks need to be able to pay back deposits if requested, but lend out at long terms
- We show that bank lending provides the optimal solution to overcoming this maturity mismatch

Problem and model assumptions ○○●			
Model specification	ons		

- \blacktriangleright Loans are repaid after 2 time periods with probability π
- \blacktriangleright Depositors can withdraw either after 1 or 2 time periods, earning interest r_D^1 and r_D^2
- \blacktriangleright A fraction p of depositors withdraws in time period 1
- \blacktriangleright If banks have to raise cash to repay deposits, they only get a fraction λ of the loan value
- Depositor utility: $E[U(D)] = pu((1 + r_D^1)D) + (1 p)u((1 + r_D^2)D)$

Social optimum ●00		

Social optimum

Direct lending

Direct lending with trading

Bank lending

Summary

Social optimum ○●○		

Repaying deposits

- ▶ The cash held will be paid out for deposits withdrawn in time period 1 ▶ $p(1 + r_D^1) D = D - L$
- ▶ The loan repayments are used to repay the deposits left in time period 2

•
$$(1-p)(1+r_D^2)D = \pi (1+r_L)L$$

• Combined:
$$p(1+r_D^1) + (1-p)\frac{(1+r_D^2)}{\pi(1+r_L)} = 1$$

Social optimum 00●		

Optimal deposit rates

- First order condition of maximizing the utility of depositors gives $\frac{\partial u((1+r_D^1)D)}{\partial(1+r_D^1)D} = \pi (1+r_L) \frac{\partial u((1+r_D^2)D)}{\partial(1+r_D^2)D}$
- With the combined constraint this can be solved for the optimal deposit rates to be paid
- This social optimum is the benchmark with which we compare other lending arrangements

	Direct lending ●00		Summary 0000

Social optimum

Direct lending

Direct lending with trading

Bank lending

Summary

Copyright 🔘 by Andreas Krause

Wealth after early withdrawal

If depositors lend directly, they will have the liquidated loan and cash if they want to consume in time period 1

$$\blacktriangleright (1+r_D^1) D = D - L + \lambda L$$

Depositors not liquidating their loan will in period 2 obtain their cash and the loan repayments

•
$$(1+r_D^2) D = D - L + \pi (1+r_L) L$$

	Direct lending ○○●		

Stricter constraint

- Combining these two constraints we get $p(1+r_D^1) + (1-p) \frac{(1+r_D^2)}{\pi(1+r_L)} \leq 1$
- $\blacktriangleright\,$ If $\lambda < 1$ this constraint is stricter than the social optimum, where it was an equality
- $\Rightarrow\,$ Direct lending is not optimal for depositors

	Direct lending with trading ●0000	

Social optimum

Direct lending

Direct lending with trading

Bank lending

Summary

Copyright 🔘 by Andreas Krause

Chapter 3.1: Maturity transformation of deposits Theoretical Foundations of Banking Slide 12 of 23

	Direct lending with trading ○●○○○	

Wealth after trading

- Loans can be sold at price P, rather than be liquidated at a loss
- ► If needing to liquidate the loan early to withdraw funds, it is sold: $(1 + r_D^1) D = D - L + \pi (1 + r_L) LP$
- If keeping the loan, the cash can be used to buy additional loans: $(1 + r_D^2) D = \frac{D-L}{P} + \pi (1 + r_L) L$

	Direct lending with trading 00●00	

Loan price

• If
$$P < \frac{1}{\pi(1+r_L)}$$
 all deposits are kept in cash, as $(1+r_D^1) D = D - L + \pi (1+r_L) LP$ would decrease in L

 \Rightarrow No loans are given

		Direct lending with trading 000●0	
Market clearing			

► Loans from those selling have to equal the cash kept by those not selling ► $pP\pi (1 + r_L) L = (1 - p) (D - L)$ ⇒ L = (1 - p) D

	Direct lending with trading 0000●	

Constraints for optimum

Repayments in time periods 1 and 2 become

$$\begin{pmatrix} 1+r_D^1 \end{pmatrix} D = D \\ \begin{pmatrix} 1+r_D^2 \end{pmatrix} D = \pi (1+r_L) D$$

- The combined constraint is then $p(1+r_D^1) + (1-p)\frac{(1+r_D^2)D}{\pi(1+r_L)} = 1$
- The deposits rates are given and do not depend on the amount of lending
- First order conditions require $\frac{\partial u(D)}{\partial (1+r_D^1)} = \pi (1+r_L) \frac{\partial u(\pi(1+r_L)D)}{\partial (1+r_D^2)}$
- This will only be fulfilled for a specific utility function
- \Rightarrow Direct lending with trading is not optimal

		Bank lending ●000	Summary 0000

Social optimum

Direct lending

Direct lending with trading

Summary

Copyright 🔘 by Andreas Krause

Chapter 3.1: Maturity transformation of deposits Theoretical Foundations of Banking Slide 17 of 23

Obtaining the social optimum

- ▶ All deposits are made with banks and the bank retains $p(1 + r_D^1) D$ as cash to pay withdrawals, the remainder given as loans
- > This recovers the social optimum as the arrangement is identical
- \Rightarrow Banks are optimal

		Bank lending 00●0	

Banking equilibrium

- We need $r_D^1 < r_D^2$ to prevent depositors withdrawing funds early
- ► The first order condition is $\frac{\partial u((1+r_D^1)D)}{\partial(1+r_D^1)D} = \pi (1+r_L) \frac{\partial u((1+r_D^2)D)}{\partial(1+r_D^2)D}$
- $\blacktriangleright \text{ We need } \frac{\partial u((1+r_D^1)D)}{\partial (1+r_D^1)D} > \frac{\partial u((1+r_D^2)D)}{\partial (1+r_D^2)D} \text{ if } \pi (1+r_L) \ge 1$
- ▶ This is fulfilled if $r_D^1 < r_D^2$
- It is also not optimal for depositors to withdraw funds and force the bank to sell loans to raise cash, which depositors then buy
- Banks are an equilibrium outcome

		Bank lending 000●	

Alternative equilibrium

- ▶ No depositor has an incentive to withdraw deposits if they do not need to
- But if they expect other depositors to do so, they have an incentive to withdraw to avoid losses
- \Rightarrow A bank run equilibrium exists

		Summary ●000

Social optimum

Direct lending

Direct lending with trading

Bank lending

Summary

Copyright 🔘 by Andreas Krause

		Summary 0●00

Optimality of banks

- Banks are implementing the social optimum to address the maturity mismatch
- Their existence is an equilibrium

		Summary 00●0

The threat of bank runs

- An alternative equilibrium with bank runs exists
- Bank runs cause banks to fail and impose high costs on economies
- This reduces the benefits of banks

This presentation is based on Andreas Krause: Theoretical Foundations of Banking, 2025

Copyright (2) by Andreas Krause

Picture credits:

Cover: Bernard Spragg, NZ from Christchurch, New Zealand, CCO, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File-Bank.of.China.Hong.Kong.(9832283389).jpg Back: Florian Lindner, CC BY 2.5 https://creativecommons.org/licenses/by/2.5 via Wikimedia Commons, https://commons.wikimedia.org/wiki/File-Hong.Kong.Panorama.at.night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk