Chapter 17.2.1 The optimality of deposit insurance limits

de

Andreas Krause

		Summary 0000
Outline		

- Problem and model assumptions
 - No deposit insurance
 - Full deposit coverage
 - Partial deposit coverage

Copyright 🔘 by Andreas Krause

Problem and model assumptions ●୦୦		Summary 0000

Problem and model assumptions

No deposit insurance

Full deposit coverage

Partial deposit coverage

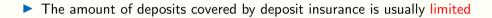
Copyright (C) by Andreas Krause

Problem and model assumptions ○●○		Summary 0000

Dividing deposits

Copyright 🔘 by Andreas Krause

Problem and model assumptions ○●○		Summary 0000
Dividing deposits		



Problem and model assumptions $\circ \bullet \circ$		Summary 0000
Dividing deposits		

- > The amount of deposits covered by deposit insurance is usually limited
- Depositors may divide their deposits between banks to increase their coverage

Problem and model assumptions $\circ \bullet \circ$		Summary 0000
Dividing deposits		

- > The amount of deposits covered by deposit insurance is usually limited
- Depositors may divide their deposits between banks to increase their coverage
- Banks compete with deposit rates

Problem and model assumptions $\circ \bullet \circ$		Summary 0000
Dividing deposits		

- ▶ The amount of deposits covered by deposit insurance is usually limited
- Depositors may divide their deposits between banks to increase their coverage
- Banks compete with deposit rates and might retain larger deposits if these are sufficiently attractive

Problem and model assumptions $\circ ullet \circ$		Summary 0000
Dividing deposits		

- The amount of deposits covered by deposit insurance is usually limited
- Depositors may divide their deposits between banks to increase their coverage
- Banks compete with deposit rates and might retain larger deposits if these are sufficiently attractive
- Banks might find it optimal to limit deposit insurance to attract parts of larger deposits

Problem and model assumptions $\circ \bullet \circ$		Summary 0000
Dividing deposits		

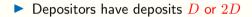
- ► The amount of deposits covered by deposit insurance is usually limited
- Depositors may divide their deposits between banks to increase their coverage
- Banks compete with deposit rates and might retain larger deposits if these are sufficiently attractive
- Banks might find it optimal to limit deposit insurance to attract parts of larger deposits

Problem and model assumptions		Summary 0000

Copyright 🔘 by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 5 of 18

Problem and model assumptions		Summary 0000



Copyright 🔘 by Andreas Krause

Problem and model assumptions			Summary 0000
Differentiated accou	nts		

> Depositors have deposits D or 2D and deposit insurance might be limited to D

Problem and model assumptions 00●			Summary 0000
Differentiated accour	nts		

- Depositors have deposits D or 2D and deposit insurance might be limited to D
- Banks offer differentiated accounts

Problem and model assumptions		Summary 0000

- Depositors have deposits D or 2D and deposit insurance might be limited to D
- Banks offer differentiated accounts and moving deposits to another bank involves costs depending on these differences

Problem and model assumptions		Summary 0000

- Depositors have deposits D or 2D and deposit insurance might be limited to D
- Banks offer differentiated accounts and moving deposits to another bank involves costs depending on these differences
- Banks are one unit apart

Problem and model assumptions 00●		Summary 0000

- Depositors have deposits D or 2D and deposit insurance might be limited to D
- Banks offer differentiated accounts and moving deposits to another bank involves costs depending on these differences
- Banks are one unit apart and depositors are uniformly distributed on this line with distance d_i

Problem and model assumptions ○○●		Summary 0000

- Depositors have deposits D or 2D and deposit insurance might be limited to D
- Banks offer differentiated accounts and moving deposits to another bank involves costs depending on these differences
- Banks are one unit apart and depositors are uniformly distributed on this line with distance d_i

No insurance ●00		Summary 0000

Problem and model assumptions

No deposit insurance

Full deposit coverage

Partial deposit coverage

Summary

Copyright 🔘 by Andreas Krause

No insurance ○●○		Summary 0000

Switching banks

Copyright 🔘 by Andreas Krause

	No insurance ○●○		
Switching banks			

Depositors staying with bank j are repaid deposits if the loans are repaid to the bank

 $\blacktriangleright \ \Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D}$

	No insurance ○●○		
Switching banks			

•
$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \hat{D}$$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank

$$\blacktriangleright \ \Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D}$$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank and lose their deposits otherwise

•
$$\Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D} - (1 - \pi) \hat{D}$$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank and lose their deposits otherwise, and they face switching costs

$$\Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D} - c d_i$$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank and lose their deposits otherwise, and they face switching costs

•
$$\Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D} - (1 - \pi) \hat{D} - cd_i$$

▶ Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank and lose their deposits otherwise, and they face switching costs

$$\ \ \, \Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D} - c d_i$$

• Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

 $\Rightarrow d_i \le d_i^* = \pi \frac{(1+r_D^i) - (1+r_D^j)}{c} \hat{D}$

Problem and model assumptions	No insurance ○●○		
Switching banks			

$$\Pi_D^{jj} = \pi \left(1 + r_D^j \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D}$$

Depositors switching banks to bank i are repaid deposits if the loans are repaid to the bank and lose their deposits otherwise, and they face switching costs

$$\ \ \, \Pi_D^{ji} = \pi \left(1 + r_D^i \right) \hat{D} - \hat{D} - (1 - \pi) \, \hat{D} - c d_i$$

• Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

$$\Rightarrow d_i \le d_i^* = \pi \frac{\left(1 + r_D^i\right) - \left(1 + r_D^j\right)}{c} \hat{D}$$

	No insurance ○○●		Summary 0000
Bank profits			

Copyright (C) by Andreas Krause

	No insurance ○○●		
Bank profits			

Deposits a bank holds will consist of existing large and small deposits

$$\blacktriangleright D_i = \lambda \left(1 \right) 2D + (1 - \lambda) \left(1 \right) D$$

	No insurance ○○●		
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^i) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^i) - (1+r_D^i)}{c} D \right) D$$

	No insurance ○○●		Summary 0000
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^j) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^j) - (1+r_D^i)}{c} D \right) D$$

Banks profits are generated if loans are repaid, consisting of these repaid loans after deposits are repaid

$$\blacktriangleright \ \Pi_B^i = \pi \left((1 + r_L) - \left(1 + r_D^i \right) \right) D_i$$

	No insurance ○○●		Summary 0000
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^j) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^j) - (1+r_D^i)}{c} D \right) D$$

Banks profits are generated if loans are repaid, consisting of these repaid loans after deposits are repaid

•
$$\Pi_B^i = \pi \left((1 + r_L) - (1 + r_D^i) \right) D_i$$

• The optimal deposit rate is obtained if $\frac{\partial \Pi_B^i}{\partial (1+r_D^i)} = 0$

	No insurance ○○●		Summary 0000
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^j) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^j) - (1+r_D^i)}{c} D \right) D$$

Banks profits are generated if loans are repaid, consisting of these repaid loans after deposits are repaid

•
$$\Pi_B^i = \pi \left((1 + r_L) - (1 + r_D^i) \right) D_i$$

• The optimal deposit rate is obtained if $\frac{\partial \Pi_B^i}{\partial (1+r_D^i)} = 0$

$$\Rightarrow 1 + r_D^* = (1 + r_L) - \frac{1 - \lambda}{\pi (1 + 3\lambda)} \frac{c}{D}$$

	No insurance ○○●		Summary 0000
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^j) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^j) - (1+r_D^i)}{c} D \right) D$$

Banks profits are generated if loans are repaid, consisting of these repaid loans after deposits are repaid

•
$$\Pi_B^i = \pi \left((1 + r_L) - (1 + r_D^i) \right) D_i$$

• The optimal deposit rate is obtained if $\frac{\partial \Pi_B^i}{\partial (1+r_D^i)} = 0$

$$\Rightarrow 1 + r_D^* = (1 + r_L) - \frac{1 - \lambda}{\pi (1 + 3\lambda)} \frac{c}{D}$$
$$\Rightarrow \Pi_B^* = \frac{(1 + \lambda)^2}{1 + 3\lambda} D$$

	No insurance ○○●		Summary 0000
Bank profits			

$$D_i = \lambda \left(1 + 2\pi \frac{(1+r_D^j) - (1+r_D^i)}{c} \right) 2D + (1-\lambda) \left(1 + \pi \frac{(1+r_D^j) - (1+r_D^i)}{c} D \right) D$$

Banks profits are generated if loans are repaid, consisting of these repaid loans after deposits are repaid

•
$$\Pi_B^i = \pi \left((1 + r_L) - (1 + r_D^i) \right) D_i$$

• The optimal deposit rate is obtained if $\frac{\partial \Pi_B^i}{\partial (1+r_D^i)} = 0$

$$\Rightarrow 1 + r_D^* = (1 + r_L) - \frac{1 - \lambda}{\pi (1 + 3\lambda)} \frac{c}{D}$$
$$\Rightarrow \Pi_B^* = \frac{(1 + \lambda)^2}{1 + 3\lambda} D$$

Copyright 🕜 by Andreas Krause

	Full insurance ●00	Summary 0000

Problem and model assumptions

No deposit insurance

Full deposit coverage

Partial deposit coverage

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

	Full insurance ○●○	Summary 0000

Switching banks

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 10 of 18

	Full insurance ○●○	Summary 0000
Switching banks		

Copyright 🔘 by Andreas Krause

	Full insurance ○●○	
Switching banks		

Deposits are always repaid and if switching, the switching costs are to be paid
Π^{jj}_D = (1 + r^j_D) D̂ - D̂
Π^{ji}_D = (1 + rⁱ_D) D̂ - D̂ - cd_i

	Full insurance ○●○	
Switching banks		

Deposits are always repaid and if switching, the switching costs are to be paid

 $\Pi_D^{jj} = \left(1 + r_D^j \right) \hat{D} - \hat{D}$

$$\blacktriangleright \Pi_D^{ji} = \left(1 + r_D^i\right)\hat{D} - \hat{D} - cd_i$$

• Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

	Full insurance ○●○	
Switching banks		

Deposits are always repaid and if switching, the switching costs are to be paid

 $\Pi_D^{jj} = \left(1 + r_D^j\right)\hat{D} - \hat{D}$

$$\blacktriangleright \Pi_D^{ji} = \left(1 + r_D^i\right)\hat{D} - \hat{D} - cd_i$$

▶ Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

 $\Rightarrow d_i \leq d_i^{**} = \frac{\left(1+r_D^i\right) - \left(1+r_D^j\right)}{c}\hat{D}$

Copyright (C) by Andreas Krause

	Full insurance ○●○	
Switching banks		

Deposits are always repaid and if switching, the switching costs are to be paid

 $\Pi_D^{jj} = \left(1 + r_D^j\right) \hat{D} - \hat{D}$

$$\blacktriangleright \Pi_D^{ji} = \left(1 + r_D^i\right)\hat{D} - \hat{D} - cd_i$$

▶ Depositors switch if this is profitable: $\Pi_D^{ij} \ge \Pi_D^{ii}$

$$\Rightarrow d_i \le d_i^{**} = \frac{(1+r_D^i) - (1+r_D^j)}{c} \hat{D}$$

Copyright (C) by Andreas Krause

	Full insurance 00●	Summary 0000
Bank profits		

Copyright 🔘 by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

	Full insurance ○○●	
Bank profits		

• Deposits at the bank are
$$D_i = (1 + \lambda) D + \frac{(1+r_D^i) - (1+r_D^j)}{c} (1 + 3\lambda) D^2$$

Copyright 🔘 by Andreas Krause

	Full insurance 00●	
Bank profits		

• Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1+r_D^i) - (1+r_D^j)}{c} (1 + 3\lambda) D^2$

• Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) - \frac{1+\lambda}{3+\lambda} \frac{c}{D}$

	Full insurance 00●	
Bank profits		

- Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1+r_D^i) (1+r_D^j)}{c} (1 + 3\lambda) D^2$
- Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) \frac{1+\lambda}{3+\lambda} \frac{c}{D}$
- $\Rightarrow \Pi_B^{**} = \pi \frac{(1+\lambda)^2}{1+3\lambda} D = \pi \Pi_B^*$

	Full insurance ○○●	
Bank profits		

- Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1+r_D^i) (1+r_D^j)}{c} (1 + 3\lambda) D^2$
- Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) \frac{1+\lambda}{3+\lambda} \frac{c}{D}$
- $\Rightarrow \Pi_B^{**} = \pi \frac{(1+\lambda)^2}{1+3\lambda} D = \pi \Pi_B^*$

Full deposit coverage gives banks less profits than no deposit insurance

	Full insurance 00●	
Bank profits		

- Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1 + r_D^i) (1 + r_D^j)}{c} (1 + 3\lambda) D^2$
- Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) \frac{1+\lambda}{3+\lambda} \frac{c}{D}$
- $\Rightarrow \Pi_B^{**} = \pi \frac{(1+\lambda)^2}{1+3\lambda} D = \pi \Pi_B^*$
- Full deposit coverage gives banks less profits than no deposit insurance
- Competition for deposits has increased as the profits of depositors have increased and more can switch

	Full insurance 00●	
Bank profits		

- Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1+r_D^i) (1+r_D^j)}{c} (1 + 3\lambda) D^2$
- Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) \frac{1+\lambda}{3+\lambda} \frac{c}{D}$
- $\Rightarrow \Pi_B^{**} = \pi \frac{(1+\lambda)^2}{1+3\lambda} D = \pi \Pi_B^*$
- ▶ Full deposit coverage gives banks less profits than no deposit insurance
- Competition for deposits has increased as the profits of depositors have increased and more can switch
- The lower deposit rate due to the absence of risk does not compensate for this sufficiently

	Full insurance ○○●	
Bank profits		

- Deposits at the bank are $D_i = (1 + \lambda) D + \frac{(1 + r_D^i) (1 + r_D^j)}{c} (1 + 3\lambda) D^2$
- Maximizing bank profits gives $1 + r_D^{**} = (1 + r_L) \frac{1+\lambda}{3+\lambda} \frac{c}{D}$
- $\Rightarrow \Pi_B^{**} = \pi \frac{(1+\lambda)^2}{1+3\lambda} D = \pi \Pi_B^*$
- ▶ Full deposit coverage gives banks less profits than no deposit insurance
- Competition for deposits has increased as the profits of depositors have increased and more can switch
- The lower deposit rate due to the absence of risk does not compensate for this sufficiently

	Partial insurance ●000	Summary 0000

Problem and model assumptions

No deposit insurance

Full deposit coverage

Partial deposit coverage

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 12 of 18

	Partial insurance 0●00	Summary 0000

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

		Partial insurance ○●○○	Summary 0000
Switching opportuni	ities		

 \blacktriangleright Large depositors will only be covered for their deposits up to D

		Partial insurance 0●00	Summary 0000
Switching opportunit	ies		

- \blacktriangleright Large depositors will only be covered for their deposits up to D
- \blacktriangleright They can stay with bank j and have D repaid for sure

$$\blacktriangleright \ \Pi_D^{jj} = \left(1 + r_D^j\right) D - D$$

	Partial insurance ○●○○	Summary 0000

- Switching opportunities
 - Large depositors will only be covered for their deposits up to D
 - They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

	Partial insurance ○●○○	Summary 0000

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure

$$\blacktriangleright \ \Pi_D^{ji} = \left(1 + r_D^i\right) D - D$$

	Partial insurance ○●○○	Summary 0000

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure and D only repaid if the loan is repaid to the bank

$$\blacktriangleright \ \Pi_D^{ji} = \left(1 + r_D^i\right) D - D + \pi \left(1 + r_d^i\right) D - D - (1 - \pi) D$$

	Partial insurance 0●00	

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure and D only repaid if the loan is repaid to the bank, and bear switching costs

$$\Pi_D^{ji} = \left(1 + r_D^i\right) D - D + \pi \left(1 + r_d^i\right) D - D - (1 - \pi) D - cd_j$$

	Partial insurance 0●00	Summary 0000

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure and D only repaid if the loan is repaid to the bank, and bear switching costs

$$\Pi_D^{ji} = (1 + r_D^i) D - D + \pi (1 + r_d^i) D - D - (1 - \pi) D - cd_j$$

They can switch D to bank i and have the full deposits insured

$$\blacktriangleright \ \Pi_D^{jij} = \left(1 + r_D^j\right) D - D + \left(1 + r_D^i\right) D - D$$

	Partial insurance 0●00	

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure and D only repaid if the loan is repaid to the bank, and bear switching costs

$$\Pi_D^{ji} = (1 + r_D^i) D - D + \pi (1 + r_d^i) D - D - (1 - \pi) D - cd_j$$

They can switch D to bank i and have the full deposits insured, bearing switching costs

$$\square \Pi_D^{jij} = \left(1 + r_D^j\right) D - D + \left(1 + r_D^i\right) D - D - cd_j$$

	Partial insurance 0●00	

- Large depositors will only be covered for their deposits up to D
- They can stay with bank j and have D repaid for sure and D only repaid if the loan is repaid to the bank

•
$$\Pi_D^{jj} = \left(1 + r_D^j\right) D - D + \pi \left(1 + r_D^j\right) D - D - (1 - \pi) D$$

They can stay switch entirely to bank i and have D repaid for sure and D only repaid if the loan is repaid to the bank, and bear switching costs

$$\Pi_D^{ji} = (1 + r_D^i) D - D + \pi (1 + r_d^i) D - D - (1 - \pi) D - cd_j$$

They can switch D to bank i and have the full deposits insured, bearing switching costs

•
$$\Pi_D^{jij} = (1 + r_D^j) D - D + (1 + r_D^i) D - D - cd_j$$

	Partial insurance 00●0	Summary 0000

Switching decision

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 14 of 18

			Partial insurance 00●0	Summary 0000
Switching decision				
Large depositors s	witch parts of th	heir deposits if Π_D^{jij} :	$\geq \Pi_D^{jj}$	

Copyright 🔘 by Andreas Krause

		Partial insurance 00●0	Summary 0000
Switching decision			
	· · · · · · · · · · · · · · · · · · ·	· · · ii	

► Large depositors switch parts of their deposits if $\Pi_D^{jij} \ge \Pi_D^{jj}$

 $\Rightarrow d_i \leq d_i^{***} = \frac{\left(1 + r_D^j\right) - \pi\left(1 + r_D^i\right) + (1 - \pi)}{c} D$

Copyright 🔘 by Andreas Krause

		Partial insurance 00●0	
Switching decision			

• Large depositors switch parts of their deposits if $\Pi_D^{jij} \ge \Pi_D^{jj}$

$$\Rightarrow d_i \le d_i^{***} = \frac{(1+r_D^i) - \pi(1+r_D^i) + (1-\pi)}{c} D$$

Large depositors are attracted from other banks seeking to increase their deposit insurance coverage

$$\blacktriangleright D_i = \lambda \left(2D - \right)$$

$$\frac{\left(1+r_D^i\right)-\pi\left(1+r_D^j\right)+(1-\pi)}{c}D^2\right)$$

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

		Partial insurance 00●0	Summary 0000
Switching decision			

▶ Large depositors switch parts of their deposits if $\Pi_D^{jij} \ge \Pi_D^{jj}$

$$\Rightarrow d_i \le d_i^{***} = \frac{(1+r_D^i) - \pi(1+r_D^i) + (1-\pi)}{c} D$$

- Large depositors are attracted from other banks seeking to increase their deposit insurance coverage
- Large depositors are lost to other banks seeking to increase their deposit insurance coverage

$$D_i = \lambda \left(2D - \frac{(1+r_D^j) - \pi (1+r_D^i) + (1-\pi)}{c} D^2 + \frac{(1+r_D^i) - \pi (1+r_D^j) + (1-\pi)}{c} D^2 \right)$$

Copyright 🔘 by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

		Partial insurance 00●0	Summary 0000
Switching decision			

▶ Large depositors switch parts of their deposits if $\Pi_D^{jij} \ge \Pi_D^{jj}$

$$\Rightarrow d_i \le d_i^{***} = \frac{(1+r_D^i) - \pi(1+r_D^i) + (1-\pi)}{c} D$$

- Large depositors are attracted from other banks seeking to increase their deposit insurance coverage
- Large depositors are lost to other banks seeking to increase their deposit insurance coverage
- Small depositors will be fully insured and behave as indicated above

$$D_{i} = \lambda \left(2D - \frac{(1+r_{D}^{i}) - \pi (1+r_{D}^{i}) + (1-\pi)}{c} D^{2} + \frac{(1+r_{D}^{i}) - \pi (1+r_{D}^{j}) + (1-\pi)}{c} D^{2} \right) \\ + (1-\lambda) \left(D + \frac{(1+r_{D}^{i}) - (1+r_{D}^{j})}{c} D^{2} \right)$$

Copyright (C) by Andreas Krause

		Partial insurance 00●0	
Switching decision			

▶ Large depositors switch parts of their deposits if $\Pi_D^{jij} \ge \Pi_D^{jj}$

$$\Rightarrow d_i \le d_i^{***} = \frac{(1+r_D^i) - \pi(1+r_D^i) + (1-\pi)}{c} D$$

- Large depositors are attracted from other banks seeking to increase their deposit insurance coverage
- Large depositors are lost to other banks seeking to increase their deposit insurance coverage
- Small depositors will be fully insured and behave as indicated above

$$D_i = \lambda \left(2D - \frac{(1+r_D^j) - \pi (1+r_D^i) + (1-\pi)}{c} D^2 + \frac{(1+r_D^i) - \pi (1+r_D^j) + (1-\pi)}{c} D^2 \right) \\ + (1-\lambda) \left(D + \frac{(1+r_D^i) - (1+r_D^j)}{c} D^2 \right)$$

Copyright (C) by Andreas Krause

		Partial insurance 000●	Summary 0000
Bank profits			

Copyright 🔘 by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 15 of 18

		Partial insurance 000●	Summary 0000
Bank profits			

• Maximizing bank profits gives $1 + r_D^{***} = (1 + r_L) - \frac{1+\lambda}{1+\pi\lambda} \frac{c}{D}$

Copyright 🔘 by Andreas Krause

	Partial insurance 000●	Summary 0000

• Maximizing bank profits gives $1 + r_D^{***} = (1 + r_L) - \frac{1+\lambda}{1+\pi\lambda} \frac{c}{D}$ $\Rightarrow \Pi_B^{***} = \pi \frac{(1+\lambda)^2}{1+\pi\lambda} D$

	Partial insurance 000●	Summary 0000

Bank profits

• Maximizing bank profits gives $1 + r_D^{***} = (1 + r_L) - \frac{1+\lambda}{1+\pi\lambda} \frac{c}{D}$ $\Rightarrow \Pi_B^{***} = \pi \frac{(1+\lambda)^2}{1+\pi\lambda} D$

• These profits are higher than no deposit insurance if $\pi > \frac{1}{1+2\lambda}$

	Partial insurance 000●	

Bank profits

- Maximizing bank profits gives $1 + r_D^{***} = (1 + r_L) \frac{1+\lambda}{1+\pi\lambda} \frac{c}{D}$ $\Rightarrow \Pi_B^{***} = \pi \frac{(1+\lambda)^2}{1+\pi\lambda} D$
- These profits are higher than no deposit insurance if $\pi > \frac{1}{1+2\lambda}$
- In this case competition for large deposits is not too strong to negate the effect of the lower deposit rate due to them not being exposed to risk

	Partial insurance 000●	Summary 0000

Bank profits

- Maximizing bank profits gives $1 + r_D^{***} = (1 + r_L) \frac{1+\lambda}{1+\pi\lambda} \frac{c}{D}$ $\Rightarrow \Pi_B^{***} = \pi \frac{(1+\lambda)^2}{1+\pi\lambda} D$
- These profits are higher than no deposit insurance if $\pi > \frac{1}{1+2\lambda}$
- In this case competition for large deposits is not too strong to negate the effect of the lower deposit rate due to them not being exposed to risk

		Summary ●000

Problem and model assumptions

No deposit insurance

Full deposit coverage

Partial deposit coverage

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 16 of 18

		Summary 0000

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

If banks are not too risky they prefer deposit insurance to be limited to smaller deposits

- If banks are not too risky they prefer deposit insurance to be limited to smaller deposits
- More risky banks would prefer no deposit insurance at all

- If banks are not too risky they prefer deposit insurance to be limited to smaller deposits
- More risky banks would prefer no deposit insurance at all
- Deposit insurance increases competition for deposits

- If banks are not too risky they prefer deposit insurance to be limited to smaller deposits
- More risky banks would prefer no deposit insurance at all
- Deposit insurance increases competition for deposits but also reduces deposit rates due to the elimination of risk
- Higher-risk banks see a stronger competition effect and will therefore prefer not to have any deposit insurance

- If banks are not too risky they prefer deposit insurance to be limited to smaller deposits
- More risky banks would prefer no deposit insurance at all
- Deposit insurance increases competition for deposits but also reduces deposit rates due to the elimination of risk
- Higher-risk banks see a stronger competition effect and will therefore prefer not to have any deposit insurance

- If banks are not too risky they prefer deposit insurance to be limited to smaller deposits
- More risky banks would prefer no deposit insurance at all
- Deposit insurance increases competition for deposits but also reduces deposit rates due to the elimination of risk
- Higher-risk banks see a stronger competition effect and will therefore prefer not to have any deposit insurance

		Summary 00●0

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking Slide 18 of 18

		Summary 0000

Copyright (C) by Andreas Krause

Chapter 17.2.1: The optimality of deposit insurance limits Theoretical Foundations of Banking

			Summary 00●0
Optimal limited cov	erage		

Deposit insurance is not provided to large deposits unless banks are highly risky

		Summary 00●0

- Deposit insurance is not provided to large deposits unless banks are highly risky
- If deposit insurance is not provided free, this will make the benefits of partial insurance coverage over full coverage more pronounced

		Summary 0000

- Deposit insurance is not provided to large deposits unless banks are highly risky
- If deposit insurance is not provided free, this will make the benefits of partial insurance coverage over full coverage more pronounced
- Banks are content with limits on deposit insurance as this limits competition for large deposit

		Summary ○○●○

- Deposit insurance is not provided to large deposits unless banks are highly risky
- If deposit insurance is not provided free, this will make the benefits of partial insurance coverage over full coverage more pronounced
- Banks are content with limits on deposit insurance as this limits competition for large deposit

This presentation is based on Andreas Krause: Theoretical Foundations of Banking, 2025

Copyright () by Andreas Krause

Picture credits:

Cover: Bernard Spragg, NZ from Christchurch, New Zealand, CCO, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File-Bank.of.China.Hong.Kong.(9832283389).jpg Back: Florian Lindner, CC BY 2.5 https://creativecommons.org/licenses/by/2.5 via Wikimedia Commons, https://commons.wikimedia.org/wiki/File-Hong.Kong.Panorama.at.night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk