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Summary

The main object of study in this thesis is branching Brownian motion, in which each

particle moves like a Brownian motion and gives birth to new particles at some rate. In

particular we are interested in where particles are located in this model at large times T :

so, for a function f up to time T , we want to know how many particles have paths that

look like f .

Additive spine martingales are central to the study, and we also investigate some

simple general properties of changes of measure related to such martingales.
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Chapter 1

Introduction

1.1 Branching Brownian motion

Branching Brownian motion is the most fundamental of branching diffusions. The basic

model can be described quite simply: fix a real number r > 0, known as the branching

rate, and a random variable A taking values in N and satisfying m := E[A] ∈ (1,∞),

known as the birth distribution. Then:

• We begin with one particle at the origin.

• Each particle, during its lifetime, moves according to a Brownian motion in R,

independently of all other particles.

• Each particle’s lifetime is exponentially distributed with parameter r, independently

of its position and of all other particles.

• Each particle dies at the end of its lifetime, leaving in its place a random number of

offspring. This random number has the same distribution as the random variable

1 +A. Relative to their birth time and position, the offspring act independently of

each other.

We let N(t) be the set of particles that are alive at time t, and for u ∈ N(t) we denote

its position at time t by Xu(t). We extend the notion of position for u ∈ N(t) to include

the ancestors of u, so if v ∈ N(s) for some s < t and v is an ancestor of u, then we set

Xu(s) := Xv(s).

There are several changes that can be made to this model. We could start from a more

general distribution of particles; the diffusion of particles could be in Rd for any d ≥ 1;

the branching rate r for a particular particle might depend on that particle’s position,

as might the birth distribution A; and we might allow A to take the value −1, so that
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1.1. Branching Brownian motion

particles may die without giving birth to any offspring. Some of these possibilities will

be encountered later in this thesis. There is also no reason why we should restrict to

Brownian motion: we could easily consider other diffusions, for example, or even many

more general Markov processes. We note that many authors specify 1 + A, rather than

A itself, as the birth distribution. We run against this more intuitive convention simply

because our choice simplifies notation in later chapters.

Figure 1-1: Simulation of a branching Brownian motion with a branching rate of 1 and
offspring distribution A ≡ 1.

Figure 1-1 shows an example of a branching Brownian motion: around time t = 0.4,

our initial particle (black) dies and gives birth to two new particles (red and cyan) which,

given their birth time and position, move as independent Brownian motions. Some time

later one of these particles (cyan) dies and gives birth to two new particles (green and

purple) so that — at time t = 1.5, for example — we have three particles alive. One of

these (red) again dies and gives birth to two new particles (blue and yellow), leaving us

with four particles, and finally just before time t = 2 the green particle dies and two more

(pink and orange) are born. Thus at time t = 2.5 there are 5 particles alive.

Many interesting questions are immediately apparent. First we may ask how many

particles are alive at a fixed time t — but since this does not depend on the position of

the particles, it is easily addressed — see for example Haccou et al. [9]. We are much

more interested in where the particles are located.

1.1.1 The position of the right-most particle

A glance at Figure 1-2 suggests that the particles in a BBM fill out a triangular shape, and

that it might be interesting to look at the position of the extremal particle — the particle
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1.1. Branching Brownian motion

Figure 1-2: Simulation of a branching Brownian motion with a branching rate of 3 and
offspring distribution A ≡ 1.

with maximal position at some time t ≥ 0. One might immediately conjecture that its

speed — its position divided by time — converges to a constant as t→∞. Indeed this is

true, and it is not difficult to prove that the constant is
√

2r. In fact more precise results

are available. One such beautiful result was given by Bramson [4] via some powerful and

explicit analysis of the Brownian bridge.

Theorem 1.1 (Bramson [4]):

For the branching Brownian motion with breeding rate r = 1 and branching distribution

A ≡ 1, and any ε ∈ (0, 1), t > 0,

P
(

max
u∈N(t)

Xu(t) ≤
√

2t− 3

2
√

2
log t+ bε(t)

)
= ε

where bε(t) = O(1) as t→∞.

Results on the extremal particle for more complicated models with space-dependent

branching were given by Harris and Harris [14]. More recently Hu and Shi [19] have been

able to give almost-sure results on the same quantity for a class of branching random

walks. One might hope that an almost-sure result with the flavour of Theorem 1.1 holds

in the BBM case also. We shall see some results in a similar — but slightly different —

9



1.1. Branching Brownian motion

direction in Chapter 5.

1.1.2 BBM with absorption

Once we know the speed of the extremal particle at large times t, we might ask about

its history: have its ancestors stayed close to the critical speed throughout, or have they

hovered around in the mass of particles near the origin and made a late dash as we get

close to time t? One way of interpreting this question is to consider branching Brownian

motion with absorption. One imagines an absorbing line Γ(t) = −x + γt where γ is a

constant close to the critical value
√

2r, such that whenever a particle hits the line Γ(t) it

disappears and is removed from the system. Are there any particles still present at large

times? If so then we may consider them to have stayed “close” to the extremal edge of

the system.

This model was studied by Kesten [25], who discovered, via some involved estimates

on Brownian motion, asymptotics for extinction probabilities and numbers of particles

in intervals of the area above the absorbing line. To choose two examples of particular

interest, Kesten shows that if γ <
√

2r then there is strictly positive probability that N(t)

never becomes empty; and that in the critical case γ =
√

2r, the probability that there is at

least one particle present at time t is approximately exp(−kt1/3) for some positive constant

k. Further results on BBM with absorption, and applications to the Fisher-Kolmogorov-

Petrovski-Piscounov (FKPP) equation from mathematical biology, were given by Harris,

Harris and Kyprianou [15] and Harris and Harris [13] using more intuitive methods,

similar to those used later in this thesis.

1.1.3 Growth along paths

Kesten’s results on BBM with absorption tell us that it is possible for particles to stay

above the line Γ(t) = −x + γt for all time whenever γ <
√

2r, and that this is not the

case when γ =
√

2r. Thus our next question might be: can particles stay within tβ (plus

a constant, say) of the critical line for β ∈ (0, 1)? And if we can answer this question

then we might attempt to generalise by moving away from the critical line — given a

path f : [0,∞)→ R, are there particles that stay close to f? How close? This question,

phrased more precisely in various ways, becomes the central theme of this thesis.

One interpretation of our question falls in line with the classical large deviations

theory for Brownian motion (Schilder’s theorem: see Schilder [35] for the original article

or Varadhan [36] or Dembo and Zeitouni [6] for more accessible modern formulations)

whereby paths on [0, 1] are rescaled onto [0, T ]. This is the approach taken by Git [8],

Lee [30] and Hardy and Harris [10], and we follow the same route in Chapter 4. For the
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1.1. Branching Brownian motion

purposes of illustration we paraphrase a theorem of Git [8].

Theorem 1.2 (Git [8]):

Let D ⊆ C[0, 1], and let m = E[A] be the mean of the offspring distribution. Assume that

E[A logA] <∞. Define

NT (D, θ) := {u ∈ N(t) : ∃f ∈ D with Tf(t/T ) = Xu(t) ∀t ∈ [0, θT ]} .

Let

θ0(f) := inf

{
θ ∈ [0, 1] : rmθ − 1

2

∫ θ

0
f ′(s)2ds < 0

}
∈ [0, 1] ∪ {∞}

and

K(f, θ) :=

{
rmθ − 1

2

∫ θ
0 f
′(s)2ds if θ ≤ θ0(f)

−∞ otherwise.

For any closed set D ⊆ C[0, 1] and θ ∈ [0, 1],

lim sup
T→∞

1

T
log |NT (D, θ)| ≤ sup

f∈D
K(f, θ)

almost surely, and for any open set A ⊆ C[0, 1] and θ ∈ [0, 1],

lim inf
T→∞

1

T
log |NT (A, θ)| ≥ sup

f∈A
K(f, θ)

almost surely.

In Chapter 4 we will see that there is a mistake in the proof of this theorem in [8],

and we shall provide an alternative proof. The methods used turn out to be so robust

that, with various technical upgrades, we are in fact able to prove an analogous theorem

for a more general setup in which particles may breed at a rate which depends upon their

position.

1.1.4 Behaviour along unscaled paths

The second interpretation of our main question is more direct, and similar in direction to

the work of Novikov [34] in the case of a single Brownian motion. For any two continuous

functions f : [0,∞) → R and L : [0,∞) → (0,∞), we may ask how many particles have

paths that stay within distance L(t) of the path f(t) for all times t ≥ 0. That is, let

N̂(t) := {u ∈ N(t) : |Xu(s)− f(s)| < L(s) ∀s ∈ [0, t]};

11



1.2. Spine changes of measure

for which f and L might N̂(t) remain non-empty for all t? How large is N̂(t) in such

cases? If N̂(t) is almost surely empty eventually, then at what rate does the probability

P(N̂(t) 6= ∅) decay? These questions are considered in Chapter 5. In order to state the

main theorem of that chapter, let

S := lim inf
t→∞

1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

2L(s)

)
ds

(if this exists), and

Υ := inf{t ≥ 0 : N̂(t) = ∅}.

We assume that certain conditions on f and L hold but we omit those here; we shall

examine them in detail in Chapter 5. We also assume that A ≡ 1, so we have only binary

branching.

Theorem 1.3:

If S < 0, then Υ <∞ almost surely and

logP(N̂(t) 6= ∅)

infs≤t
∫ s

0

(
r − 1

2f
′(u)2 − π2

8L(u)2
+ L′(u)

2L(u)

)
du
−→ 1.

On the other hand, if S > 0, then P(Υ =∞) > 0 and almost surely on the event {Υ =∞}
we have

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds
−→ 1.

This theorem on its own is not quite strong enough to tell us everything we were

interested in, particularly questions about whether there are particles staying within tβ of

the critical line
√

2rt (since in this case S = 0). However, as a byproduct of the proof we

are able to state further, more precise theorems in special cases. Indeed we show that it

is possible for particles to stay within tβ of the critical line if β > 1/3, and not if β < 1/3

(see Theorem 5.27); if β = 1/3 then the situation is more complicated (see Theorem 5.28)

but it is possible for particles to stay within t1/3 of critical if the breeding rate r satisfies

r > 1
2

(
81π
4

)2
.

1.2 Spine changes of measure

One of the many useful properties of Brownian motion is the tremendous number of mar-

tingales that can be built around it, and similarly there are many martingales involving

branching Brownian motion. In order to give a classical example, we recall that we defined

N(t) to be the set of particles alive at time t, and for u ∈ N(t) we denoted the position

12



1.2. Spine changes of measure

of u at time t by Xu(t). We work under a probability measure P and let (Ft, t ≥ 0) be

the natural filtration of the process. Then for each λ ∈ R the process

Zλ(t) :=
∑

u∈N(t)

e−rmt+λXu(t)− 1
2
λ2t

is a non-negative martingale.

Additive martingales such as this one will play a defining role in this thesis. To see

why, we change measure by setting

dQλ

dP

∣∣∣∣
Ft

= Zλ(t). (∗)

The pathwise construction of this measure change was first seen in 1988 in a paper by

Chauvin and Rouault [5]:

Theorem 1.4:

Under Qλ the process can be constructed as follows:

• starting from the origin, the original particle moves as a Brownian motion with drift

λ;

• the original particle undergoes fission at an accelerated rate (1 +m)r, to be replaced

by 1 +A? particles where Qλ(A? = k) = (1+k)P(A=k)
1+m ;

• one of these particles is chosen uniformly at random to repeat the behaviour of its

parent;

• each of the remaining particles initiates, relative to its birth position, an independent

copy of a P-branching Brownian motion.

This theorem is stated as a self-standing result in [5], and is not used to prove any of

the other results of the paper. However, the identification of the one special chosen line of

descent, or spine, and the observation that the rest of the process behaves (conditionally

given the spine) as under P, were crucial in the development of the subject. It is interesting

to note that under Q0, the motion of particles is not changed at all, but that one particle

(the spine) has more children — this corresponds (intuitively at least — it is easier to

calculate directly in the Galton-Watson scenario, see [32]) to the fact that if we choose

a particle uniformly from all those alive at time t then we expect that it will have had

significantly more than rmt children.

The next major contribution on spine changes of measure was not until 1995, when

Lyons, Pemantle and Peres [32] gave elegant probabilistic proofs of three of the most clas-

sical theorems concerning Galton-Watson trees — the Kesten-Stigum theorem describing

13



1.2. Spine changes of measure

the rate of growth for supercritical processes and corresponding results describing the rate

of decay of survival probabilities for critical and subcritical processes. Here the discrete

setting allowed simplified notation, but the power of the approach was first realised by

the use of a spine decomposition, bounding the growth of the process under the changed

measure via calculations depending only the spine.

There have been several more contributions to the subject, not least from Kyprianou

[28] on branching diffusions, Bertoin and Rouault [2] on homogeneous fragmentations,

Athreya [1] on Markov chains, Lyons [31], Biggins and Kyprianou [3] and Hu and Shi [19]

for branching random walks, and Engländer and Kyprianou [7] for superprocesses.

The final development that is of major interest to us for the purposes of our results

was provided by Hardy and Harris [11]. The authors noted that the space on which our

BBM is constructed can be embellished so that, on this richer space, the “spine” identified

by Chauvin and Rouault can be seen directly and forms part of the process. The original

BBM process can still be seen via the projection onto its natural filtration, and indeed the

use of various different filtrations forms an important part of the construction. This allows

all measure changes to be carried out via unit mean martingales, so that all measures are

probability measures, and offers a significant advantage over previous methods. We shall

use much of the same notation as in [11]. This will be developed fully in Chapter 2.

For the purposes of this introduction we simplify matters by omitting many of the

details and attempting to paint the picture without worrying about being too rigorous.

Suffice to say that the measure change in (∗) can be extended to our embellished space

to give a new measure Q̃λ under which one line of descent is marked out as the spine

and behaves as the special particle in the construction of Chauvin and Rouault described

above. We simplify things further by considering, for now, only the binary branching case

A ≡ 1 (so that m = 1 and A? ≡ 1 also).

We aim to prove that the extremal particle in a BBM travels at speed
√

2r, using spine

methods. We begin with a simple spine decomposition, which we attempt to explain

without proof. We will see a more general version, with proof, in Chapter 2. The σ-

algebra G̃∞ in the decomposition is that which sees only the spine (for all times t ≥ 0) —

its position and its genealogy, and nothing about any other particles.

Theorem 1.5 (Simplified spine decomposition):

Q̃λ-almost surely,

Q̃λ[Zλ(t)|G̃∞] =
∑
u<ξt

e−rSu+λξSu−λ2Su/2 + e−rt+λξt−λ
2t/2

where ξt is the position of the spine at time t, and Su is the death time of particle u.
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1.2. Spine changes of measure

We see that this theorem tells us about the additive martingale Zλ, which depends on

many particles, in terms of just one particle, the spine. Figure 1-3 shows the idea behind

the theorem: given information about the spine (the red line shows its path under Q̃), at

each birth event (represented by a purple dot) along its path a new non-spine particle is

born and goes on to draw out a line of descent of its own. This process is distributed —

relative to its birth time and position — as a copy of our original P-branching Brownian

motion. Therefore each such new particle u, conditional on its birth time and position,

contributes to Zλ(t) a martingale term Zuλ(t) of its own. When this term is projected

back onto G̃∞, the optional stopping theorem tells us that its expected contribution is

simply its initial value — that is, its value at the time it split from the spine. This is

exactly what we see in the sum part of the spine decomposition. The final term in the

decomposition is the contribution made to Zλ(t) by the spine itself.

Figure 1-3: The idea behind the spine decomposition.

The following well-known lemma often proves useful in conjunction with the spine

decomposition. Again, we shall see the lemma later with a proof; for now we simply state

it in order to proceed with an example.

Lemma 1.6:

For any A ∈ F∞ (where Ft, t ≥ 0 is the natural filtration of the BBM — without the

spine) we have

Q(A) = P[Z(∞)1A] + Q(A ∩ {Z(∞) =∞}).
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1.2. Spine changes of measure

We are now in a position to prove the following theorem. As we mentioned in Section

1.1, this result is well-known, but it provides a worthwhile illustration of the simplicity

of the spine methods.

Theorem 1.7:

The extremal particle has asymptotic speed
√

2r: that is

supu∈N(t)Xu(t)

t
→
√

2r P-almost surely.

Proof. First fix λ >
√

2r. Suppose that

P
(

lim sup
t→∞

supu∈N(t)Xu(t)

t
> λ

)
> 0.

Then there is strictly positive P-probability that there exist particles u1, u2, . . . and times

T1, T2, . . .→∞ such that for each j, uj ∈ N(Tj) and Xuj (Tj) ≥ λTj . On this event,

Zλ(Tj) ≥ e−rTj+λXuj (Tj)− 1
2
λ2Tj ≥ e−rTj+

1
2
λ2Tj ,

and hence we see that

P(Zλ(∞) =∞) > 0.

But Z(t) is a P-martingale, so converges almost surely to an almost surely finite limit,

which gives us a contradiction. Thus

P
(

lim sup
t→∞

supu∈N(t)Xu(t)

t
>
√

2r

)
≤
∞∑
n=1

P
(

lim sup
t→∞

supu∈N(t)Xu(t)

t
>
√

2r +
1

n

)
= 0,

establishing our upper bound on the speed of the extremal particle.

For the lower bound we use the spine decomposition. Choose λ > 0 such that λ <
√

2r,

fix p ∈ (1, 2r
λ2
∧ 2) and let q := p − 1. Using Jensen’s inequality and the fact (which is

easy to prove: reduce to the case a = 1 and differentiate with respect to b) that for any

a, b > 0 and q ∈ (0, 1], we have (a+ b)q ≤ aq + bq,

Q̃λ[Zλ(t)q|G̃∞] ≤
(
Q̃λ[Zλ(t)|G̃∞]

)q
=

∑
u<ξt

e−rSu+λξSu−λ2Su/2 + e−rt+λξt−λ
2t/2

q

≤
∑
u<ξt

e−qrSu+qλξSu−qλ2Su/2 + e−qrt+qλξt−qλ
2t/2.
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1.2. Spine changes of measure

We now take the Q̃λ-expectation of this quantity. Since, under Q̃λ, the births along the

spine occur as a Poisson process of constant rate 2r independently of the position of the

spine, standard calculations reveal that

Q̃λ

∑
u<ξt

e−qrSu+qλξSu−qλ2Su/2

 = Q̃λ

[∫ t

0
2re−qrs+qλξs−qλ

2s/2ds

]

and by Fubini’s theorem we have

Q̃λ[Zλ(t)q] ≤
∫ t

0
2rQ̃λ

[
e−qrs+qλξs−qλ

2s/2
]
ds+ Q̃λ[e−qrt+qλξt−qλ

2t/2].

Since the spine is a Brownian motion with drift λ under Q̃λ, we may apply Girsanov’s

theorem to see that for any s ≥ 0,

Q̃λ[eqλξs−qrs−qλ
2s/2] = P̃[eqλξs−qrs−qλ

2s/2+λξt−λ2t/2]

= P̃[epλξt−qrt−pλ
2t/2]

= ep
2λ2t/2−qrt−pλ2t/2

= ep(p−1)λ2t/2−(p−1)rt.

This exponent is negative by our choice of p, and hence Q̃λ[Zλ(t)q] is bounded over all

t ≥ 0; but

P[Zλ(t)p] = Qλ[Zλ(t)q] = Q̃λ[Zλ(t)q]

so Zλ(t) is bounded in Lp(P). By the martingale convergence theorem, P[Z(∞)] = 1, so

by Lemma 1.6 we have

Q(Z(∞) =∞) = 1− P[Z(∞)] = 0

and for any A ∈ F∞
Q(A) = P[Z(∞)1A].

Thus (using that the spine has drift λ under Q)

P[Z(∞)1{lim inf(supu∈N(t)Xu(t)/t)<λ}] = Q
(

lim inf
t→∞

supu∈N(t)Xu(t)

t
< λ

)
= 0.

We deduce that we must have

P
(

lim inf
t→∞

supu∈N(t)Xu(t)

t
< λ

)
< 1.
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1.3. Measure changes with extinction

But for any s > 0, using the fact that given Fs each particle alive at time s draws out its

own independent BBM from time s onward,

P (s) := P
(

lim inf
t→∞

supu∈N(t)Xu(t)

t
< λ

∣∣∣∣Fs)

= P

 ⋂
u∈N(s)

{
lim inf
t→∞

supv∈N(t),u<vXv(t)

t
< λ

}∣∣∣∣∣∣Fs


=
∏

u∈N(s)

PXu(s)

(
lim inf
t→∞

supv∈N(t)Xv(t)

t
< λ

)

= P
(

lim inf
t→∞

supu∈N(t)Xu(t)

t
< λ

)|N(s)|

where Px denotes a copy of our BBM measure started with a single particle at the point x

(rather than at 0). Since |N(s)| → ∞ P-almost surely as s→∞ (this is a standard result

and easy to prove — or see for example [9]), P (s) converges to zero almost surely. But

clearly P (s) is a bounded martingale, and hence by the martingale convergence theorem

P
(

lim inf
t→∞

supu∈N(t)Xu(t)

t
< λ

)
= P[P (0)] = P[P (∞)] = 0.

This holds for any λ <
√

2r, and so finally

P
(

lim sup
t→∞

supu∈N(t)Xu(t)

t
<
√

2r

)
≤
∞∑
n=1

P
(

lim sup
t→∞

supu∈N(t)Xu(t)

t
<
√

2r − 1

n

)
= 0,

giving us our lower bound.

The proof above provides a microcosm of most of this thesis: we want to check the

positions of some of the particles in our system; we carefully choose a set of relevant

martingales; we use a set of spine tools to bound the growth of the system by changing

measure; and to complete the proof we use some kind of “0/1” law to check that our

claim holds with probability one.

1.3 Measure changes with extinction

The two sections above suggest that we shall be very interested in investigating “extinc-

tion” events using changes of measure. This has been an area of much activity since the

original spine papers of Lyons et al. [27, 31, 32], as the techniques developed have made

possible intuitive proofs of many results both new and old. However the spine methods
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1.3. Measure changes with extinction

usually give results conditional on the event that the spine martingale in use has a strictly

positive limit, when often one would like results conditional on the event of “survival”

of a certain process, usually interpreted to mean the event that the martingale is never

zero. Since these two events may be different, we would like to find some reliable way of

checking whether they agree (up to a null set). In Chapter 3 we provide an extremely

simple necessary and sufficient condition for the two events to agree. We also show that,

if Z(t) is a unit mean martingale and we change measure via Q|Ft := Z(t)P|Ft , then

P(Z(t) > 0) = Q
[

1

Z(t)

]
which corrects a mistake of Lyons [31] and provides another tool for investigating extinc-

tion probabilities. We find this useful in Chapter 5.

19



Chapter 2

The Hardy and Harris spine

construction

We aim here to give an overview of the theory behind the spine technique. We take, more

or less, the route laid out by Hardy and Harris [11], carrying out all changes of measure

by unit-mean martingales to ensure that we work only with probability measures. Many

more general results, which are not necessary for our study, may be found in [11].

2.1 The underlying space

2.1.1 Trees

We use the Ulam-Harris labelling system: define a set of labels

Ω := {∅} ∪
⋃
n∈N

Nn

(as usual N = {1, 2, 3, . . .}).
We often call the elements of Ω particles. We think of ∅ as our “inital ancestor”, and

a label (3, 2, 7) (for example) as representing “the seventh child of the second child of the

third child of the initial ancestor”. For a particle u ∈ Ω we define |u|, the generation of u,

to be the length of u (so if u ∈ Nn then |u| = n, and |∅| = 0). For two labels u, v ∈ Ω we

write uv for the concatenation of u and v, so for example (3, 2, 7)(1, 5, 4) := (3, 2, 7, 1, 5, 4)

(and we take ∅u = u∅ = u). We write u ≤ v and say that u is an ancestor of v if there

exists w ∈ Ω such that uw = v.

We define a tree to be a subset τ ⊆ Ω such that

• ∅ ∈ τ : the initial ancestor is part of τ ;
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2.1. The underlying space

• for all u, v ∈ Ω, uv ∈ τ ⇒ u ∈ τ : if τ contains a particle then it contains all the

ancestors of that particle;

• for each u ∈ τ , there exists Au ∈ {−1, 1, 2, 3, 4, . . .} such that for j ∈ N, uj ∈ τ if

and only if 1 ≤ j ≤ 1 +Au.

We let T be the set of all such trees.

2.1.2 Marked trees and branching Brownian motion

Since we wish to have a particular view of trees, as systems evolving in time and space,

we define a marked tree to be a set τ of triples of the form (u, σu, Xu) such that u ∈ Ω,

the set

tree(τ) := {u : ∃σu, Xu such that (u, σu, Xu) ∈ τ}

forms a tree, σu ∈ [0,∞) is the lifetime of u, and, setting Su :=
∑

v≤u σv,

Xu : [Su − σu, Su)→ R

is the position function of u. We think of Xu(t) as describing the spatial position of the

particle u at time t. To paint the picture more clearly, we think of the inital ancestor ∅
moving around in space according to its position function X∅ until just before the time

σ∅. At this time a number A∅ of new particles appear and each moves around in space

according to its position function for a period of time equal to its lifetime, before being

replaced by a number of new particles; and so on.

We let T be the set of all marked trees, and for τ ∈ T we define the set of particles

alive at time t to be

N(t) := {u ∈ tree(τ) : Su − σu ≤ t < Su}.

For convenience, we extend the position path of a particle to all times t ∈ [0, Sv), to

include the paths of all its ancestors:

Xv(t) :=

{
Xv(t) if Sv − σv ≤ t < Sv

Xu(t) if u < v and Su − σu ≤ t < Su.

We now construct a probability measure P on T such that under P , the system evolves

as a branching Brownian motion.

Lemma 2.1:

For any r > 0 and random variable A taking values in N with finite mean, there exists
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2.1. The underlying space

a σ-algebra H and a unique probability measure P on the space of marked trees under

which:

• The initial particle ∅ begins at the origin, X∅(0) = 0.

• Each particle’s lifetime σu is exponentially distributed with parameter r, independent

of its position and of all other particles.

• For each particle u, (Xu(t)−Xu(Su−σu), t ∈ [0, σu)) is a standard Brownian motion

started from 0 and independent of all other particles.

• For each particle u, the number 1 + Au of offspring of u has the same distribution

as the random variable 1 +A and is independent of the particle’s position and of all

other particles.

Proof. Ikeda et al. [20, 21, 22] prove that such a measure exists on some space; by taking

the image of that measure on the space of marked trees, we obtain our measure P . It is

easily checked that the distribution specified in the lemma is enough to ensure uniqueness

over finite time intervals, and hence over the whole space.

2.1.3 Marked trees with spines

We now enlarge our state space further to include the notion of spines, which will be a

central theme of this thesis and will allow us certain probabilistic tools without which

our study would be significantly more difficult. We define a spine to be a single maximal

distinguished line of descent. That is, a spine ξ on a marked tree τ is a subset of tree(τ)

such that

• ∅ ∈ ξ;

• ξ ∩N(t) contains exactly one particle for each t;

• if v ∈ ξ and u < v then u ∈ ξ.

If v ∈ ξ ∩ N(t) then we define ξt := Xv(t), the position of the spine at time t. At

certain points we shall also use the notation ξt to mean the particle v itself — beyond

this introduction it should always be clear from the context which meaning is intended,

and so this should not lead to any ambiguity. For clarity within this section we will use

the less concise notation node(ξt) to denote the particle v itself — that is, the unique

v ∈ N(t) ∩ ξ. We let T̃ be the set of all marked trees with spines.
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2.2. Filtrations

2.2 Filtrations

We now work exclusively on the space T̃ of marked trees with spines, and use four different

filtrations on this space, Ft, F̃t, Gt and G̃t, to encapsulate different amounts of information.

The filtration (Ft, t ≥ 0)

We define (Ft, t ≥ 0) to be the natural filtration of a BBM on T̃ : so if (Ht, t ≥ 0) is the

natural filtration of the BBM process defined in Lemma 2.1, then

Ft = {{(τ, ξ) : τ ∈ B, ξ is a spine on τ} : B ∈ Ht}.

Ft contains the all the information about the marked tree up to time t — so, everything

about those particles that have lived and died before time t, along with the information

up to time t of those particles still alive at time t. However, it does not know which

particle is the spine at any point.

The filtration (F̃t, t ≥ 0)

For each t ≥ 0 we define a σ-algebra F̃t on T̃ by

F̃t := σ (Ft ∪ {{u = node(ξs)} : u ∈ Ω, s ∈ [0, t]})

(recall that Ω was the set of all Ulam-Harris labels). F̃t contains all the information about

both the marked tree and the spine up to time t.

The filtration (Gt, t ≥ 0)

We define

Gt := σ (ξs, s ∈ [0, t])

where ξs represents the position of the spine at time s. Gt contains just the spatial infor-

mation about the spine up to time t, but does not know which nodes of the tree actually

make up the spine. It is a Brownian filtration.

The filtration (G̃t, t ≥ 0)

We define

G̃t := σ (Gt ∪ At ∪ Ct) .

where

At = {{u = node(ξs)} : u ∈ Ω, s ∈ [0, t]}
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2.3. Probability measures

and

Ct = {{u < node(ξt), Au = k, σu ≤ σ} : u ∈ Ω, k ∈ N, σ ∈ [0,∞)}.

G̃t contains all the information about the spine up to time t: which nodes make up the

spine, their positions, and for all spine nodes not in N(t) (so all the strict ancestors of

the spine at time t) their lifetimes and number of children.

We note that Ft ⊆ F̃t and Gt ⊆ G̃t ⊆ F̃t.

2.3 Probability measures

We may define a canonical measure P on (T̃ ,F∞) as the image of the measure P given

by Lemma 2.1: for any B ∈ H, set

P({(τ, ξ) : τ ∈ B, ξ is a spine on τ}) = P (B).

This measure, however, has no knowledge of the spine (since it sees only the filtration

Ft). We would like to extend this to a measure on the finer filtration F̃t. To do this, we

imagine the spine, at each fission event, choosing uniformly from the available children.

Then it is easy to see that, for any particle u in a marked tree τ , we would like

Prob(u ∈ ξ) =
∏
v<u

1

Av + 1
.

We note also that if Y is an F̃t-measurable random variable then we can write:

Y =
∑

u∈N(t)

Yu1{ξt=u} (2.1)

where each Yu is Ft-measurable. The proof of this fact is fairly simple. One shows first

by direct construction that if

A ∈ Ft ∪ {{u = node(ξs)} : u ∈ Ω, s ∈ [0, t]}

then we have

A =
⋃
u∈Ω

(Au ∩ {ξt = u})

for some collection of sets Au ∈ Ft. Checking that the property is retained on tak-

ing countable unions or complements then entails that the same property holds for any

A ∈ F̃t. It is then straightforward to show that if Y is an F̃t-simple function (a finite
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2.4. Martingales and a change of measure

combination of indicator functions) then it has the representation (2.1). But any non-

negative Y is an increasing limit of simple functions, and any Y is a difference of two

non-negative functions, and it is an easy exercise using these facts to complete the proof.

Definition 2.2:

We define the probability measure P̃ on (T̃ , F̃∞), by setting

P̃[X] = P

 ∑
u∈N(t)

Xu

∏
v<u

1

Av + 1

 (2.2)

for each F̃t-measurable X with representation (2.1).

The measure P̃ is an extension of P in that P = P̃|F∞ , since
∑

u∈N(t)

∏
v<u

1
Av+1 = 1.

It is well-known (see for example [11]) that P̃ can be decomposed as follows:

• the spine’s motion is a standard Brownian motion;

• the lifetime of a spine particle is exponentially distributed with parameter r, inde-

pendent of its motion;

• at the fission time of node u on the spine, the single spine particle is replaced

by Au + 1 children, with Au being chosen independently of everything else and

distributed according to the random variable A;

• the new spine particle is chosen uniformly from the 1 +Au children;

• each of the remaining Au children gives rise to an independent branching Brownian

motion which is not part of the spine and is determined by a copy of the original

measure P shifted to the time and place of its birth.

In summary, the spine behaves, under P̃, just like any other particle.

2.4 Martingales and a change of measure

As we mentioned briefly in the introduction, one justification of the spine setup is that

for any non-negative martingale for Brownian motion, we are able to construct a related

non-negative additive martingale for BBM.

Indeed, suppose that we are given a non-negative, mean one, Gt-adapted martingale

(ζ(t), t ≥ 0). (Since the path of the spine is simply a standard Brownian motion, we

may use any normalised non-negative martingale for Brownian motion.) We call this

martingale the single-particle martingale.
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2.4. Martingales and a change of measure

Definition 2.3:

We define an F̃t-adapted (and, in fact, G̃t-adapted) process ζ̃ by

ζ̃(t) = e−mrtζ(t)
∏
u<ξt

(Au + 1),

and an Ft-adapted process Z by

Z(t) =
∑

u∈N(t)

e−mrtζu(t),

where ζu is the Ft-adapted process defined via the representation of ζ as in (2.1). We call

Z the branching-particle martingale.

We remark here that Z and ζ are, in fact, simply the projections of ζ̃ onto the relevant

filtrations:

• Z(t) = P̃[ζ̃(t)|Ft]

• ζ(t) = P̃[ζ̃(t)|Gt].

This will be implicit in the proof of Theorem 2.4 below.

Theorem 2.4:

Both ζ̃ and Z are unit mean martingales on their respective filtrations.

Proof. Using the fact that the spine’s motion is independent of its fission events,

P̃[ζ̃(t)] = P̃

e−mrtζ(t)
∏
u<ξt

(Au + 1)


= e−mrtP̃

P̃
 ∏
u<ξt

(Au + 1)

∣∣∣∣∣∣Gt
 ζ(t)


= e−mrtP̃

∏
u<ξt

(Au + 1)

 P̃[ζ(t)]

= e−mrtP̃

∏
u<ξt

(Au + 1)

 .
Now since the fission times are independent of the number of children at these times, we
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2.4. Martingales and a change of measure

may condition first on knowing the fission times to see that

P̃

∏
u<ξt

(Au + 1)

 = P̃

∏
u<ξt

P̃[Au + 1]

 = P̃[(m+ 1)n(ξt)]

where n(ξt) is the generation of the spine particle at time t. Since this generation is a

Poisson random variable with mean rt, we have P̃[(m+ 1)n(ξt)] = emrt and hence

P̃[ζ̃(t)] = 1.

We may now apply the Markov property to deduce that ζ̃(t) is a martingale with respect

to F̃t. To see that Z is a martingale with respect to Ft, we simply note that (using the

representation (2.1) for ζ(t))

P̃[ζ̃(t)|Ft] = P̃

e−mrtζ(t)
∏
v<ξt

(Av + 1)

∣∣∣∣∣∣Ft


= P̃

e−mrt ∑
u∈N(t)

ζu(t)1ξt=u
∏
v<ξt

(Av + 1)

∣∣∣∣∣∣Ft


= e−mrt
∑

u∈N(t)

ζu(t)
∏
v<u

(Av + 1)P̃(ξt = u|Ft)

= e−mrt
∑

u∈N(t)

ζu(t)
∏
v<u

(Av + 1)
∏
w<u

1

Aw + 1

= Z(t)

and the martingale property immediately follows.

Definition 2.5:

We define a new probability measure, Q̃, via

dQ̃
dP̃

∣∣∣∣∣
F̃t

:= ζ̃(t).

Also, for convenience, define Q to be the projection of the measure Q̃ onto F∞; then

dQ
dP

∣∣∣∣
Ft

= Z(t).

Lemma 2.6:

Under Q̃,
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2.5. Spine tools

• the spine moves as if under the changed measure given by

dP̂

dP

∣∣∣∣∣
Gt

:=
ζ(t)

ζ(0)

where P is the law of a standard Brownian motion;

• spine particles die at an accelerated rate (1 +m)r independently of their position;

• on death, a spine particle u is replaced (independently of its position and lifetime)

by 1 + Au particles where the distribution of 1 + Au is size-biased: Q̃(Au = k) =
(1+k)P̃(A=k)

1+m ;

• a new spine particle is chosen uniformly at random from the 1 +Au children at the

fission point;

• the remaining child gives rise to an independent subtree, which is not part of the

spine and is determined by an independent copy of the original measure P shifted to

the position and time of creation.

We saw a similar description of Q̃ in Chapter 1 — this was originally given by Chauvin and

Rouault in [5], where they made the key observation that the BBM is largely unchanged

and that the only changes occur along the spine. The more advanced formulation above

allows us to see explicitly which particle is the spine.

Hardy and Harris [11] develop the theory to cover more general branching processes.

In Chapter 4 we shall also consider a case with a branching rate that depends on the

position of the particle. For now however we prefer to convey the basic setup in order to

avoid proofs cluttered with notation.

2.5 Spine tools

As we saw in Theorem 1.7, the pathwise construction of the changed measure Q̃ seen

above is not the only advantage of the spine theory. There are several other tools that

will be extremely useful to us. The first, and perhaps most important, of these is the

spine decomposition theorem. It is vital in that it allows us to relate the growth of the

whole process to just the behaviour along the spine. This proof is taken from Hardy and

Harris [11].
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Theorem 2.7 (Spine decomposition):

We have the following decomposition of the branching-particle martingale:

Q̃[Z(t)|G̃∞] =
∑
u<ξt

Aue
−mrSuζ(Su) + e−mrtζ(t).

Proof. Since exactly one particle in N(t) is the spine,

Z(t) =
∑

u∈N(t)
u6=ξt

e−mrtζu(t) + e−mrtζ(t).

Each particle not in the spine has a unique ancestor in the spine, and so we partition the

sum into the subtrees born at each fission point along the spine:

Z(t) =
∑
u<ξt

e−mrSu
∑

j=1,...,Au+1
uj 6∈ξ

Zuj(Su; t) + e−mrtζ(t)

where

Zuj(Su; t) :=
∑

v∈N(t)
u<v

e−mr(t−Su)ζv(t).

Now under Q̃, conditional on G̃Su , since the non-spine children of u draw out independent

subtrees determined by copies of the original measure P, we see that Zuj is a (Q̃,Ft, t ≥
Su)-martingale on [Su,∞) with initial value Zuj(Su) = ζ(Su). Thus by the optional

stopping theorem, for any t ≥ Su

Q̃[Zuj(Su; t)|G∞] = Q̃[Zuj(Su; t)|GSu ] = ζ(Su)

and hence

Q̃[Z(t)|G∞] =
∑
u<ξt

e−mrSu
∑

j=1,...,Au+1
uj 6∈ξ

ζ(Su) + e−mrtζ(t)

=
∑
u<ξt

Aue
−mrSuζ(Su) + e−mrtζ(t)

as required.

The spine decomposition is usually used in conjunction with the following result (usu-

ally we use µ = Q and ν = P, so Xt = Z(t)). The proof is taken from [33].

Lemma 2.8:
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2.5. Spine tools

Suppose that µ is a finite measure and ν a probability measure on the same measurable

space (Ω,F), and that Ft, t ≥ 0 are increasing sub-σ-fields whose union generates F .

If, for each t, µ|Ft is absolutely continuous with respect to ν|Ft with Radon-Nikodým

derivative Xt, and X := lim supXt, then for any A ∈ F

µ(A) = ν[X1A] + µ(A ∩ {X =∞}).

This entails

µ� ν ⇔ X <∞ µ-a.s. ⇔ µ = Xν

and

µ ⊥ ν ⇔ X =∞ µ-a.s. ⇔ ν[X] = 0.

Proof. Define a new probability measure ρ := (µ+ ν)/C where C := µ(Ω) + ν(Ω). Then

µ � ρ; set Ut := (dµ/dρ)|Ft and U := dµ/dρ. Then µ[U |Ft] = Ut so by the martingale

convergence theorem U = limt→∞ Ut ρ-almost surely. Similarly, setting Vt := (dν/dρ)|Ft
and V := dν/dρ we have V = limt→∞ Vt ρ-almost surely. Since for any t ≥ 0, Ut+Vt = C

ρ-almost surely, we must have ρ(U = V = 0) = 0, and so (ρ-almost surely)

U

V
=

limt→∞ Ut
limt→∞ Vt

= lim
t→∞

Ut
Vt

= lim
t→∞

Xt = X.

Thus for any A ∈ F

µ(A) = ρ[U1A] = ρ[XV 1A] + ρ[U1V=01A]

= ν[X1A] + µ(A ∩ {V = 0})

= ν[X1A] + µ(A ∩ {X =∞}).

Our final theorem in this section is a many-to-one theorem. Similar theorems have

been known for much longer than the spine theory, but the spine allows us a simple and

intuitive proof. We first prove an interesting lemma, taken from Hardy and Harris [11].

Lemma 2.9:

For any label u ∈ Ω and t ≥ 0,

Q̃(ξt = u|Ft) =
e−mrtζu(t)

Z(t)
1{u∈N(t)}.
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Proof. For any F ∈ Ft,

Q̃({ξt = u} ∩ F ) = P̃[1{ξt=u}1F
∏
v<ξt

(1 +Av)e
−mrtζ(t)]

= P̃[1{ξt=u}1F
∑

w∈N(t)

∏
v<w

(1 +Av)e
−mrtζw(t)1{ξt=w}]

= P̃[1{u∈N(t)}1F
∏
v<u

(1 +Av)e
−mrtζu(t)1{ξt=u}]

= P[1u∈N(t)e
−mrtζu(t)1F ]

= Q
[

1

Z(t)
1{u∈N(t)}e

−mrtζu(t)1F

]
where for the last equality we have used the fact that if u ∈ N(t) and ζu(t) > 0 then

Z(t) > 0.

We come now to the many-to-one theorem. We use a relatively simple form compared

to that in [11]. As an example of its use, one might imagine applying it to the function

g(t) := 1{ξt∈A} =
∑

u∈N(t)

1{Xu(t)∈A}1{ξt=u}

for some set A ⊆ R in order to calculate the expected number of particles within A at

time t.

Theorem 2.10 (Many-to-one theorem):

If g(t) is Gt-measurable and is written

g(t) =
∑

u∈N(t)

gu(t)1{ξt=u}

where each gu(t) is Ft-measurable, then

P

 ∑
u∈N(t)

gu(t)

 = P̃[emrtg(t)].

Proof. We use the spine theory with the single-particle martingale ζ(t) ≡ 1. By the fact
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2.5. Spine tools

that Q̃|Gt = ζ(t)P̃|Gt ,

P̃[emrtg(t)] = P̃[ζ(t)emrtg(t)]

= Q̃[emrtg(t)]

= Q̃[emrt
∑

u∈N(t)

gu(t)1{ξt=u}]

= Q̃[emrt
∑

u∈N(t)

gu(t)Q̃(ξt = u|Ft)].

Applying Lemma 2.9,

P̃[emrtg(t)] = Q̃

emrt ∑
u∈N(t)

gu(t)
e−mrt

Z(t)

 = Q̃

 1

Z(t)

∑
u∈N(t)

gu(t)

 .
But

∑
u∈N(t) gu(t)/Z(t) is Ft-measurable, so by the fact that Q̃|Ft = Z(t)P̃|Ft = Z(t)P|Ft ,

P̃[emrtg(t)] = P

 ∑
u∈N(t)

gu(t)

 .
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Chapter 3

Measure changes with extinction

For this chapter, rather than considering only spine changes of measure, we generalise

and consider any unit-mean martingale change of measure Q|Ft := ZtP|Ft . We clarify

that in general 1/Zt is only a supermartingale under Q, and then give a necessary and

sufficient condition for the identity P(∃t : Zt = 0) = P(Z∞ = 0) to hold. This work is

joint with Simon Harris and appears in [18].

3.1 Introduction

Consider two probability measures P and Q on the same filtered space (Ω,F ,Ft) along

with a càdlàg adapted non-negative process (Zt) such that, for each t,

Q
∣∣
Ft = ZtP

∣∣
Ft .

The process Z may be in either continuous (usually t ∈ R+) or discrete (usually t ∈ Z+)

time; we shall not always distinguish between the two. It is easy to see that Z is necessarily

a non-negative P-martingale with unit mean. We define

Υ := inf{t ≥ 0 : Zt = 0};

we call this the extinction time of the process Z.

It has been claimed, in particular in Biggins and Kyprianou [3], Englander and Kypri-

anou [7] and Lyons [31], that the process 1/Zt is automatically a Q-martingale. This is

not always true, as shown in the example below. However, in Proposition 3.2 we show

that 1/Zt is a supermartingale. Since the proofs in [3], [7] and [31] depend only on show-

ing that 1/Zt converges Q-almost surely, the supermartingale property is sufficient and

their results are unaffected.
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3.2. Main results

Example 3.1:

Consider the (discrete time) Galton-Watson process in which each particle has either 2

children, with probability p, or no children, with probability q = 1 − p. Let Xn be the

number of particles in the nth generation, and set

m = 2p and Zn = Xn/m
n.

It is well-known that Z is a P-martingale. Making the change of measure to Q, we can

check immediately that

Q(Z1 = 0) = P[Z11{Z1=0}] = 0,

so

Q[1/Z1] = m

∞∑
j=1

Q(X1 = j)/j = m

∞∑
j=1

P[Z11{X1=j}]/j

= m(2/2m)P(X1 = 2) = P(X1 = 2) = p.

Since Q[1/Z0] = 1, we see that (1/Zn) is not a Q-martingale if p < 1.

In fact we show in Lemma 3.4 that in all cases, for any t ∈ [0,∞),

Q[1/Zt] = P(Zt > 0) = P(Υ > t)

and in Theorem 3.5 we see that the identity

Q[1/Z∞] = P(Z∞ > 0) = P(Υ =∞)

holds if and only if 1/Zt is uniformly integrable. Such results, linking the extinction of

the process to the event that the martingale limit is zero, are often of great value in the

branching process scenario. We stress, however, that all of our results apply to general

measure changes rather than just those related to branching processes.

3.2 Main results

3.2.1 The Q-supermartingale property of 1/Z

We may easily show that, as claimed earlier, 1/Zt is a Q-supermartingale.

Proposition 3.2:

Q
[

1

Zt+s

∣∣∣∣Ft] =
1

Zt
P(Zt+s > 0 | Ft).
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3.2. Main results

In particular, 1/Zt is a Q-supermartingale.

Proof. First, note that there is no extinction under Q: for all t > 0,

Q(Zt = 0) = P[Zt1{Zt=0}] = 0.

Also, there is no rebirth after extinction; that is, for all s, t > 0,

Zt = 0⇒ Zt+s = 0 (a.s. under P).

This fact can be shown directly, using the martingale property of Z; however, the measure

change allows us a simple proof:

P(Zt+s > 0, Zt = 0) = P
[
Zt+s
Zt+s

1{Zt+s>0,Zt=0}

]
= Q

[
1

Zt+s
1{Zt+s>0,Zt=0}

]
= 0,

since Q(Zt = 0) = 0. Using these two facts, we see that for any A ∈ Ft,

Q
[

1

Zt
P(Zt+s > 0|Ft)1A

]
= Q

[
1

Zt
1{Zt>0}P(Zt+s > 0|Ft)1A

]
= P

[
Zt
Zt
1{Zt>0}P(Zt+s > 0|Ft)1A

]
= P(Zt > 0, Zt+s > 0, A) = P(Zt+s > 0, A)

= P
[
Zt+s
Zt+s

1{Zt+s>0}1A

]
= Q

[
1

Zt+s
1A

]
.

Thus, by definition of conditional expectation,

Q
[

1

Zt+s

∣∣∣∣Ft] =
1

Zt
P(Zt+s > 0|Ft).

Remark:

Kuhlbusch [26] gives a very similar proof of this fact, albeit in discrete time only. The

proof above also has the advantage that it gives an explicit formula for the rate at which

the process is decaying.

Corollary 3.3:

(1/Zt) is a true Q-martingale if and only if there is no extinction under P.
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3.2. Main results

3.2.2 Extinction probabilities

In work on branching processes, extinction probabilities often cause difficulties. For ex-

ample, recall that we defined Υ to be the extinction time,

Υ := inf{t : Zt = 0}

and set

Z∞ := lim sup
t→∞

Zt;

then it can be a major problem to prove that

P(Z∞ > 0) = P(Υ =∞). (3.1)

We give an identity suited to this purpose. Despite its simplicity, it can be extremely

useful – for example it is an essential ingredient in the proofs of Chapter 5.

Lemma 3.4:

For any t ∈ [0,∞),

P(Υ > t) = P(Zt > 0) = Q[1/Zt];

also

P(Z∞ > 0) = Q[1/Z∞].

Proof. Using various facts from earlier,

Q[1/Zt] = Q
[

1

Zt
1{Zt>0}

]
= P

[
Zt

1

Zt
1{Zt>0}

]
= P(Zt > 0)

which establishes the first equality. For the second, we use Lemma 2.8. Note that

Q(Z∞ = 0) = P[Z∞1{Z∞=0}] + Q({Z∞ = 0} ∩ {Z∞ =∞}) = 0.

Thus, using Lemma 2.8 again,

Q[1/Z∞] = Q
[

1

Z∞
1{Z∞>0}

]
= P(Z∞ > 0) + Q

[
1

Z∞
1{Z∞=∞}

]
= P(Z∞ > 0).

This allows us to give a simple necessary and sufficient condition for (3.1) to hold.

Theorem 3.5:

The full identity

Q[1/Z∞] = P(Z∞ > 0) = P(Υ =∞)

holds if and only if the set {1/Zt : t ≥ 0} is Q-uniformly integrable.
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Proof. If {1/Zt : t > 0} is Q-uniformly integrable then we have immediately that

P(Z∞ > 0) = Q[1/Z∞] = lim
t→∞

Q[1/Zt] = lim
t→∞

P(Υ > t) = P(Υ =∞).

Conversely, if P(Z∞ > 0) = P(Υ =∞), then as above we have

Q[1/Z∞] = lim
t→∞

Q[1/Zt].

Thus (by Scheffé’s lemma – Theorem 5.10 of [37]) 1/Zt converges in L1 to 1/Z∞. Con-

vergence in L1 then implies uniform integrability (see Theorem 13.7 of [37] for example);

hence {1/Zt : t ≥ 0} is Q-uniformly integrable.

3.3 The Q-local martingale property

We may now ask whether (1/Zt, t ≥ 0) is even a Q-local martingale. The intuition is that

if, as is often the case, Zt is some suitable rescaling of the number of particles alive at

time t, then 1/Zt is perfectly well-behaved under Q: there is always at least one particle

alive, so Zt cannot get within a certain distance of zero. Thus 1/Zt can only be a local

martingale if it is a true martingale; but it is not a true martingale, and thus not a local

martingale.

This notion is made precise in Proposition 3.7 below. The result is really just a

rephrasing of a standard fact about local martingales, which we state in Lemma 3.6; we

give a proof of Proposition 3.7 regardless.

Lemma 3.6:

Suppose that (Xt, t ≥ 0) is a local martingale. Then the following are equivalent:

• X is a martingale;

• For each t > 0, {XT : T is a stopping time, T ≤ t} is uniformly integrable.

Proposition 3.7:

Suppose that extinction occurs with positive probability under P, i.e. there exists s > 0

such that P(Zs = 0) > 0, and that the set

{1/ZT : T is a stopping time, T ≤ t}

is Q-UI for each t > 0. Then 1/Zt is not a local martingale under Q.

Proof. For a contradiction, suppose that 1/Zt is a local martingale under Q, with a

reducing sequence of stopping times (Tn, n ≥ 0). Then for any bounded stopping time
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3.3. The Q-local martingale property

T ≤ t, say,

Q[1/Z0] = Q[1/ZTn0 ] = Q[1/ZTnT ] = Q[1/ZT∧Tn ],

where the second equality holds by the optional stopping theorem. Now by hypothesis

{ZT∧Tn : n ≥ 0} is UI and thus

Q[1/ZT∧Tn ]→ Q[1/ZT ] as n→∞.

So Q[1/ZT ] = Q[1/Z0] for all bounded stopping times T , and hence by optional stopping

1/Zt is a true Q-martingale. We have already shown that this is not true when there is

a positive probability of extinction (Corollary 3.3); hence by contradiction 1/Zt is not a

Q-local martingale.

Example 3.8:

Consider a standard branching Brownian motion with branching rate r and birth distri-

bution A taking values in {−1, 1, 2, 3, . . .} with P[A] = m ∈ (0,∞). Let N(t) be the set

of particles at time t, with particle u having position Xu(t). Then, as in Section 1.2, it is

known that

Zλ(t) :=
∑
u∈Nt

e−mrt+λXu(t)−λ2t/2

is a martingale. Suppose that P(A = −1) > 0. Then making the usual change of measure

to Q, we know that (1/Zλ(t), t ≥ 0) is not a Q-martingale. It is possible, by using the

spine interpretation of the measure change, to show that it is not even a local martingale.

We embellish our probability space as in Chapter 2 with extra information concerning

one distinguished infinite line of descent, called the spine, and define a new measure Q̃
which is an extension of Q. Under Q̃ the spine moves with a drift λ, and the birth rate

along the spine is also altered. The spine almost surely survives forever under Q̃, and we

denote its position at time t by ξt. Thus almost surely under Q̃, for a bounded stopping

time T ≤ t say,

1

Zλ(T )
=

1∑
u∈N(T ) e

−rT+λXu(T )−λ2T/2

≤ 1

e−rT+λξT−λ2T/2

= e(r+λ2)T · e−λ(ξT−λT )−λ2T/2

≤ e(r+λ2)t · e−λ(ξT−λT )−λ2T/2.

Since (e−λ(ξt−λt)−λ2t/2, t ≥ 0) is a martingale under Q̃ (because ξ is a Brownian motion
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3.3. The Q-local martingale property

with drift λ), by Lemma 3.6 the set

{e−λ(ξT−λT )−λ2T/2 : T is a stopping time, T ≤ t}

is Q̃-uniformly integrable. Multiplying each element of the set by a constant e(r+λ2)t does

not change this property, and hence by domination

{1/Zλ(T ) : T is a stopping time, T ≤ t}

is uniformly integrable under Q̃ (and so under Q). Proposition 3.7 now tells us that

1/Zλ(t) is not a local martingale under Q.
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Chapter 4

Branching Brownian motion:

Scaled growth along paths in an

inhomogeneous branching

environment

We consider a branching Brownian motion in which each particle breeds at a rate depend-

ing on its position, giving birth to a random number of offspring. We give a result on the

growth of the number of particles along chosen paths in this scenario. The work follows

the approach of classical large deviations results, in which paths in C[0, 1] are rescaled

onto C[0, T ] for large T . The methods used are probabilistic and take advantage of spine

techniques as seen in Chapter 2. This work is a generalisation of the article [17].

4.1 Introduction and statement of result

4.1.1 Introduction

Fix β > 0, p ∈ [0, 2) and a random variable A taking values in N such that m := E[A] ∈
(1,∞) and E[A log+A] < ∞. Consider a branching Brownian motion (BBM) under a

probability measure P, starting with one particle at the origin and in which each particle

u, once born, performs a Brownian motion independent of all other particles until it dies,

an event which occurs with probability β|x|pdt + o(dt) if the particle is in position x at

time t. At its time of death each particle is replaced by a random number 1 + Au of

offspring where Au has the same distrubition as A. We let N(t) be the set of particles

alive at time t. For u ∈ N(t) let Xu(t) be the position of particle u at time t and extend
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4.1. Introduction and statement of result

this concept to times s ≤ t by setting Xu(s) := Xv(s) if v ∈ N(s) and v is an ancestor of

u.

Fix a set D ⊆ C[0, 1] and θ ∈ [0, 1], and let q := 2
2−p ; then we are interested in the

size of the sets

NT (D, θ) := {u ∈ N(θT ) : ∃f ∈ D with Xu(t) = T qf(t/T ) ∀t ∈ [0, θT ]}

for large T .

4.1.2 The main result

We define the class H1 of functions by

H1 :=

{
f ∈ C[0, 1] : ∃g ∈ L2[0, 1] with f(s) =

∫ s

0
g(s)ds ∀s ∈ [0, 1]

}
,

and to save on notation we set f ′(t) :=∞ if f ∈ C[0, 1] is not differentiable at the point

t. We then take integrals in the Lebesgue sense so that we may integrate functions that

equal ∞ on sets of zero measure. We let

θ0(f) := inf

{
θ ∈ [0, 1] : mβ

∫ θ

0
|f(s)|pds− 1

2

∫ θ

0
f ′(s)2ds < 0

}
∈ [0, 1] ∪ {∞}

(we think of θ0 as the extinction time along f , the time at which the number of particles

near f hits zero) and define our rate function K, for f ∈ C[0, 1] and θ ∈ [0, 1], as

K(f, θ) :=

{
mβ

∫ θ
0 |f(s)|pds− 1

2

∫ θ
0 f
′(s)2ds if f ∈ H1 and θ ≤ θ0(f)

−∞ otherwise.

We expect approximately exp(K(f, θ)T 2q−1) particles whose paths up to time θT (when

suitably rescaled) look like f . This is made precise in Theorem 4.1.

Theorem 4.1:

For any closed set D ⊆ C[0, 1] and θ ∈ [0, 1],

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| ≤ sup

f∈D
K(f, θ)

almost surely, and for any open set A ⊆ C[0, 1] and θ ∈ [0, 1],

lim inf
T→∞

1

T 2q−1
log |NT (A, θ)| ≥ sup

f∈A
K(f, θ)
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almost surely.

Sections 4.3 and 4.4 will be concerned with giving a proof of this theorem.

This theorem extends the result of Git [8] to the inhomogeneous branching potential

introduced by Harris and Harris [14]. The methods used are similar to those in Harris

and Roberts [17]: although there are new difficulties introduced by the position-dependent

branching that require various (analytic and probabilistic) improvements to the arguments

in [17], the probabilistic ideas at the heart of the proof remain the same.

Our tactic for the proof is to first work along lattice times, and then upgrade to the

full result using Borel-Cantelli arguments. We begin, in Section 4.2, by introducing a

family of martingales and changes of measure which will provide us with useful tools for

our proofs. We then apply these tools in Section 4.3 to give a proof of the lower bound

for Theorem 4.1, following a fairly straightforward heuristic argument. Finally, in Section

4.4, we prove the upper bound in Theorem 4.1 — it turns out that some slightly involved

work-arounds are required to lift up the proof from [17] to our more general setting.

4.1.3 The oversight in Git [8]

In [8] it is written that under a certain assumption, setting

Wn =

{
ω ∈ Ω : lim sup

T→∞

1

T
log |NT (D, θ)| > J(D, θ) +

1

n

}
(it is not important what J(D, θ) is here) we have P(Wn) > 0 for some n. This is correct,

but the article then goes on to say “It is now clear that

lim sup
T→∞

1

T
logE

[
|NT (D, θ)|

]
≥ J(D, θ) +

1

n
”

which does not appear to be obviously true. To see this explicitly, work on the probability

space [0, 1] with Lebesgue probability measure P. Let XT , T ≥ 0 be the càdlàg random

process defined (for ω ∈ [0, 1] and T ≥ 0) by

XT (ω) =

{
e2T if T − n ∈ [ω − e−4T , ω + e−4T ) for some n ∈ N
eT otherwise.

Then for every ω,

lim sup
1

T
logXT (ω) = 2

but
1

T
logE[XT ]→ 1.
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4.2. A family of spine martingales

Figure 4-1: Visualisation of the process XT , T ≥ 0. Grey areas show where
XT (ω) = e2T , and white areas where XT (ω) = eT .

4.2 A family of spine martingales

4.2.1 The spine setup

We will need to use some of the spine tools of Chapter 2 as part of our proof. However,

as we are dealing with an inhomogeneous branching rate that was not covered in Chapter

2, we once more give a short description of the spine construction and state the results

that we will need for this section. The proofs are essentially the same as those already

given, and we refer the interested reader to Hardy and Harris’ more general formulation

in [12].

We first embellish our probability space by keeping track of some extra information

about one particular infinite line of descent or spine. This line of descent is defined as

follows: our original particle is part of the spine; when this particle dies, we choose one

of its children uniformly at random to become part of the spine. We continue in this

manner: when a spine particle dies, we choose one of its children uniformly at random to

become part of the spine. In this way at any time t ≥ 0 we have exactly one particle in

N(t) that is part of the spine. We refer to both this particle and its position with the label

ξt; this is a slight abuse of notation, but it should always be clear from the context which

meaning is intended. The spatial motion of the spine, (ξt)t≥0, is a standard Brownian

motion.

The resulting probability measure (on the set of marked Galton-Watson trees with

spines) we denote by P̃, and we find need for four different filtrations to encode differing

amounts of this new information:

• Ft contains the all the information about the marked tree up to time t. However,

it does not know which particle is the spine at any point. Thus it is simply the

natural filtration of the original branching Brownian motion.

• F̃t contains all the information about both the marked tree and the spine up to

time t.
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4.2. A family of spine martingales

• G̃t contains all the information about the spine up to time t, including the birth

times of other particles along its path and how many children are born at each of

these times; it does not know anything about the rest of the tree.

• Gt contains just the spatial information about the spine up to time t; it does not

know anything about the rest of the tree.

We note that Ft ⊆ F̃t and Gt ⊆ G̃t ⊆ F̃t, and also that P̃ is an extension of P in that

P = P̃|F∞ .

Lemma 4.2 (Many-to-one lemma):

If g(t) is Gt-measureable and can be written

g(t) =
∑

u∈N(t)

gu(t)1{ξt=u}

where each gu(t) is Ft-measureable, then

E

 ∑
u∈N(t)

gu(t)

 = Ẽ[emβ
∫ t
0 |ξs|

pdsg(t)].

This lemma is extremely useful as it allows us to reduce questions about the entire

population down to calculations involving just one standard Brownian motion — the

spine. A proof of a more general version of this lemma may be found in [12].

4.2.2 Martingales and changes of measure

For f ∈ C[0, 1], θ ∈ [0, 1] and ε > 0, define

NT (f, ε, θ) := {u ∈ N(θT ) : |Xu(t)− T qf(t/T )| < εT q ∀t ∈ [0, θT ]}

so that NT (f, ε, θ) = NT (B(f, ε), θ). We look for martingales associated with these sets.

For convenience, in this section we use the shorthand

NT (t) := NT (f, ε, t/T ).

Lemma 4.3:

If f ∈ C2[0, 1] then the process

VT (t) := eπ
2t/8ε2T 2q

cos
( π

2εT q
(ξt − T qf(t/T ))

)
eT

q−1
∫ t
0 f
′(s/T )dξs− 1

2
T 2q−1

∫ t/T
0 f ′(s)2ds,

t ∈ [0, T ], is a Gt-local martingale under P̃.
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Proof. Since the motion of the spine is simply a standard Brownian motion under P̃, we

may apply Itô’s formula (the sufficient conditions of, for example, Lawler [29] tell us that

if f ∈ C2[0, 1] then VT is sufficiently smooth for Itô’s formula to hold). Let

ṼT (t) := eπ
2t/8ε2T 2q

sin
( π

2εT q
(ξt − T qf(t/T ))

)
eT

q−1
∫ t
0 f
′(s/T )dξs− 1

2
T 2q−1

∫ t/T
0 f ′(s)2ds.

Then

dVT (t) =
π2

8ε2T 2q
VT (t)dt+

π

2εT
f ′(t/T )ṼT (t)dt− 1

2
T 2q−1f ′(t/T )2VT (t)dt

− π

2εT q
ṼT (t)dξt + T q−1f ′(t/T )VT (t)dξt

− π2

8ε2T 2q
VT (t)dt+

1

2
T 2q−1f ′(t/T )2VT (t)dt− π

2εT
f ′(t/T )ṼT (t)dt

which completes the proof.

By stopping the process (VT (t), t ∈ [0, T ]) at the first exit time of the Brownian motion

from the tube {(x, t) : |T qf(t/T )− x| < εT q}, we obtain also that

ζT (t) := VT (t)1{|T qf(s/T )−ξs|<εT q ∀s≤t}, t ∈ [0, T ]

is a non-negative Gt-local martingale, and since its size is then clearly constrained it

must (by Lemma 3.6) in fact be a Gt-martingale. As in [12] (and analogously to the

developments in Chapter 2), we may build from ζT a collection of F̃t-martingales ζ̃T

given by

ζ̃T (t) :=
∏
v<ξt

(1 +Av)e
−mβ

∫ t
0 |ξs|

pdsζT (t), t ∈ [0, T ].

When we project ζ̃T (t) back onto Ft we get a new set of mean-one Ft-martingales

(ZT (t), t ≥ 0).

These processes ZT are the main objects of interest in this section, and can be ex-

pressed for t ∈ [0, T ] as the sum

ZT (t) =
∑

u∈NT (t)

V
(u)
T (t)e−mβ

∫ t
0 |Xu(s)|pds

where

V
(u)
T (t) := eπ

2t/8ε2T 2q
cos
( π

2εT q
(Xu(t)− T qf(t/T ))

)
· eT q−1

∫ t
0 f
′(s/T )dXu(s)− 1

2
T 2q−1

∫ t/T
0 f ′(s)2ds.
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4.2. A family of spine martingales

We now define new measures, Q̃T , via

Q̃T |F̃t := ζ̃T (t)P̃|F̃t

for t ∈ [0, T ] — and note that

Q̃T |Ft = ZT (t)P̃|Ft and Q̃T |Gt = ζT (t)P̃|Gt .

Lemma 4.4:

Under Q̃T , the spine (ξt, t ∈ [0, T ]) moves as a Brownian motion with drift

T q−1f ′(t/T )− π

2εT q
tan

( π

2εT q
(x− T qf(t/T ))

)
when at position x at time t; in particular,

|ξt − T qf(t/T )| ≤ εT q ∀t ≤ T.

Each particle u in the spine dies at an accelerated rate mβ|x|p when in position x, to be

replaced by a random number Au + 1 of offspring where Au is taken from the size-biased

distribution relative to A, given by Q̃T (Au = k) = (m + 1)−1(k + 1)P (A = k) (note

that this distribution does not depend on T ). All non-spine particles, once born, behave

exactly as they would under P: they move like independent standard Brownian motions,

die at the normal rate β|x|p, and give birth to a number of particles that is distributed

like 1 +A.

Proof. A proof of this result can be found in [12], and again we saw an analogous result

in the homogeneous breeding case in Chapter 2. We will not use the precise drift of the

spine except for the fact that it remains within the tube: to see this note that since the

event is G̃T -measurable,

Q̃T (∃t ≤ T : |ξt − T qf(t/T )| > εT q) = Ẽ[ζT (T )1{∃t≤T :|ξt−T qf(t/T )|>εT q}] = 0

by the definition of ζT (T ).

Another important tool is the spine decomposition.

Theorem 4.5 (Spine decomposition):

Q̃T -almost surely,

Q̃T [ZT (t)|G̃T ] =
∑
u<ξt

AuVT (Su)e−mβ
∫ Su
0 |ξs|pds + VT (t)e−mβ

∫ t
0 |ξs|

pds
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4.2. A family of spine martingales

where {u < ξt} is the set of ancestors of the spine particle at time t, and Su denotes the

time at which particle u died and split into two new particles.

A proof of a more general version of the spine decomposition may be found in [12].

Lemma 4.6:

If f ∈ C2[0, 1] then for any u ∈ NT (t), almost surely under both P̃ and Q̃T we have∣∣∣∣∣T q−1

∫ t

0
f ′(s/T )dXu(s)− T 2q−1

∫ t/T

0
f ′(s)2ds

∣∣∣∣∣
≤ 2εT 2q−1

∫ t/T

0
|f ′′(s)|ds+ 2εT 2q−1|f ′(0)|.

Proof. From the integration by parts formula for Itô calculus (since for any particle u ∈
N(t), (Xu(s), 0 ≤ s ≤ t) is a Brownian motion under P̃) we know that for any g ∈ C2[0, 1]

with g(0) = 0, under P̃,

g′(t)Xu(t) =

∫ t

0
g′′(s)Xu(s)ds+

∫ t

0
g′(s)dXu(s).

From ordinary integration by parts,∫ t

0
g′(s)2ds = g′(t)g(t)−

∫ t

0
g(s)g′′(s)ds.

Now set g(t) = T qf(t/T ) for t ∈ [0, T ]. We note that if u ∈ NT (t) then |Xu(s)−g(s)| < εT

for all s ≤ t. Thus∣∣∣∣T q−1

∫ t

0
f ′(s/T )dXu(s)− T 2q−1

∫ t

0
f ′(s)2ds

∣∣∣∣
=

∣∣∣∣∫ t

0
g′(s)dXu(s)−

∫ t

0
g′(s)2ds

∣∣∣∣
≤
∣∣∣∣g′(t)(Xu(t)− g(t))−

∫ t

0
g′′(s)(Xu(s)− g(s))ds

∣∣∣∣
≤ 2εT

∫ t

0
|g′′(s)|ds+ 2εT |g′(0)|

= 2εT 2q−1

∫ t/T

0
|f ′′(s)|ds+ 2εT 2q−1|f ′(0)|

almost surely under P̃ and, since Q̃T � P̃ (on F̃T ), almost surely under Q̃T .

Lemma 4.7:
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4.2. A family of spine martingales

For any u ∈ NT (t),

T 2q−1 inf
g∈B(f,ε)

∫ t/T

0
|g(s)|pds ≤

∫ t

0
|Xu(s)|pds ≤ T 2q−1 sup

g∈B(f,ε)

∫ t/T

0
|g(s)|pds.

Proof. This follows immediately from the fact that if u ∈ NT (t) then (by definition) there

exists g ∈ B(f, ε) such that Xu(s) = T qg(s/T ) for all s ≤ t.

Lemma 4.8:

If f ∈ C2[0, 1], f ′(0) = 0 and mβ
∫ φ

0 |f(s)|pds > 1
2

∫ φ
0 f ′(s)2ds for all φ ∈ (0, θ], then for

small enough ε > 0 and any T > 0 and t ≤ θT , there exists η > 0 such that

Q̃T [ZT (t)|G̃T ] ≤
∑
u<ξt

Aue
π2/8ε2T 2q−1−η

∫ Su
0 |ξs|pds + eπ

2/8ε2T 2q−1−η
∫ t
0 |ξs|

pds

Q̃T -almost surely.

Proof. Recall that under Q̃T the spine is in NT (t) for all t ≤ T . Thus by Lemmas 4.6

and 4.7, since f ′(0) = 0, for any η > 0

−mβ
∫ t

0
|ξs|pds+ T q−1

∫ t

0
f ′(s/T )dξs −

1

2
T 2q−1

∫ t/T

0
f ′(s)2ds

≤ −ηmβ
∫ t

0
|ξs|pds− (1− η)mβT 2q−1 inf

g∈B(f,ε)

∫ t/T

0
|g(s)|pds

+
1

2
T 2q−1

∫ t/T

0
f ′(s)2ds+ 2εT 2q−1

∫ t/T

0
|f ′′(s)|ds

for all t ≤ T . Then, since mβ
∫ φ

0 |f(s)|pds > 1
2

∫ φ
0 f ′(s)2ds for all φ ∈ (0, θ], for small

ε > 0 we may choose η > 0 such that

− (1− η)mβT 2q−1 inf
g∈B(f,ε)

∫ t/T

0
|g(s)|pds

+
1

2
T 2q−1

∫ t/T

0
f ′(s)2ds+ 2εT 2q−1

∫ t/T

0
|f ′′(s)|ds ≤ 0

for all t ∈ [0, θT ]. Plugging this into the spine decomposition, we get

Q̃T [ZT (t)|G̃T ] ≤
∑
u<ξt

Aue
π2/8ε2T 2q−1−η

∫ Su
0 |ξs|pds + eπ

2/8ε2T 2q−1−η
∫ t
0 |ξs|

pds.

Proposition 4.9:

If f ∈ C2[0, 1], f ′(0) = 0 and mβ
∫ φ

0 |f(s)|pds > 1
2

∫ φ
0 f ′(s)2ds for all φ ∈ (0, θ], then for
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4.2. A family of spine martingales

small enough ε > 0 the set {ZT (t) : T ≥ 1, t ≤ θT} is uniformly integrable under P.

Proof. Fix δ > 0. We first claim that there exists K such that

sup
T≥1
t≤θT

Q̃T (Q̃T [ZT (t)|G̃T ] > K) < δ/2.

To see this, take an auxiliary probability space with probability measure Q, and on this

space consider a sequence A1, A2, . . . of random variables with the same (size-biased)

distribution as A under Q̃T (there is no dependence on T ) and a sequence e1, e2, . . . of

random variables that are exponentially distributed with parameter β(m + 1); then set

Sn = e1+. . .+en (so that the random variable Sn has the same distribution as
∫ Su

0 |ξs|pds,
where Su is the time of the nth fission event along the spine under Q̃T ). By Lemma 4.8

we have (since 2q − 1 ≥ 1)

sup
T≥1

t∈[1,θT ]

Q̃T (Q̃T [ZT (t)|G̃T ] > K) ≤ Q

 ∞∑
j=1

Aje
π2/8ε2−ηSj + eπ

2/8ε2 > K

 .

Hence our claim holds if the random variable

∞∑
j=1

Aje
−ηSj

can be shown to be Q-almost surely finite. Now for any γ ∈ (0, 1),

Q(
∑
n

Ane
−ηSn =∞) ≤ Q(Ane

−ηSn > γn infinitely often)

≤ Q
(

logAn
n

> log γ +
ηSn
n

infinitely often

)
.

By the strong law of large numbers, Sn/n → 1/β(m + 1) almost surely under Q; so if

γ ∈ (exp(−η/β(m+ 1)), 1) then the quantity above is no larger than

Q

(
lim sup
n→∞

logAn
n

> 0

)
.
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4.2. A family of spine martingales

But this quantity is zero by Borel-Cantelli: for any T ,

∑
n

Q

(
logAn
n

> ε

)
=
∑
n

Q̃T (logA > εn)

≤
∫ ∞

0
Q̃T (logA ≥ εx)dx

= Q̃T

[
logA

ε

]
,

which is finite for any ε > 0 since (by direct calculation from the distribution of A under

Q̃T given in Lemma 4.4) Q̃T [logA] = P̃[A logA] <∞. Thus our claim holds.

Now choose M > 0 such that 1/M < δ/2; then for K chosen as above, and any T ≥ 1,

t ≤ θT ,

Q̃T (ZT (t) > MK) ≤ Q̃T (ZT (t) > MK, Q̃T [ZT (t)|G̃T ] ≤ K)

+ Q̃T (Q̃T [ZT (t)|G̃T ] > K)

≤ Q̃T

[
ZT (t)

MK
1{Q̃T [ZT (t)|G̃T ]≤K}

]
+ δ/2

= Q̃T

[
Q̃T [ZT (t)|G̃T ]

MK
1{Q̃T [ZT (t)|G̃T ]≤K}

]
+ δ/2

≤ 1/M + δ/2 ≤ δ.

Thus, setting K ′ = MK, for any T ≥ 1, t ≤ θT ,

P[ZT (t)1{ZT (t)>K′}] = Q̃T (ZT (t) > K ′) ≤ δ.

Since δ > 0 was arbitrary, the proof is complete.

Lemma 4.10:

For any δ > 0, if f ∈ C2[0, 1], f(0) = 0 and ε is small enough then

ZT (θT ) ≤ |NT (f, ε, θ)|e
π2θ

8ε2T2q−mβT 2q−1
∫ θ
0 |f(s)|pds+ 1

2
T 2q−1

∫ θ
0 f
′(s)2ds+δT 2q−1

.

Proof. Simply plugging the results of Lemmas 4.6 and 4.7 into the definition of ZT (θT )

gives the desired inequality.

We note here that, in fact, a similar bound can be given in the opposite direction, so

that |NT (f, ε/2, θ)| is dominated by ZT (θT ) multiplied by some deterministic function

of T . We will not need this bound, but it is interesting to note that the study of the

martingales ZT is in a sense equivalent to the study of the number of particles NT .
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4.3. The lower bound

4.3 The lower bound

4.3.1 The heuristic for the lower bound

We want to show that NT (f, ε, θ) cannot be too small for large T . For f ∈ C[0, 1] and

θ ∈ [0, 1], define

J(f, θ) :=

{
mβ

∫ θ
0 |f(s)|pds− 1

2

∫ θ
0 f
′(s)2ds if f ∈ H1

−∞ otherwise.

We note that J resembles our rate function K, but without the truncation at the extinc-

tion time θ0. We shall work mostly with the simpler object J , before deducing our result

involving K at the very last step.

Step 1. Consider a small time ηT . How many particles are in NT (f, ε, η)? If η is much

smaller than ε, then (with high probability) no particle has had enough time to reach

anywhere near the edge of the tube (approximately distance εT from the origin) before

time ηT . Thus, with high probability,

|NT (f, ε, η)| = |N(ηT )|.

We can then give a very simple (and inaccurate!) estimate to show that for some ν > 0,

with high probability,

|N(ηT )| ≥ νT.

Step 2. Given their positions at time ηT , the particles in NT (f, ε, η) act independently.

Each particle u in this set thus draws out an independent branching Brownian motion.

Let NT (u, f, ε, θ) be the set of descendants of u that are in NT (f, ε, θ). How big is this

set? Since η is very small, u is close to the origin at time ηT . Thus we may hope to find

some γ < 1 such that (for each u)

P
(
|NT (u, f, ε, θ)| < exp(J(f, θ)T 2q−1 − δT 2q−1)

)
≤ γ.

Step 3. If NT (f, ε, θ) is to be small, then each of the sets NT (u, f, ε, θ) for u ∈
NT (f, ε, η) must be small. Thus

P
(
|NT (f, ε, θ)| < exp(J(f, θ)T 2q−1 − δT 2q−1)

)
. γνT ,

and we may apply Borel-Cantelli to deduce our result along lattice times (that is, times

Tj , j ≥ 0 such that there exists τ > 0 with Tj − Tj−1 = τ for all j ≥ 1).

Step 4. We carry out a simple tube-reduction argument to move to continuous time.
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4.3. The lower bound

The idea here is that if the result were true on lattice times but not in continuous time,

the number of particles in NT (f, ε, θ) must fall dramatically at infinitely many non-lattice

times. We simply rule out this possibility using standard properties of Brownian motion.

The most difficult part of the proof is Step 2. However, the spine results of Section

4.2 will simplify our task significantly.

4.3.2 The proof of the lower bound

We begin with Step 1 of our heuristic, considering the size of NT (f, ε, η) for small η. First

we will need the following simple lemma.

Lemma 4.11:

For any δ > 0 and k > 0,

P̃
(∫ t

0
1{ξs∈(−δ,δ)}ds > k

)
≤ 3et/2−k/4δ.

Proof. We first claim that if we define hδ : R→ R by

hδ(x) :=

{
|x| if |x| ≥ δ
δ
2 + x2

2δ if |x| < δ

then

hδ(ξt) =
δ

2
+

∫ t

0
h′δ(ξs)dξs +

1

2δ

∫ t

0
1{ξs∈(−δ,δ)}ds.

We check, by approximation with C2 functions, that Itô’s formula holds for hδ. Define a

function gδ,n ∈ C2(R) for each n ∈ N by setting

g′′δ,n(s) =


0 if |x| ≥ δ
n
δ (δ − |x|) if δ − 1

n < |x| < δ
1
δ if |x| < δ − 1

n

with g′δ,n(0) = 0, gδ,n(0) = δ/2. Since g ∈ C2, Itô’s formula tells us that

gδ,n(ξt) = gδ,n(ξ0) +

∫ t

0
g′δ,n(ξs)dξs +

1

2

∫ t

0
g′′δ,n(ξs)ds.

Since g′′δ,n → h′′δ Lebesgue-almost everywhere, by bounded convergence

∫ t

0
g′′δ,n(ξs)ds→

∫ t

0
h′′δ (ξs)ds P̃-almost surely,
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4.3. The lower bound

and gδ,n → hδ uniformly so for each t, gδ,n(ξt)→ hδ(ξt) P̃-almost surely. Also, by the Itô

isometry

P̃

[(∫ t

0
(g′δ,n(ξs)− h′δ(ξs))dξs

)2
]

= P̃
[∫ t

0
(g′δ,n(ξs)− h′δ(ξs))2ds

]
;

since g′δ,n → h′δ uniformly, the right hand side above converges to zero, and hence

∫ t

0
g′δ,n(ξs)dξs →

∫ t

0
h′δ(ξs)dξs P̃-almost surely.

Thus Itô’s formula does indeed hold for hδ, and since

1

2

∫ t

0
h′′δ (s)ds =

1

2δ

∫ t

0
1{ξs∈(−δ,δ)}ds

our claim holds. Now recall that under P̃, the spine’s motion is simply a Brownian motion,

so

P̃[e−
∫ t
0 h
′
δ(ξs)dξs ] ≤ P̃[e−

∫ t
0 h
′
δ(ξs)dξs−

1
2

∫ t
0 h
′
δ(ξs)

2ds]et/2 ≤ et/2.

Thus

P̃
(∫ t

0
1{ξs∈(−δ,δ)}ds > k

)
= P̃

(
hδ(ξt)−

δ

2
−
∫ t

0
h′δ(ξs)dξs >

k

2δ

)
≤ P̃

(
|ξt| −

∫ t

0
h′δ(ξs)dξs >

k

2δ

)
≤ P̃

(
|ξt| >

k

4δ

)
+ P̃

(
−
∫ t

0
h′δ(ξs)dξs >

k

4δ

)
≤ P̃

[
e|ξt|

]
e−k/4δ + P̃

[
e−

∫ t
0 h
′
δ(ξs)dξs

]
e−k/4δ

≤ 3et/2−k/4δ,

establishing the result.

Lemma 4.12:

For any continuous f with f(0) = 0 and any ε > 0, there exist η > 0, ν > 0, k > 0 and

T1 such that for all T ≥ T1,

P(|NT (f, ε/2, η)| < νT ) ≤ e−kT .

Proof. We first show that there exist η > 0, k1 > 0 and T1 such that

P(∃u ∈ N(ηT ) : u 6∈ NT (f, ε/2, η)) ≤ e−k1T ∀T ≥ T1.
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4.3. The lower bound

Choose η small enough that sups∈[0,η] |f(s)| < ε/4. Then, using the many-to-one lemma

(at (?)) and standard properties of Brownian motion,

P(∃u ∈ N(ηT ) : u 6∈ NT (f, ε/2, η))

= P(∃u ∈ N(ηT ), s ≤ η : |Xu(sT )− T qf(s)| ≥ εT q/2)

≤ P(∃u ∈ N(ηT ) : sup
s≤ηT

|Xu(s)| ≥ εT q/4)

≤
∑
k≥1

P(∃u ∈ N(ηT ) : sup
s≤ηT

|Xu(s)| ∈ [kεT q/4, (k + 1)εT q/4])

≤
∑
k≥1

emβ
∫ ηT
0 ((k+1)εT q)pdsP( sup

s≤ηT
|ξs| ∈ [kεT q/4, (k + 1)εT q/4]) (?)

≤
∑
k≥1

4emβ(k+1)pεpηT qp+1
P(ξηT ∈ [kεT q/4, (k + 1)εT q/4])

≤
∑
k≥1

4√
2πηT

exp

(
mβ(k + 1)pεpηT qp+1 − (kεT q)2

32ηT

)
≤
∑
k≥1

4√
2πηT

exp
(
(mβεpη − ε2/32η)kT 2q−1

)
for sufficiently small η. For small η this is approximately

exp
(
(mβεpη − ε2/32η)T 2q−1

)
,

which gives the decay required. We now aim to show that there for any η > 0, there exist

ν > 0 and k2 > 0 such that

P(N(ηT ) < νT ) ≤ e−k2T .

Indeed, if we let n(t) be the number of births along the spine by time t, then certainly

P(N(ηT ) < νT )

≤ P(n(ηT ) < νT )

≤ P
(∫ ηT

0
1{ξs∈[−(4ν/βη)1/p,(4ν/βη)1/p]}ds ≥

1

2
ηT

)
+ P

(∫ ηT

0
1{ξs∈[−(4ν/βη)1/p,(4ν/βη)1/p]}ds <

1

2
ηT, n(ηT ) < νT

)
.

Lemma 4.11 shows that

P
(∫ ηT

0
1{ξs∈[−(4ν/βη)1/p,(4ν/βη)1/p]}ds ≥

1

2
ηT

)
≤ 3 exp

(
ηT

2
− ηT

8(4ν/βη)1/p)

)
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4.3. The lower bound

so we have exponential decay in the first term provided that ν < βη/4p+1; and since births

along the spine occur at rate at least 4ν/η outside the interval [−(4ν/βη)1/p, (4ν/βη)1/p]

the second term is bounded above by the probability that a Poisson random variable with

mean 2νT is less than νT . Let Y ∼ Po(2νT ); then

1Y≤νT = 1exp(νT )≥exp(Y ) ≤
eνT

eY

so

P (Y ≤ νT ) ≤ eνTE[e−Y ] = eνT+2νT (exp(−1)−1)

and this exponent is negative, so the second term also decays exponentially. Finally,

P(|NT (f, ε/2, η)| < νT ) ≤ P(∃u ∈ N(ηT ) : u 6∈ NT (f, ε/2, η)) + P(N(ηT ) < νT )

and the proof is complete.

We now move on to Step 2, using the results of Section 4.2 to bound the probability

that we have a small number of particles strictly below 1. The bound given is extremely

crude, and there is much room for manoeuvre in the proof, but any improvement would

only add unnecessary detail.

Lemma 4.13:

If f ∈ C2[0, 1] and J(f, s) > 0 ∀s ∈ (0, θ], then for any ε > 0 and δ > 0 there exists

T0 ≥ 0 and γ < 1 such that

P
(
|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

)
≤ γ ∀T ≥ T0.

Proof. Note that by Lemma 4.10 for small enough ε > 0 and large enough T ,

|NT (f, ε, θ)|e−J(f,θ)T 2q−1+δT 2q−1/2 ≥ ZT (θT )

and hence

P
(
|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

)
≤ P

(
ZT (θT ) < e−δT

2q−1/2
)
.

Suppose first that f ′(0) = 0. Then E[ZT (θT )] = 1 and, again for small enough ε, by

Proposition 4.9 the set {ZT (θT ), T ≥ 1, t ∈ [1, θT ]} is uniformly integrable. Thus we may

choose K such that

sup
T≥1

E[ZT (θT )1{ZT (θT )>K}] ≤ 1/4,

55



4.3. The lower bound

and then

1 = E[ZT (θT )] = E[ZT (θT )1{ZT (θT )≤1/2}] + E[ZT (θT )1{1/2<ZT (θT )≤K}]

+ E[ZT (θT )1{ZT (θT )>K}]

≤ 1/2 +KP(ZT (θT ) > 1/2) + 1/4

so that

P(ZT (θT ) > 1/2) ≥ 1/4K.

Hence for large enough T ,

P
(
|NT (f, ε, θ)| < eJ(f,θ)T−δT

)
≤ 1− 1/4K.

This is true for all small ε > 0; but increasing ε only increases |NT (f, ε, θ)| so the statement

holds for all ε > 0. Finally, if f ′(0) 6= 0 then choose g ∈ C2[0, θ] such that g(0) = g′(0) = 0,

sups≤θ |f − g| ≤ ε/2, J(g, φ) > 0 ∀φ ≤ θ and J(g, θ) > J(f, θ) − δ/2 (for small η, the

function

g(t) :=

{
f(t) + at+ bt2 + ct3 + dt4 if t ∈ [0, η)

f(t) if t ∈ [η, 1]

will work for suitable a, b, c, d ∈ R). Then

P(|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1
) ≤ P(|NT (g, ε/2, θ)| < eJ(g,θ)T 2q−1−δT 2q−1/2)

≤ 1− 1/4K

as required.

We are now ready to carry out step 3 of the heuristic.

Proposition 4.14:

Suppose that f ∈ C2[0, 1] and J(f, s) > 0 ∀s ∈ (0, θ]. Then for lattice times Tj,

lim inf
j→∞

1

T 2q−1
j

log |NTj (f, ε, θ)| ≥ J(f, θ)

almost surely.

Proof. For a particle u, define

NT (u, f, ε, θ) := {v ∈ N(θT ) : u ≤ v, |Xv(t)− T qf(t/T )| < εT q ∀t ∈ [0, θT ]},
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the set of descendants of u that are in Nt(f, ε, θ). Then for δ > 0 and η ∈ [0, θ],

P
(
|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

∣∣∣FηT)
≤

∏
u∈NT (f,ε/2,η)

P
(
|NT (u, f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

∣∣∣FηT)
≤

∏
u∈NT (f,ε/2,η)

P
(
|NT (g, ε/2, θ − η)| < eJ(f,θ)T 2q−1−δT 2q−1

)

since, given FηT , {|NT (u, f, ε, θ)| : u ∈ NT (f, ε/2, η)} are independent random variables,

and where g : [0, 1]→ R is any twice continuously differentiable extension of the function

ḡ : [0, θ − η] → R
t → f(t+ η)− f(η).

If η is small enough, then

|J(f, θ)− J(g, θ − η)| < δ/2

and

J(g, s) > 0 ∀s ∈ (0, θ − η].

Hence, applying Lemma 4.13, there exists γ < 1 such that for all large T ,

P
(
|NT (g, ε/2, θ − η)| < eJ(f,θ−η)T 2q−1−δT 2q−1

)
≤ P

(
|NT (g, ε/2, θ − η)| < eJ(g,θ−η)T 2q−1−δT 2q−1/2

)
≤ γ.

Thus for large T ,

P
(
|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

∣∣∣FηT) ≤ γ|NT (f,ε/2,η)|. (4.1)

Taking expectations in (4.1), and then applying Lemma 4.12, for small η and some ν, k >

0, for large T we have

P
(
|NT (f, ε, θ)| < eJ(f,θ)T 2q−1−δT 2q−1

)
≤ P (|NT (f, ε/2, η)| < νT ) + γνT

≤ e−kT + γνT .
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The Borel-Cantelli lemma now tells us that for any lattice times Tj , j ≥ 0,

P

(
lim inf
j→∞

1

T 2q−1
j

log |Nj(f, ε, θ)| < J(f, θ)− δ

)
= 0,

and taking a union over δ > 0 gives the result.

We now move to continuous time using Step 4 of our heuristic.

Proposition 4.15:

Suppose that f ∈ C2[0, 1] and J(f, s) > 0 ∀s ∈ (0, θ]. Then

lim inf
T→∞

1

T 2q−1
log |NT (f, ε, θ)| ≥ J(f, θ)

almost surely.

Proof. We claim first that for large enough j ∈ N, provided that T1 ≤ 1,{
|NTj (f, ε, θ)| > inf

t∈[Tj ,Tj+1]
|Nt(f, 2ε, θ|

}
⊆

{
∃v ∈ NTj (f, ε, θ), u ∈ N(θTj+1) : v ≤ u, sup

t∈[Tj ,Tj+1]
|Xu(θt)−Xu(θTj)| >

εT qj
2

}
.

Indeed, if v ∈ NTj (f, ε, θ), t ∈ [Tj , Tj+1] and s ∈ [0, θt] then for any descendant u of v at

time θt,

|Xu(s)− tqf(s/t)| ≤ |Xu(s)−Xu(s ∧ θTj)|+ |Xu(s ∧ θTj)− T qj f(
s∧θTj
Tj

)|

+ |T qj f(
s∧θTj
Tj

)− T qj f(s/t)|+ |T qj f(s/t)− tqf(s/t)|

≤ |Xu(s)−Xu(s ∧ θTj)|+ εT qj

+ T qj sup
x,y∈[0,θ]
|x−y|≤1/Tj

|f(x)− f(y)|+ sup
x∈[0,θ]

|f(x)||T qj+1 − T
q
j |

≤ |Xu(s)−Xu(s ∧ θTj)|+
3ε

2
T qj for large j;

so that if any particle is in NTj (f, ε, θ) but does not have a descendant in Nt(f, 2ε, θ) then

its descendants must satisfy

sup
s∈[θTj ,θTj+1]

|Xu(s)−Xu(Tj)| ≥ εT qj /2.

This is enough to establish the claim, and we deduce via the many-to-one lemma plus
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Lemma 4.7 and standard properties of Brownian motion that

P
(
|NTj (f, ε, θ)| > inf

t∈[Tj ,Tj+1]
|Nt(f, 2ε, θ)|

)
≤ P

(
∃v ∈ NTj (f, ε, θ), u ∈ N(θTj+1) : v ≤ u, sup

t∈[Tj ,Tj+1]
|Xu(θt)−Xu(θTj)| ≥ εT qj /2

)

≤ E

 ∑
u∈N(θTj+1)

1{|Xu(s)−T qj f(s/Tj)|<εT qj ∀s≤θTj}1{supt∈[Tj,Tj+1]
|Xu(θt)−Xu(θTj)|≥εT qj /2}


= Ẽ

[
emβ

∫ θTj+1
0 |ξs|pds1{ξθTj∈NTj (f,ε,θ)}1{supt∈[Tj,Tj+1]

|ξθt−ξθTj |≥εT
q
j /2}

]
≤ emβT

2q−1
j supg∈B(f,ε)

∫ θ
0 |g(s)|

pdsẼ
[
e
mβ

∫ θTj+1
θTj

|ξs|pds
1{supt∈[Tj,Tj+1]

|ξθt−ξθTj |≥εT
q
j /2}

]
≤ emβT

2q−1
j supg∈B(f,ε)

∫ θ
0 |g(s)|

pds

·
∞∑
k=1

Ẽ
[
e
mβ

∫ θTj+1
θTj

|ξs|pds
1{supt∈[Tj,Tj+1]

|ξθt−ξθTj |∈[kεT qj /2,(k+1)εT qj /2]}

]
≤ emβT

2q−1
j supg∈B(f,ε)

∫ θ
0 |g(s)|

pds+mβT 2q−2
j (|f(θ)|+(k+3)ε/2)

·
∞∑
k=1

P( sup
t∈[0,θT1]

|ξt| ∈ [kεT qj /2, (k + 1)εT qj /2])

≤ emβT
2q−1
j supg∈B(f,ε)

∫ θ
0 |g(s)|

pds+mβT 2q−2
j (|f(θ)|+(k+3)ε/2)

·
∞∑
k=1

P(ξθT1 ∈ [kεT qj /2, (k + 1)εT qj /2])

≤ 4emβT
2q−1
j supg∈B(f,ε)

∫ θ
0 |g(s)|

pds+mβT 2q−2
j (|f(θ)|+(k+3)ε/2)

∞∑
k=1

e−(kεT qj )2/8θT1

which, as in Lemma 4.12, is exponentially small in Tj . Thus the probabilities are

summable and we may apply Borel-Cantelli to see that

P(|NTj (f, ε, θ)| > inf
t∈[Tj ,Tj+1]

|Nt(f, 2ε, θ)| infinitely often) = 0.
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Now,

P
(

lim inf
T→∞

1

T 2q−1
log |NT (f, ε, θ)| < J(f, θ)

)
≤ P

(
lim inf
j→∞

1

T 2q−1
j

log |NTj (f, 2ε, θ)| < J(f, θ)

)

+ P
(

lim inf
j→∞

inft∈[Tj ,Tj+1] |Nt(f, ε, θ)|
|NTj (f, 2ε, θ)|

< 1

)
which is zero by Proposition 4.14 and the above.

Corollary 4.16:

For any open set A ⊆ C[0, 1] and θ ∈ [0, 1], we have

lim inf
T→∞

1

T 2q−1
log |NT (A, θ)| ≥ sup

f∈A
K(f, θ)

almost surely.

Proof. Clearly if supf∈AK(f, θ) = −∞ then there is nothing to prove. Thus it suffices

to consider the case when there exists f ∈ A such that f ∈ H1 and θ ≤ θ0(f). Since

A is open, in this case we can in fact find f ∈ A such that J(f, s) > 0 ∀s ∈ (0, θ] (if

J(f, φ) = 0 for some φ ≤ θ, just choose η small enough that (1 − η)f ∈ A) and such

that f is twice continuously differentiable on [0, 1] (the twice continuously differentiable

functions are dense in C[0, 1]). Thus necessarily supf∈AK(f, θ) > 0, and for any δ > 0

we may further assume that J(f, θ) > supf∈AK(f, θ)− δ. Again since A is open, we may

take ε such that B(f, ε) ⊆ A; then clearly for any T

NT (f, ε, θ) ⊆ NT (A, θ)

so by Proposition 4.14 we have

lim inf
T→∞

1

T 2q−1
logNT (A, θ) ≥ sup

f∈A
K(f, θ)− δ

almost surely, and by taking a union over δ > 0 we may deduce the result.

4.4 The upper bound

Our plan is as follows: we first rule out the possibility of any particles following unusual

paths in Lemma 4.17, which allows us to restrict our attention to a compact set, and
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hence small balls about sensible paths. We then carry out the task of obtaining a bound

along lattice times for balls about such paths in Proposition 4.19. By expanding these

balls slightly (using an argument similar to that in Proposition 4.15) we may then bound

the growth in continuous time; this is done in Lemma 4.20, and finally we draw this work

together in Proposition 4.22 to give the bound in continuous time for any closed set D.

Our first task, then, is to rule out the possibility of any particles following extreme

paths. For simplicity of notation, we break with convention by letting

‖f‖θ := sup
s∈[0,θ]

|f(s)|

for f ∈ C[0, θ] or f ∈ C[0, 1] (on this latter space, ‖ · ‖θ is clearly not a norm, but this

will not matter to us). We also extend the definition of NT (D, θ) to sets D ⊆ C[0, θ] in

the obvious way, setting

NT (D, θ) := {u ∈ N(θT ) : ∃f ∈ D with Xu(t) = T qf(t/T ) ∀t ∈ [0, θT ]}.

Lemma 4.17:

Fix θ ∈ [0, 1]. For N ∈ N, let

FN :=

{
f ∈ C[0, θ] : ∃n ≥ N, u, s ∈ [0, θ] with |u− s| ≤ 1

n2
, |f(u)− f(s)| > 1√

n

}
.

Then for all large N

lim sup
T→∞

1

T 2q−1
log |NT (FN , θ)| = −∞

almost surely.

Proof. Fix T ≥ S ≥ 0; then for any t ∈ [S, T ],

{ξt ∈ Nt(FN , θ)} =

{
∃n ≥ N, u, s ∈ [0, θ] : |u− s| ≤ 1

n2
,

∣∣∣∣ξut − ξsttq

∣∣∣∣ > 1√
n

}
⊆
{
∃n ≥ N, u, s ∈ [0, θ] : |u− s| ≤ 1

n2
,

∣∣∣∣ξuT − ξsTSq

∣∣∣∣ > 1√
n

}
.

Since the right-hand side does not depend on t, we deduce that

{∃t ∈ [S, T ] : ξt ∈ Nt(FN , θ)}

⊆
{
∃n ≥ N, u, s ∈ [0, θ] : |u− s| ≤ 1

n2
,

∣∣∣∣ξuT − ξsTSq

∣∣∣∣ > 1√
n

}
.

Now, for s ∈ [0, θ], define π(n, s) := b2n2sc/2n2. Suppose we have a continuous function
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f such that sups∈[0,θ] |f(s)− f(π(n, s))| ≤ 1/4
√
n. If u, s ∈ [0, θ] satisfy |u − s| ≤ 1/n2,

then

|f(u)− f(s)|

≤ |f(u)− f(π(n, u))|+ |f(s)− f(π(n, s))|+ |f(π(n, s))− f(π(n, u))|

≤ 1

4
√
n

+
1

4
√
n

+
2

4
√
n

=
1√
n
.

Thus

{∃t ∈ [S, T ] : ξt ∈ Nt(FN , θ)} ⊆
{
∃n ≥ N, s ≤ θ :

∣∣∣∣ξsT − ξπ(n,s)T

Sq

∣∣∣∣ > 1

4
√
n

}
.

Standard properties of Brownian motion now give us that

P(∃t ∈ [S, T ] : ξt ∈ Nt(FN , θ)) ≤ P
(
∃n ≥ N, s ≤ θ : |ξsT − ξπ(n,s)T | > Sq/4

√
n
)

≤
∑
n≥N

2n2P

(
sup

s∈[0,1/2n2]

|ξsT | > Sq/4
√
n

)

≤
∑
n≥N

4n2P

(
sup

s∈[0,1/2n2]

ξsT > Sq/4
√
n

)
=
∑
n≥N

4n2P
(∣∣ξT/2n2

∣∣ > Sq/4
√
n
)

≤
∑
n≥N

8
√
n3T

Sq
√
π

exp

(
−S

2qn

16T

)
.

Taking S = j and T = j + 1, we note that for large N ,

∑
n≥N

8
√
n3T

S
√
π

exp

(
−S

2qn

16T

)
≤
∑
n≥N

exp

(
−j

2q−1N

32

)
.
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Now, for any M > 0,

P( sup
t∈[j,j+1]

|Nt(FN , θ)| ≥ 1)

≤ E

 ∑
u∈N(j+1)

1{∃t∈[j,j+1]:u∈Nt(FN ,θ)}


= E

[
emβ

∫ j+1
0 |ξs|pds1{∃t∈[j,j+1]:ξt∈Nt(FN ,θ)}

]
≤ E

[
emβ

∫ j+1
0 |ξs|pds1{∃t∈[j,j+1]:ξt∈Nt(FN ,θ)}1{sups≤j+1 |ξs|≤M(j+1)q}

]
+ E

[
emβ

∫ j+1
0 |ξs|pds1{sups≤j+1 |ξs|>M(j+1)q}

]
≤ emβMp(j+1)pq+1

P(∃t ∈ [j, j + 1] : ξt ∈ Nt(FN , θ))

+
∑
k≥1

E
[
emβ

∫ j+1
0 |ξs|pds1{sups≤j+1 |ξt|∈[kM(j+1)q ,(k+1)M(j+1)q ]}

]
≤ emβMp(j+1)pq+1

P(∃t ∈ [j, j + 1] : ξt ∈ Nt(FN , θ))

+
∑
k≥1

emβ(j+1)2q−1(k+1)pMp
P( sup
s≤j+1

|ξs| ∈ [kM(j + 1)q, (k + 1)M(j + 1)q])

≤ emβMp(j+1)pq+1
P(∃t ∈ [j, j + 1] : ξt ∈ Nt(FN , θ))

+ 4
∑
k≥1

1√
2π(j + 1)

emβ(j+1)2q−1(k+1)pMp−k2M2(j+1)2q−1/2.

Both of these terms (the first by our calculations earlier in the proof) can be made

exponentially small in j by choosing M , and then N , sufficiently large. Thus by Borel-

Cantelli we have that for large enough N

P(lim sup
j→∞

sup
t∈[j,j+1]

|Nt(FN , θ)| ≥ 1) = 0

and since |NT (FN , θ)| is integer-valued,

lim sup
T→∞

1

T 2q−1
log |NT (FN , θ)| = −∞

almost surely.

We now attempt to establish an upper bound along lattice times for closed balls about

functions outside FN . First we need the following simple lemma.

Lemma 4.18:

For any x, y ∈ R,

|x+ y|p ≤ |x|p + |y|p + 2|x|p/2|y|p/2.
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Proof. If y = 0 or p = 0 then the result is clear; otherwise dividing through by |y|p we

see that it suffices to show that for any x ∈ R,

|x+ 1|p ≤ |x|p + 1 + 2|x|p/2.

If x < −1 then |x + 1|p ≤ |x|p, and if −1 ≤ x ≤ 0 then |x + 1|p ≤ 1, so we need only

consider the case x > 0. In this case, by dividing through by xp we see that the desired

inequality holds for x if and only if it holds for 1/x, so it suffices to check the case x ≤ 1.

Consider the function Γ : [0,∞)→ R given by

Γ(x) := (1 + x)p − 1− xp − 2xp/2;

then Γ is continuously differentiable, Γ(0) = 0 and we claim that

Γ′(x) = p(1 + x)p−1 − pxp−1 − pxp/2−1 ≤ 0 ∀x ∈ (0, 1];

if this claim holds then we are done. If p ∈ (0, 1] then the claim clearly holds since

1 + x > x for all x and p − 1 ≤ 0. So suppose that p ∈ (1, 2). But for p ∈ (1, 2) and

x > 0, we have (1 + x)p−1 ≤ 1 + xp−1 (we mentioned this result in Theorem 1.7 — it can

be checked by differentiating) so for x ∈ (0, 1]

(1 + x)p−1 ≤ 1 + xp−1 ≤ xp/2−1 + xp−1

since p/2− 1 < 0. This establishes the claim and completes the proof of the lemma.

In a slight abuse of notation, for D ⊆ C[0, 1] and θ ∈ [0, 1] we define

J(D, θ) := sup
f∈D

{
mβ

∫ θ

0
|f(s)|pds− 1

2

∫ θ

0
f ′(s)2ds

}
.

Proposition 4.19:

For any closed ball D = B(f, ε) ⊆ C[0, 1] about any f 6∈ FN , and any θ ∈ [0, 1] and lattice

times Tj, we have

lim sup
j→∞

1

T 2q−1
j

log |NTj (D, θ)| ≤ J(D, θ) +RN (ε)

almost surely, where

RN (ε) :=

 0 if p = 0

2mβ
(
N2+1√
N

+ ε
)p/2

(2ε)p/2 + (2ε)p if p > 0;
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in particular R is a deterministic function of ε such that for each N , RN (ε) → 0 as

ε→ 0.

Proof. From the upper bound for Schilder’s theorem (Theorem 5.1 of [36]) we have

lim sup
T→∞

1

T 2q−1
logP(ξT ∈ NT (D, θ)) ≤ − inf

f∈D

1

2

∫ θ

0
f ′(s)2ds.

Thus, by the many-to-one lemma,

lim sup
T→∞

1

T 2q−1
logE

[
|NT (D, θ)|

]
≤ lim sup

T→∞

1

T 2q−1
logE

[
emβ

∫ θT
0 |ξs|pds1{ξT∈NT (D,θ)}

]
≤ sup

g∈D
mβ

∫ θ

0
|g(s)|pds− inf

g∈D

1

2

∫ θ

0
g′(s)2ds.

Suppose now that p > 0. Note that since f 6∈ FN , sups∈[0,θ] |f(s)| ≤ (N2 + 1)/
√
N (split

[0, θ] into N2 + 1 intervals of equal width; then f changes by at most 1/
√
N on each

interval). Now fix δ > 0 and choose h ∈ D such that∫ θ

0
h′(s)2ds ≤ inf

g∈D

∫ θ

0
g′(s)2ds+ δ.

For any g ∈ D,∫ θ

0
|g(s)|pds ≤

∫ θ

0
(|h(s)|+ 2ε)pds

≤
∫ θ

0
|h(s)|pds+ 2

∫ θ

0
|h(s)|p/2(2ε)p/2ds+

∫ θ

0
(2ε)pds

≤
∫ θ

0
|h(s)|pds+ 2

(
N2 + 1√

N
+ ε

)p/2
(2ε)p/2 + (2ε)p/2.

Thus

mβ

∫ θ

0
|h(s)|pds− 1

2

∫ θ

0
h′(s)2ds ≥ sup

g∈D
mβ

∫ θ

0
|g(s)|pds− inf

g∈D

1

2

∫ θ

0
g′(s)2ds− δ −RN (ε)

where

RN (ε) := 2mβ

(
N2 + 1√

N
+ ε

)p/2
(2ε)p/2 + (2ε)p.

Since δ > 0 was arbitrary, this entails that

lim sup
T→∞

1

T 2q−1
logE

[
|NT (D, θ)|

]
≤ J(D, θ) +RN (ε)
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which holds (trivially) also for p = 0.

Applying Markov’s inequality, for any δ > 0 and p ∈ [0, 2) we get

lim sup
T→∞

1

T 2q−1
logP

(
|NT (D, θ)| ≥ eJ(D,θ)T 2q−1+RN (ε)T 2q−1+δT 2q−1)

≤ lim sup
T→∞

1

T 2q−1
log

E
[
|NT (D, θ)|

]
eJ(D,θ)T 2q−1+RN (ε)T 2q−1+δT 2q−1 ≤ −δ

so that for lattice times T1, T2, . . . we have

∞∑
j=1

P
(
|NTj (D, θ)| ≥ e

J(D,θ)T 2q−1
j +RN (ε)T 2q−1

j +δT 2q−1
j

)
<∞

and hence by the Borel-Cantelli lemma

P

(
lim sup
j→∞

1

T 2q−1
j

log |NTj (D, θ)| ≥ J(D, θ) +RN (ε) + δ

)
= 0.

Taking a union over δ > 0 now gives the result.

We now check that an upper bound holds in continuous time. For δ > 0 and D ⊆
C[0, 1], define

Dδ := {f ∈ C[0, 1] : ∃g ∈ D with ‖f − g‖ ≤ δ}.

Lemma 4.20:

If D = B(f, ε) ⊆ C[0, 1] for some f 6∈ FN , then

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| ≤ J(Dε, θ) +RN (2ε)

almost surely.

Proof. First note that for lattice times T1, T2, . . .,

P
(

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| > J(Dε, θ) +RN (2ε) + δ

)
≤ P

(
lim sup
j→∞

1

T 2q−1
j

log |NTj (D
ε, θ)| > J(Dε, θ) +RN (2ε)

)

+ P

(
lim sup
j→∞

1

T 2q−1
j

log sup
t∈[Tj ,Tj+1]

|Nt(D, θ)|
|NTj (D

ε, θ)|
> δ

)
.
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Clearly Dε = B(f, 2ε), so immediately by Proposition 4.19,

P

(
lim sup
j→∞

1

T 2q−1
j

log |NTj (D
ε, θ)| > J(Dε, θ) +RN (2ε)

)
= 0

and we may concentrate on the last term. We claim that for j large enough, provided

that T1 ≤ 1, for any t ∈ [Tj , Tj+1] we have

u ∈ Nt(D, θ)⇒ ∃v ≤ u with v ∈ NTj (D
ε, θ).

Indeed, if u ∈ Nt(D, θ) then for any s ≤ θTj ,

|Xu(s)− T qj f(s/Tj)| ≤ |Xu(s)− tqf (s/t) |+ |T qj f (s/Tj)− tqf (s/Tj) |

+ tq|f (s/Tj)− f (s/t) |

≤ tqε+ ‖f‖θ(T qj+1 − T
q
j ) + tq sup

x,y∈[0,θ]
|x−y|≤1/Tj

|f(x)− f(y)|

which is smaller than 2εT qj for large j since f is absolutely continuous.

We deduce that for large j every particle in Nt(D, θ) for any t ∈ [Tj , Tj+1] has an

ancestor in NTj (D
ε, θ). We now use this fact to ensure that Nt(D, θ) cannot increase

dramatically between times Tj and Tj+1.

We temporarily need some more notation. For t > s ≥ 0 and u ∈ N(s), let N(u, s, t)

be the set of descendants of u born between times s and t. Also let P̃x be the translation

of P̃ under which we start with one particle at x rather than at the origin. Then, using
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the Markov property and the many-to-one lemma,

E

[
sup

t∈[Tj ,Tj+1]
|Nt(D, θ)|

∣∣∣∣∣FθTj
]

≤ E

 ∑
u∈NTj (Dε,θ)

|N(u, θTj , θTj+1)|

∣∣∣∣∣∣∣FθTj


≤
∑

u∈NTj (Dε,θ)

EXu(θTj) [|N(θT1)|]

=
∑

u∈NTj (Dε,θ)

EXu(θTj)

[
emβ

∫ θT1
0 |ξs|pds

]

≤
∑

u∈NTj (Dε,θ)

∑
k≥0

emβθT1(|Xu(θTj)|+k+1)pPXu(θTj)

(
sup

s∈[0,θT1]
|ξs − ξ0| ∈ [k, k + 1]

)

≤ |NTj (D
ε, θ)|

∑
k≥0

emβθT1(T qj (‖f‖θ+2ε)+k+1)p 4e−k
2/2θT1

√
2πθT1

By choosing T1 small, we may ensure that this sum converges, giving

E

[
sup

t∈[Tj ,Tj+1]
|Nt(D, θ)|

∣∣∣∣∣FθTj
]
≤ |NTj (D

ε, θ)|eO(T pqj ).

But pq = 2q − 2 and by Markov’s inequality

P

(
sup

t∈[Tj ,Tj+1]

|Nt(D, θ)|
|NTj (D

ε, θ)|
> exp

(
δT 2q−1

j

))

≤ E

E
[

supt∈[Tj ,Tj+1] |Nt(D, θ)|
∣∣∣FθTj]

|NTj (D
ε, θ)|

 exp(−δT 2q−1
j )

≤ exp(O(T 2q−2
j )− δT 2q−1

j ).

Thus we may apply Borel-Cantelli to see that

P

(
lim sup
j→∞

1

T 2q−1
j

log sup
t∈[Tj ,Tj+1]

|Nt(D, θ)|
|NTj (D

ε, θ)|
> δ

)
= 0.

Again taking a union over δ > 0 gives the result.

We now check that we can cover our sets in a suitable way.
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Lemma 4.21:

For θ ∈ [0, 1], let

C0[0, θ] := {f ∈ C[0, θ] : f(0) = 0}.

For each N ∈ N, the set C0[0, θ] \ FN is totally bounded under ‖ · ‖θ (that is, it may be

covered by open balls of arbitrarily small radius).

Proof. Given ε > 0, choose n such that n ≥ N ∨ 1/ε2. For any f ∈ C0[0, θ] \ FN , if

|u− s| < 1/n2 then |f(u)− f(s)| ≤ 1/
√
n ≤ ε. Thus C0[0, θ] \ FN is equicontinuous (and,

since each function must start from 0, uniformly bounded) and we may apply the Arzelà-

Ascoli theorem to say that C0[0, θ] \ FN is relatively compact, which is equivalent to

totally bounded since (C[0, θ], ‖ · ‖θ) is a complete metric space.

We are now in a position to give an upper bound for any closed set D in continuous

time. This upper bound is not quite what we asked for in Theorem 4.1, but the final step

— replacing J with K — will be carried out in Corollary 4.23.

Proposition 4.22:

If D ⊂ C[0, 1] is closed, then for any θ ∈ [0, 1]

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| ≤ J(D, θ)

almost surely.

Proof. Clearly (since our first particle starts from 0) NT (D\C0[0, 1], θ) = ∅ for all T , so we

may assume without loss of generality that D ⊆ C0[0, 1]. Now, for each θ, f 7→
∫ θ

0 f
′(s)2ds

is a lower semicontinuous function on C0[0, θ]: we refer to Section 5.2 of [6] but it is

possible to give a direct proof. Thus f 7→ mβ
∫ θ

0 |f(s)|pds− 1
2

∫ θ
0 f
′(s)2ds is clearly upper

semicontinuous. Now, by Jensen’s inequality, for any f ∈ C0[0, θ] and any s, t ∈ [0, θ],

s < t,

1

t− s

∫ t

s
f ′(u)2du ≥

(
1

t− s

∫ t

s
f ′(u)du

)2

=

(
f(t)− f(s)

t− s

)2

so that

(f(t)− f(s))2 ≤ (t− s)
∫ t

s
f ′(u)2du. (4.2)

There exists t ∈ [0, θ] such that |f(t)|p ≥ 1
θ

∫ θ
0 |f(s)|pds, so by (4.2) (taking s = 0)

∫ θ

0
f ′(u)2du ≥

∫ t

0
f ′(u)2du ≥

(∫ θ
0 |f(s)|pds

)2/p

θ2/pt
≥
(∫ θ

0
|f(s)|pds

)2/p
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and hence

{f ∈ C0[0, θ] : mβ

∫ θ

0
|f(s)|pds− 1

2

∫ θ

0
f ′(s)2ds ≥ K}

⊆ {f ∈ C0[0, θ] : mβ

(∫ θ

0
f ′(s)2ds

)p/2
− 1

2

∫ θ

0
f ′(s)2ds ≥ K}

⊆ {f ∈ C0[0, θ] :

∫ θ

0
f ′(s)2ds ≤ K ′}

for some K ′ since p/2 < 1. But by (4.2),

{f ∈ C0[0, θ] :

∫ θ

0
f ′(s)2ds ≤ K ′}

⊆ {f ∈ C0[0, θ] : ∀s, t ∈ [0, θ], |f(s)− f(t)| ≤
√

(t− s)K ′}

and the Arzelà-Ascoli theorem tells us that this latter set is totally bounded. Thus the

set

{f ∈ C0[0, θ] : mβ

∫ θ

0
|f(s)|pds− 1

2

∫ θ

0
f ′(s)2ds ≥ J(D, θ) + δ}

is totally bounded, but by upper-semicontinuity it is closed, and hence compact. Since it

is disjoint from {f ∈ C0[0, θ] : ∃g ∈ D with f(s) = g(s) ∀s ∈ [0, θ]}, which is closed, there

is a positive distance between the two sets. Now fix δ > 0 and choose N (by Lemma 4.17)

such that

lim sup
T→∞

1

T 2q−1
log |NT (FN , θ)| = −∞;

by the above and the fact that RN (2ε) → 0 as ε → 0, we may choose ε > 0 such that

J(Dε, θ)+RN (2ε) < J(D, θ)+δ. Then, by Lemma 4.21, for any N and some α (depending

on N) and fk ∈ C[0, 1] \ FN , k = 1, 2, . . . , α,

P
(

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| > J(D, θ) + δ

)
≤ P

(
lim sup
T→∞

1

T 2q−1
log |NT (FN , θ)| > J(D, θ) + δ

)
+

α∑
k=1

P
(

lim sup
T→∞

1

T 2q−1
log |NT (fk, ε, θ)| > J(Dε, θ) +RN (2ε)

)
.

By our choice of N , the first term on the right-hand side is zero, and by Lemma 4.20 all

of the terms in the sum are also zero. As usual we take a union over δ > 0 to complete

the proof.

70



4.4. The upper bound

Corollary 4.23:

For any closed set D ⊆ C[0, 1] and θ ∈ [0, 1], we have

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| ≤ sup

f∈D
K(f, θ)

almost surely.

Proof. Since |NT (D, θ)| is integer valued,

1

T 2q−1
log |NT (D, θ)| < 0 ⇒ 1

T 2q−1
log |NT (D, θ)| = −∞.

Thus, by Proposition 4.19, if J(D, θ) < 0 then

P
(

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| > −∞

)
= 0.

Further, clearly for φ ≤ θ and any T ≥ 0, if NT (D,φ) = ∅ then necessarily NT (D, θ) = ∅.
Thus if there exists φ ≤ θ with J(D,φ) < 0, then

P
(

lim sup
T→∞

1

T 2q−1
log |NT (D, θ)| > −∞

)
= 0

which completes the proof.

Combining Corollary 4.16 with Corollary 4.23 completes the proof of Theorem 4.1.
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Chapter 5

BBM: Behaviour along unscaled

paths

For a set A ⊂ C[0,∞), we give new results on the growth of the number of particles in a

binary branching Brownian motion whose paths fall within A. We show that it is possible

to work without rescaling the paths. We give large deviations probabilities as well as a

more sophisticated proof of a result on growth in the number of particles along certain

sets of paths. Our results reveal that the number of particles can oscillate dramatically.

As a byproduct of our methods, we also obtain new results on the number of particles

near the critical frontier of the BBM. The methods used are entirely probabilistic. This

chapter makes a significant improvement on the results of Harris and Roberts [16].

5.1 Introduction

The classical scaled path properties of branching Brownian motion (BBM) have now been

well-studied: for example, see Lee [30] and Hardy and Harris [10] for large deviation results

on “difficult” paths which have a small probability of any particle following them, and

Git [8] and Harris and Roberts [17], as well as Chapter 4 of this thesis, for the almost sure

growth rate of the number of particles near “easy” paths along which we see exponential

growth in the number of particles. To give these results, the paths of a BBM are rescaled

onto the interval [0, 1], echoing the approach of Schilder’s theorem for a single Brownian

motion.

Here we consider a problem similar in theme, but from a more naive viewpoint. We are

given a fixed set of paths A ⊂ C[0,∞) and we want to know how many particles in a BBM

have paths within this set A. Similar problems in the case of a single Brownian motion

have been considered by Kesten [25] and Novikov [34]. The simplest case is to consider
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5.1. Introduction

the ball B(f, L) of fixed width L > 0 about a single continuous path f : [0,∞) → R —

and this is covered in Harris and Roberts [16]. Clearly there is a positive probability that

no particle will stay within this fixed “tube” (indeed, the very first particle could wander

away from f before it has the chance to give birth to another): in this event we say that

the process becomes extinct.

The intuition is that the growth of the population due to branching is in constant

competition with the “deaths” due to particles failing to follow the function f . Thus

a natural condition arises: if the gradient of f is too large, then the process eventually

dies out almost surely and we may ask for the large deviation probabilities of survival

up to large times; otherwise, if the gradient of f remains sufficiently small, then we may

condition on non-extinction and give an almost sure result on the number of particles

along the path.

The payoff for our less classical approach is that we immediately see a dramatic

oscillation in the number of particles along certain paths. This unusual behaviour (not

seen in the existing literature) has a simple explanation which we demonstrate via some

illuminating examples in Section 5.3.

We take advantage of spine techniques to interpret the change of measure given by a

carefully chosen martingale. The spine tools give us an intuitive probabilistic handle on

the problem, without which we would certainly need substantial extra technical work in

several areas. Our particular change of measure involves forcing one particle (the spine)

to stay within a tube of varying radius L(t), t ≥ 0 about a function f . This change of

measure is the result of a new martingale which we develop in Section 4.2. We then use

the spine decomposition first introduced by Lyons et al. [32], which allows us to bound

the growth of the system by looking at the births along the spine.

Even with the spine theory the problem retains significant difficulty inherent in its

time-inhomogeneity. This fact is underlined by the observation that even in the case

A = B(f, L) we are essentially considering a one-dimensional branching diffusion with

time-dependent drift, and asking how many particles remain within a bounded domain

about the origin. It turns out that the main difficulty is in showing that extinction of the

process coincides (to within a null set) with the event that the limit of our martingale is

zero. Standard tools – analytic or probabilistic – cannot be applied; instead we proceed

by our own methods in Section 5.6, using in particular the identity from Lemma 3.4.

For simplicity, we consider only standard one-dimensional binary branching Brownian

motion, but we note that our work could be extended to a wide range of other branching

diffusions. In particular the spine methods are well-suited to the situation where each

particle gives birth to a random number of new particles, and methods similar to those

used in the original papers of Lyons et al. [27, 31, 32] — and seen in Chapter 4 of this
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thesis — could be used to extend our result.

Finally, using the same methods as for our main theorem, we are able to obtain

new results on the number of particles near the extremes of the system that should be

compared with the work of Bramson [4] on the position of the right-most particle, and of

Kesten [25] and other authors on BBM with absorption.

5.2 Main results

5.2.1 Initial definitions

We consider a branching Brownian motion starting with one particle at the origin,

whereby each particle moves independently and undergoes independent binary branching

at exponential rate r > 0 — that is, the birth distribution A satisfies P(A = 1) = 1 so

each particle gives birth to two children when it dies. We let the set of particles alive at

time t be N(t), and for each particle u ∈ N(t) denote its position at time t by Xu(t). We

extend this notion of a particle’s position to include the positions of its ancestors; that

is, if u ∈ N(t) has ancestor v ∈ N(s) for some s < t, then we set Xu(s) := Xv(s). This

setup was formalised in Chapter 2.

Fix a continuous function f : [0,∞) → R, and another L : [0,∞) → (0,∞). If f and

L are twice continuously differentiable then we define

E(t) := |f ′(t)|L(t) +

∫ t

0
|f ′′(s)|L(s)ds+

1

2
|L′(t)|L(t) +

1

2

∫ t

0
|L′′(s)|L(s)ds

and

S := lim inf
t→∞

1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

2L(s)

)
ds.

We say that the pair (f, L) satisfies the usual conditions if:

(I) f(0) = 0;

(II) f and L are twice continuously differentiable;

(III) limt→∞E(t)/t = 0;

(IV) S ∈ (−∞,∞).

We assume unless otherwise stated that these conditions hold, and consider initially the

class of sets of the form

B(f, L) := {g ∈ C[0,∞) : |g(t)− f(t)| < L(t) ∀t ∈ [0,∞)}
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such that f and L satisfy the usual conditions. After we obtain our results we will be

able to extend them in a natural way to cover more general subsets of C[0,∞) — see

Section 5.7 — but for now these conditions will allow us to apply integration by parts

theorems without any complications. Although condition (III) may appear unnatural,

there are clear reasons behind it, some of which are demonstrated via example in Section

5.7. There are also similar conditions in the work on a single Brownian motion by Kesten

[25] and Novikov [34].

Define

N̂(t) := {u ∈ N(t) : |Xu(s)− f(s)| < L(s) ∀s ≤ t} ,

the set of particles that have stayed within distance L of the function f for all times s ≤ t.
We wish to study the number of particles in N̂(t) at large times. Let

Υ := inf{t ≥ 0 : N̂(t) = ∅}.

We call Υ the extinction time for the process, and say that the process has become extinct

by time t if Υ ≤ t. When we talk about survival or non-extinction, we mean the event

Υ =∞.

5.2.2 The main result

We now state our main result. Most of this article will be concerned with proving this

theorem.

Theorem 5.1:

If S < 0, then Υ <∞ almost surely and

logP(N̂(t) 6= ∅)

infs≤t
∫ s

0

(
r − 1

2f
′(u)2 − π2

8L(u)2
+ L′(u)

2L(u)

)
du
−→ 1.

On the other hand, if S > 0, then P(Υ =∞) > 0 and almost surely on survival we have

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds
−→ 1.

As mentioned earlier, the theorem can be extended to cover more general sets, and we

give results in this direction in Section 5.7. The behaviour at criticality (S=0) remains

largely open: it depends on the finer behaviour of f and L, although we are able to give

some results in particular cases in Section 5.8. We note the following corollary, which is

easily deduced from Theorem 5.1.
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Corollary 5.2:

If S > 0, then almost surely on survival we have

lim sup
t→∞

1

t
log |N̂(t)| = lim sup

t→∞

1

t

∫ t

0

(
r − π2

8L(s)2
− 1

2
f ′(s)2 +

L′(s)

2L(s)

)
ds

and

lim inf
t→∞

1

t
log |N̂(t)| = lim inf

t→∞

1

t

∫ t

0

(
r − π2

8L(s)2
− 1

2
f ′(s)2 +

L′(s)

2L(s)

)
ds.

This dramatic oscillation in the number of particles along certain paths at large times

is not usually seen in the branching processes literature. Example 5.7 below helps to show

why it occurs in our situation.

5.3 Examples

We now consider some very simple examples to give the reader a flavour of the implications

of Theorem 5.1. More complex examples will be given in Sections 5.7 and 5.8 in order to

explore the limits of our method.

Example 5.3:

Take f(t) = λt with λ ∈ R and L(t) ≡ L > 0. We have a growth rate of r − λ2

2 −
π2

8L2

(provided this is non-zero): if this constant is negative, then

1

t
logP(N̂(t) 6= ∅) −→ r − λ2

2
− π2

8L2

and if it is positive then there is a strictly positive probability of survival, and almost

surely on that event
1

t
log N̂(t) −→ r − λ2

2
− π2

8L2

Thus taking a fixed L introduces an extra “killing” rate of π2

8L2 to the system compared

to the scaled results of Chapter 4 and [8, 10, 17, 30].

Example 5.4:

Again take f(t) = λt with λ ∈ R \ {
√

2r} but now let L be any unbounded monotone

non-decreasing function such that (f, L) satisfies the usual conditions (for example L(t) =

(t + 1)β with β ∈ (0, 1) or L(t) = log(t + 2)). Then we have a growth rate of r − λ2

2 :

thus while constant L severely restricts the growth of the system, as soon as we relax L

slightly we regain the full growth behaviour seen in Chapter 4 and [8, 10, 17, 30].

Example 5.5:

Let f(t) =
√

2rt and L(t) ≡ L > 0. Then we have extinction almost surely — and the
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same applies to any f such that limt→∞ t
−1
∫ t

0 f
′(s)2ds → 2r when we take fixed L. We

are able to give much more interesting results along the same lines in Section 5.8.

Example 5.6:

Let f(t) = λ(t + 1) sin(log(t + 1)) and L(t) ≡ L. If r < λ2√
5

(
1+
√

5
2

)
+ π2

8L2 then we have

extinction almost surely; if r > λ2√
5

(
1+
√

5
2

)
+ π2

8L2 then, on survival, the number of particles

alive at time t oscillates, with

lim inf
t→∞

1

t
log |N̂(t)| = r − π2

8L2
− λ2

√
5

(√
5 + 1

2

)

and

lim sup
t→∞

1

t
log |N̂(t)| = r − π2

8L2
− λ2

√
5

(√
5− 1

2

)
.

(Note the appearance of the golden ratio.)

The reason for this oscillation on the exponential scale becomes clearer when we

consider the following simpler, but perhaps less natural, example.

Example 5.7:

Define a continuous function f : [0,∞)→ R by setting f(t) = 0 for t ∈ [0, 1] and

f ′(t) =

{
0 if 22k ≤ t < 22k+1 for some k ∈ {0, 1, 2, . . .}
1 if 22k+1 ≤ t < 22k+2 for some k ∈ {0, 1, 2, . . .}

.

Then, provided that r > 1
3 + π2

8L2 , on non-extinction we have

lim inf
t→∞

1

t
log |N̂(t)| = r − π2

8L2
− 1

3

and

lim sup
t→∞

1

t
log |N̂(t)| = r − π2

8L2
− 1

6
.

The idea here is that the number of particles grows quickly when f ′(t) = 0, but much

more slowly when f ′(t) = 1 as the steep gradient means that particles have to struggle to

follow the path for a long time. As the size of the intervals [2n, 2n+1] grows exponentially,

the behaviour of the number of particles at time t is dominated by the behaviour on

the most recent such interval. [We note that this choice of f is not twice differentiable;

however, it can be uniformly approximated by twice differentiable functions, and it is

easily checked that our results still hold - see Section 5.7.]
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5.4 The spine setup

We use the BBM formulation seen in Chapter 2, in the special case A ≡ 1. In the

interests of keeping this chapter reasonably self-contained, we summarise the setup here.

We consider a one-dimensional binary branching Brownian motion, branching at rate r,

with associated probability measure P under which

• we begin with a root particle, ∅, at 0;

• if a particle u is in the tree then all its ancestors are also in the tree (if v is an

ancestor of u then we write v < u);

• each particle u has a lifetime σu, which is exponentially distributed with parameter

r, and a fission time Su =
∑

v≤u σv;

• each particle u has a position Xu(t) ∈ R at each time t ∈ [Su − σu, Su);

• at the fission time Su, u has disappeared and been replaced by two children u0 and

u1, which inherit the position of their parent;

• given its birth time and position, each particle u, while alive, moves according to

a standard Brownian motion started from Xu(Su − σu) independently of all other

particles.

For convenience, we extend the position of a particle u to all times t ∈ [0, Su), to include

the paths of all its ancestors:

Xu(t) := Xv(t) if v ≤ u and Sv − σv ≤ t < Sv.

We recall that we defined N(t) to be the set of particles alive at time t,

N(t) := {u : Su − σu ≤ t < Su},

and also that

N̂(t) := {u ∈ N(t) : |Xu(s)− f(s)| < L(s) ∀s ≤ t} .

We choose from our BBM one distinguished line of descent or spine – that is, a subset

ξ of the tree such that ξ ∩N(t) contains exactly one particle for each t and if u ∈ ξ and

v < u then v ∈ ξ. We make this choice as follows:

• the initial particle ∅ is in the spine;

• at the fission time of node u in the spine, the new spine particle is chosen uniformly

at random from the two children u0 and u1 of u.
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We denote the position of the spine particle at time t by ξt; however we may also occa-

sionally use ξt to refer to the spine particle itself (that is, the node of the tree that is in

the spine at time t) — it should be clear from the context which meaning is intended.

We call the resulting probability measure (on the space of marked trees with spines) P̃.

We also consider the translated probability measures Px and P̃x for x ∈ R, where under

Px and P̃x we start with a single particle at x instead of 0.

5.4.1 Filtrations

We use three different filtrations, Ft, F̃t and Gt, to encapsulate different amounts of

information. We give descriptions of these filtrations here, but the reader is referred to

Chapter 2 for the full definitions.

• Ft contains all the information about the marked tree up to time t. However, it

does not know which particle is the spine at any point.

• F̃t contains all the information about both the marked tree and the spine up to

time t.

• Gt contains just the spatial information about the spine up to time t; it does not

know anything about the rest of the tree.

We note that Ft ⊆ F̃t and Gt ⊆ F̃t, and also that P̃x is an extension of Px in that

Px = P̃x|F∞ .

5.4.2 Martingales and a change of measure

Under P̃, the path of the spine (ξt, t ≥ 0) is a standard Brownian motion. Set

G(t) := exp

(∫ t

0
f ′(s)dξs −

1

2

∫ t

0
f ′(s)2ds+

∫ t

0

π2

8L(s)2
ds

)
· exp

(
L′(t)

2L(t)
(ξt − f(t))2 −

∫ t

0

(
L′′(s)

2L(s)
(ξs − f(s))2 +

L′(s)

2L(s)

)
ds

)
.

We claim that the process

V (t) := G(t) cos

(
π

2L(t)
(ξt − f(t))

)
, t ≥ 0

is a Gt-local martingale.
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Lemma 5.8:

Let

F (t) := exp

(∫ t

0

π2

8L(s)2
ds+

L′(t)

2L(t)
ξ2
t −

∫ t

0

(
L′′(s)

2L(s)
ξ2
s +

L′(s)

2L(s)

)
ds

)
.

The process

U(t) := F (t) cos

(
πξt

2L(t)

)
is a Gt-local martingale.

Proof. By Itô’s formula,

dU(t) =
π2

8L(t)2
F (t) cos

(
πξt

2L(t)

)
dt

+

(
L′′(t)

2L(t)
− L′(t)2

2L(t)2

)
ξ2
t F (t) cos

(
πξt

2L(t)

)
dt

−
(
L′′(t)

2L(t)
ξ2
t +

L′(t)

2L(t)

)
F (t) cos

(
πξt

2L(t)

)
dt

+
πL′(t)

2L(t)2
ξtF (t) sin

(
πξt

2L(t)

)
dt

+
L′(t)

L(t)
ξtF (t) cos

(
πξt

2L(t)

)
dξt

+
π

2L(t)
F (t) sin

(
πξt

2L(t)

)
dξt

+

(
L′(t)

2L(t)
+
L′(t)2

2L(t)2
ξ2
t

)
F (t) cos

(
πξt

2L(t)

)
dt

− π2

8L(t)2
F (t) cos

(
πξt

2L(t)

)
dt

− πL′(t)

2L(t)2
ξtF (t) sin

(
πξt

2L(t)

)
dt.

Lemma 5.9:

The process V (t), t ≥ 0 is a Gt-local martingale.

Proof. Again applying Itô’s formula does the trick - or one may simply apply Girsanov’s

theorem to the result of Lemma 5.8.

By stopping the process V (t) at the first exit time of the spine particle from the tube

{(x, t) : |f(t)− x| < L(t)}, we obtain also that

ζ(t) := V (t)1{|f(s)−ξs|<L(s) ∀s≤t}

is a Gt-local martingale, and in fact since its size is constrained it is easily seen to be
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a Gt-martingale by applying Lemma 3.6. We call this martingale ζ the single-particle

martingale.

Definition 5.10:

We define an F̃t-adapted martingale by

ζ̃(t) = 2n(ξ,t) × e−rt × ζ(t),

where n(ξ, t) := |{v : v < ξt}| is the generation of the spine at time t. The proof that this

process is an F̃t-martingale can be found in Chapter 2.

We note that if f is an F̃t-measurable function then we can write:

f(t) =
∑
u∈Nt

fu(t)1ξt=u (5.1)

where each fu is Ft-measurable – intuitively, if f is in fact Gt-measurable, one replaces

every appearance of ξt with Xu(t): so for example

Gu(t) := exp

(∫ t

0
f ′(s)dXu(s)− 1

2

∫ t

0
f ′(s)2ds+

∫ t

0

π2

8L(s)2
ds

)
· exp

(
L′(t)

2L(t)
(Xu(t)− f(t))2 −

∫ t

0

(
L′′(s)

2L(s)
(Xu(s)− f(s))2 +

L′(s)

2L(s)

)
ds

)
.

It is also shown in Chapter 2 that if we define

Z(t) :=
∑

u∈N(t)

e−rtζu(t),

where ζu is the Ft-adapted process defined via the representation of ζ as in (5.1), then

Z(t) = P̃[ζ̃(t)|Ft]

and hence that Z is an Ft-martingale. This martingale is the main object of interest.

Definition 5.11:

We define a new measure, Q̃x, via

dQ̃x

dP̃x

∣∣∣∣∣
F̃t

=
ζ̃(t)

ζ̃(0)
.
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Also, for convenience, define Qx to be the projection of the measure Q̃ onto F∞; then

dQx

dPx

∣∣∣∣
Ft

=
Z(t)

Z(0)
.

Lemma 5.12:

Under Q̃x,

• when at position y at time t the spine ξ moves as a Brownian motion with drift

f ′(t) + (y − f(t))
L′(t)

L(t)
− π

2L(t)
tan

(
π

2L(t)
(y − f(t))

)
;

• the fission times along the spine occur at an accelerated rate 2r;

• at the fission time of node v on the spine, the single spine particle is replaced by

two children, and the new spine particle is chosen uniformly from the two children;

• the remaining child gives rise to an independent subtree, which is not part of the

spine and which (along with its descendants) draws out a marked tree determined

by an independent copy of the original measure P shifted to its position and time of

birth.

This, again, was covered in Chapter 2. We also use that, under Q̃x, the spine remains

within distance L(t) of f(t) for all times t ≥ 0. Intuitively, the tangent term gives an

infinite drift away from the edges of the tube; but to see the proof explicitly, note that

Q̃x(ξt 6∈ N̂(t)) = P̃x

[
1{ξt 6∈N̂(t)}

ζ̃(t)

ζ̃(0)

]
= 0

by definition of ζ̃(t). All other particles, once born, move like independent standard

Brownian motions but – as under Px – we imagine them being “killed” instantly upon

leaving the tube of radius L about f . In reality they are still present in the system, but

make no contribution to Z once they have left the tube.

Remark:

Note that N̂ , and hence Z, Q̃ and various other of our constructions, depend upon the

choice of function f and radius L. Usually these will be implicit, but occasionally we

shall write N̂f,L, Zf,L and Q̃f,L (and so on) to emphasise the choice of f and L in use at

the time.

We will, as usual, find the spine decomposition theorem to be a vital tool in our

investigation. However for this chapter we will need only the following simplified form.
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5.5. Almost sure growth along paths

Theorem 5.13 (Spine decomposition):

We have the following decomposition of Z:

Q̃x[Z(t)|G∞] =

∫ t

0
2re−rsζ(s)ds+ e−rtζ(t).

Proof. We know from Theorem 2.7 that

Q̃[Z(t)|G̃∞] =
∑
u<ξt

e−rSuζ(Su) + e−rtζ(t).

Conditioning now on G∞, under Q̃ the births along the spine form a Poisson process

of rate 2r and hence the sum collapses to an integral (see for example [24]) to give the

result.

5.5 Almost sure growth along paths

5.5.1 Controlling the measure change

Before applying the tools that we have developed, we need the following short lemma to

keep the Girsanov part of our change of measure under control.

Lemma 5.14:

For any u ∈ N̂(t), almost surely under both P̃x and Q̃x we have∣∣∣∣∫ t

0
f ′(s)dXu(s)−

∫ t

0
f ′(s)2ds

∣∣∣∣ ≤ |f ′(t)|L(t) + |f ′(0)|x+

∫ t

0
|f ′′(s)|L(s)ds

and hence under P̃

exp

(
1

2

∫ t

0
f ′(s)2ds+

∫ t

0

π2

8L(s)2
ds−

∫ t

0

L′(s)

2L(s)
ds− E(t)

)
≤ Gu(t) ≤ exp

(
1

2

∫ t

0
f ′(s)2ds+

∫ t

0

π2

8L(s)2
ds−

∫ t

0

L′(s)

2L(s)
ds+ E(t)

)
. (5.2)

Proof. From the integration by parts formula for Itô calculus, we know that

f ′(t)Xu(t) = f ′(0)Xu(0) +

∫ t

0
f ′′(s)Xu(s)ds+

∫ t

0
f ′(s)dXu(s).

From ordinary integration by parts,∫ t

0
f ′(s)2ds = f ′(t)f(t)− f ′(0)f(0)−

∫ t

0
f(s)f ′′(s)ds.
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We also note that if u ∈ N̂(t) then |Xu(s)− f(s)| < L(s) for all s ≤ t. Thus∣∣∣∣ ∫ t

0
f ′(s)dXu(s)−

∫ t

0
f ′(s)2ds

∣∣∣∣
=

∣∣∣∣f ′(t)(Xu(t)− f(t))− f ′(0)(Xu(0)− f(0))−
∫ t

0
f ′′(s)(Xu(s)− f(s))ds

∣∣∣∣
≤ |f ′(t)|L(t) + |f ′(0)|x+

∫ t

0
|f ′′(s)|L(s)ds.

Plugging this estimate into the definition of Gu(t) gives the result.

We are now ready to prove our first real result.

Proposition 5.15:

Recall that Z(∞) := lim supt→∞ Z(t). If S < 0, then the process almost surely becomes

extinct in finite time (and hence we have Z(∞) = 0). In this case,

logP(N̂(t) 6= ∅)
infs≤t

∫ s
0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du
−→ 1.

Alternatively, if S > 0 then P[Z(∞)] = 1.

Proof. We first recall the spine decomposition and apply inequality (5.2):

Q̃[Z(t)|G∞] =

∫ t

0
2re−rsζ(s)ds+ e−rtζ(t)

≤
∫ t

0
2re
−

∫ s
0 (r− π2

8L(u)2
− 1

2
f ′(u)2+

L′(u)
2L(u)

)du+E(s)
ds

+ e
−

∫ t
0 (r− π2

8L(u)2
− 1

2
f ′(u)2+

L′(u)
2L(u)

)du+E(t)
.

If S > 0, then the integrand above is exponentially small for all large t (as is the second

term); so lim inft→∞ Q̃[Z(t)|G∞] <∞. By Proposition 3.2 we know that 1/Z is a positive

(Q̃,Ft)-supermartingale, and hence Z(t) converges Q̃-almost surely to some (possibly

infinite) limit. Thus, applying Fatou’s lemma, we get

Q̃[Z(∞)|G∞] ≤ lim inf
t→∞

Q̃[Z(t)|G∞] <∞.

We deduce that Z(∞) <∞ Q̃-almost surely, and Lemma 2.8 then gives that P[Z(∞)] = 1.

Alternatively, suppose that S < 0. Then by the above,

Q̃[Z(t)|G∞] ≤ (2rt+ 1)e
− infs≤t

{∫ s
0 (r− π2

8L(u)2
− 1

2
f ′(u)2+

L′(u)
2L(u)

)du−E(s)
}
.
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Now, by the tower property of conditional expectation and Jensen’s inequality,

P(N̂(t) 6= ∅) = P(Z(t) > 0) = Q
[

1

Z(t)

]
≥ Q̃

[
1

Q̃[Z(t)|G∞]

]
.

This clearly implies that, for large t (using that S < 0),

logP(N̂(t) 6= ∅)
infs≤t

∫ s
0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du

≤
infs≤t

{∫ s
0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du− E(s)
}
− log(2rt+ 1)

infs≤t
∫ s

0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du
;

and it is easy to see that the right-hand side converges to one as t → ∞. This gives us

our upper bound.

For the lower bound (still in the case S < 0), suppose for a moment that we may

choose γ > 1 such that

lim inf
t→∞

1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8γL(s)2
+
L′(s)

2L(s)

)
ds < 0.

We note that we may choose γ in this way if
∫ t

0 π
2/8L(s)2ds (eventually) shows at most

linear growth, which we will check later. Then

P(N̂(t) 6= ∅) = inf
s≤t

P(N̂(s) 6= ∅) = inf
s≤t

P
[
Zf,γL(s)

Zf,γL(s)
1{N̂f,L(s) 6=∅}

]
= inf

s≤t
Qf,γL

[
1

Zf,γL(s)
1{N̂f,L(s)6=∅}

]
≤ inf

s≤t
Qf,γL

[
1{N̂f,L(s)6=∅}∑

v∈N̂f,L(s) e
−rsζf,γLv (s)

]
.

If N̂f,L(s) 6= ∅ then there is at least one particle v in N̂f,L(s); we may then apply inequality

(5.2) to ζf,γLv (s) see that

P(N̂(t) 6= ∅) ≤ inf
s≤t

1

e
−

∫ s
0 (r− π2

8γ2L(u)2
− 1

2
f ′(u)2+

L′(u)
2L(u)

)du−γ2E(s)
cos (π/2γ)

.

We repeat our calculations from the upper bound, taking logarithms and dividing by the
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desired denominator, to give

logP(N̂(t) 6= ∅)
infs≤t

∫ s
0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du

≥
infs≤t

{∫ s
0 (r − π2

8γ2L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du− γ2E(s)
}
− log cos (π/2γ)

infs≤t
∫ s

0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du

≥ 1 +

(
1− 1

γ2

)
sups≤t

∫ s
0

π2

8L(u)2
du+ γ2 sups≤tE(s)− log cos (π/2γ)

infs≤t
∫ s

0 (r − π2

8L(u)2
− 1

2f
′(u)2 + L′(u)

2L(u))du
(5.3)

for large t. Thus it remains to check that the right-hand side above has a limsup that is

close to 1 when γ is close to 1. Again it is sufficient that
∫ t

0 π
2/8L(s)2ds can (eventually)

show at most linear growth, and we check that fact now. This is rather fiddly and not

interesting in the context of the rest of the proof. Suppose it is not true; that is, suppose

lim sup
t→∞

1

t

∫ t

0

π2

8L(s)2
ds =∞.

Then since S > −∞ we must have

lim sup
t→∞

1

t

∫ t

0

(
π2

8L(s)2
− L′(s)

2L(s)

)
ds <∞. (5.4)

If we take Tn := inf{t > 0 :
∫ t

0 π
2/8L(s)2ds > nt}, then

d

dt

(
1

t

∫ t

0

π2

8L(s)2
ds

)∣∣∣∣
Tn

> 0,

so differentiating and rearranging we get

L(Tn)2 <
π2Tn

8
∫ Tn

0
π2

8L(s)2
ds

<
π2

8n
.

Now, we note that
∫ t

0
L′(s)
L(s) ds = logL(t)− logL(0), so (5.4) implies that for all large t,

∫ t

0

π2

8L(s)2
ds < Kt+

1

2
logL(t)

for some constant K. We have just shown that L(Tn)2 < π2/8n, so for all large n,∫ Tn

0

π2

8L(s)2
ds < KTn +

1

4
log

π2

8n
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contradicting (for large n) the definition of Tn.

We have shown that

lim sup
t→∞

1

t

∫ t

0

π2

8L(s)2
ds <∞;

which allows us to make the limsup of (5.3) as close to 1 as we like by letting γ ↓ 1.

This completes the lower bound, which in particular implies (by monotonicity) that the

probability of eventual extinction is equal to 1.

5.5.2 Almost sure growth

Having established, in Proposition 5.15, the large deviations behaviour of our model, we

now turn to the question of what happens when extinction does not occur. The two

propositions in this section contain the meat of our results in this direction. Proposition

5.16 gives a lower bound on the number of particles in N̂(t) for large t, and Proposition

5.17 an upper bound. The former holds only on the event that Z has a positive limit; as

mentioned in the introduction, this set coincides (up to a null event) with the event that

some particle manages to follow within L of f , although we will not prove this fact until

Section 5.6. The proofs of our two propositions are very simple, but we stress again that

this is due to the careful choice of martingale.

Proposition 5.16:

Let Ω? be the set on which Z has a strictly positive limit,

Ω? :=
{

lim inf
t→∞

Z(t) > 0
}
.

If S > 0 then P-almost surely on Ω? we have

lim inf
t→∞

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds
≥ 1.

Proof. For any t ≥ 0, by inequality (5.2), almost surely under P

Z(t) =
∑

u∈N̂(t)

e−rtζu(t) ≤ |N̂(t)|e−
∫ t
0 (r− π2

8L(s)2
− 1

2
f ′(s)2+

L′(s)
2L(s)

)ds+E(t)
.
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Hence (for large t, since S > 0)

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds

≥
logZ(t) +

∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds− E(t)∫ t

0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds

.

Now, on Ω? we have lim inft→∞ Z(t) > 0 and thus 1
δt logZ(t) has a non-negative liminf

for any δ > 0; then since S > 0 we see that the right-hand side above has liminf at least

1.

Remark:

Recall that under P, Z is a non-negative martingale, and hence lim inft→∞ Z(t) = Z(∞)

P-almost surely. If S > 0, then by Proposition 5.15 P[Z(∞)] = 1, so in this case Ω? occurs

with strictly positive probability.

Proposition 5.17:

If S > 0, then P-almost surely we have

lim sup
t→∞

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds
≤ 1.

Proof. Fix γ > 1 and let ε = cos(π/2γ). Since Zf,γL is a non-negative martingale under

P, we have Zf,γL(∞) <∞ P-almost surely. This implies that for any δ > 0, almost surely

lim sup
t→∞

1

δt
logZf,γL(t) ≤ 0.

Now, almost surely under P,

Zf,γL(t) =
∑

u∈N̂f,γL(t)

e−rtζf,γLu (t) ≥
∑

u∈N̂f,L(t)

e−rtζf,γLu (t).

By the definition of ε above, for any u ∈ N̂f,L(t) the cosine term in ζf,γLu (t) is at least ε

(since the particle is within L of f(t) at time t). Applying inequality (5.2) we see that

Zf,γL(t) ≥ |N̂f,L| · ε · e−
∫ t
0 (r− π2

8γ2L(s)2
− 1

2
f ′(s)2+

L′(s)
2L(s)

)ds−γ2E(t)
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and hence

log |N̂(t)|∫ t
0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds

≤
logZ(t)− log ε+

∫ t
0

(
r − 1

2f
′(s)2 − π2

8γ2L(s)2
+ L′(s)

2L(s)

)
ds+ γ2E(t)∫ t

0

(
r − 1

2f
′(s)2 − π2

8L(s)2
+ L′(s)

2L(s)

)
ds

.

As in Proposition 5.15, we can bound the growth of the
∫ t

0
π2

8γ2L(s)2
ds term in the numer-

ator so that letting γ ↓ 1 we get the desired result.

Corollary 5.18:

If S > 0, then P-almost surely on the event Ω?,

log |N̂(t)|∫ t
0 (r − π2t

8L2 − 1
2

∫ t
0 f
′(s)2 + L′(s)

2L(s))ds
−→ 1.

Proof. Simply combine Propositions 5.16 and 5.17.

5.6 Showing that Z(∞) = 0 agrees with extinction

We note that we have now established our main result except for one key point: our

growth results have so far been on the event {Z(∞) > 0}, rather than the event of

survival of the process, {Υ = ∞}. We turn now to showing that these two events differ

only on a set of zero probability.

The approach to proving this is often analytic: one shows that P(Z(∞) > 0) and

P(Υ =∞) satisfy the same differential equation with the same boundary conditions, and

then shows that any such solution to the equation is unique. There is also sometimes a

probabilistic approach to such arguments: one considers the product martingale

P (t) := P(Z(∞) = 0|Ft) =
∏

u∈N(t)

PXu(t)(Z(∞) = 0).

On extinction, the limit of this process is clearly 1, and if we could show that on survival

the limit is 0, then since P is a bounded non-negative martingale we would have

P(Υ <∞) = P[P (∞)] = P[P (0)] = P(Z(∞) = 0).

In Harris et al. [15], for example, we have killing of particles at the origin rather than on

the boundary of a tube – and it is shown that on survival, at least one particle escapes to

89
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infinity and its term in the product martingale tends to zero. This is enough to complete

the argument (although in [15] the authors favour the analytic approach). In our case we

are hampered by the fact that for a single particle u the value of PXu(t)(Zu(∞) = 0) is

bounded away from zero, and if the particle is close to the edge of the tube, or even possibly

in some places in the interior the tube, then this probability takes values arbitrarily close

to 1.

The time-inhomogeneity of our problem means that other standard methods also fail.

Our alternative approach is based upon similar principles as the probabilistic approach

above, but is more direct: we show that if at least one particle survives for a long time,

then it will have many births in “good” areas of the tube, and thus Z(∞) > 0 with high

probability.

Recall that under P̃x, we start at time t = 0 with one particle at position x (rather

than at the origin) – and similarly for Q̃x. We assume throughout this section that S > 0,

otherwise there is nothing to prove (our theorem does not consider the case S = 0, and

if S < 0 we have proved that P(Υ =∞) = 0 = P(Z(∞) > 0)). We now need some more

notation.

Definition 5.19:

Let L0 := π
2
√
S
∨ 1, and define

L̃ : [0,∞) → (0,∞)

t 7→

{
L(t) if L(t) ≤ L0

L0 + (L(t)− L0)e−(L(t)−L0)2 if L(t) > L0

and
f̃ : [0,∞) → R

t 7→ f(t) + L(t)− L̃(t).

Now, for any function g on [0,∞), define the t-delayed version gt of g for t ∈ [0,∞) by

gt(s) = g(t+ s)− g(t), s ≥ 0.

Thus for each t ≥ 0 we have four new functions ft, f̃t, Lt and L̃t.

Also, for α ∈ [0, 1), define

Uα = {(t, x) : Px−f(t)(Z
ft,Lt(∞) > 0) ≥ α} ⊆ [0,∞)× R.

We think of Uα as the “good” part of the tube — if a particle is born in Uα then it has

probability at least α of contributing to Z(∞). Finally, for any particle u and t ≥ 0,
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define

Iα(u; t) =

∫ t∧Su

0
1{Xu(s)∈Uα}ds;

Iα(u; t) is the time spent by particle u in the set Uα before t.

Figure 5-1: Approximation to a section of Uα for eight different values of α when
f(t) = sin(a tanh(t+ b)) + c for some constants a, b and c.

Our first task is to convert to using f̃ and L̃; the fact that L̃ is bounded will prove

useful.

Lemma 5.20:

The pair (f̃ , L̃) satisfies usual conditions (II, III, IV), and S̃ := S f̃ ,L̃ ≥ Sf,L/2 > 0.

Proof. We note that L̃ is twice continuously differentiable and hence so is f̃ , and that

L̃(t) = L(t) whenever L(t) ≤ L0, L̃(t) ≥ L0 whenever L(t) ≥ L0, and L̃(t) ≤ L(t)∧(L0+1)

for all t ≥ 0. We first claim that E f̃ ,L̃(t) = o(t), working by comparison with Ef,L. Indeed,

when L(t) ≤ L0 we clearly have |L̃′(t)| = |L′(t)| and |L̃′′(t)| = |L′′(t)|. When L(t) > L0,

L̃′(t) = L′(t)(1− 2(L(t)− L0)2)e−(L(t)−L0)2

so |L̃′(t)| ≤ |L′(t)|. Also,

L̃′′(t) = L′′(t)e−(L(t)−L0)2 − 6L′(t)2(L(t)− L0)e−(L(t)−L0)2

− 2L′′(t)(L(t)− L0)2e−(L(t)−L0)2 + 4L′(t)2(L(t)− L0)3e−(L(t)−L0)2

so (since for x ≥ 0 the sizes of xe−x
2
, x2e−x

2
and x3e−x

2
are bounded above by 1)

∫ t

0
|L̃′′(s)|L̃(s)ds ≤

∫ t

0
|L′′(s)|L(s)ds+ 6(L0 + 1)

∫ t

0
L′(s)2ds

+ 2

∫ t

0
|L′′(s)|L(s)ds+ 4(L0 + 1)

∫ t

0
L′(s)2ds.
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Each of these terms on the right-hand side above is o(t) since∫ t

0
L′(s)2ds = L′(t)L(t)− L′(0)L(0)−

∫ t

0
L′′(s)L(s)ds

and L satisfies our usual conditions. As f̃ ′(t) = f ′(t) +L′(t)− L̃′(t), and similarly for f̃ ′′,

we may also bound |f̃ ′(t)|L̃(t) and
∫ t

0 |f̃
′′(s)|L̃(s)ds simply by using the above estimates

along with the triangle inequality and linearity of the integral. Thus, provided that

Ef,L(t) = o(t) we must have E f̃ ,L̃(t) = o(t). Clearly also S f̃ ,L̃ ∈ (−∞,∞).

Secondly, we claim that lim supt→∞
1
t logL(t) ≤ 0. Suppose not; then there exist

ε > 0 and tn →∞ such that L(tn) > eεtn for each n. Setting

Tn := sup{t ∈ [0, tn) : L(t) < eεtn/2},

if Tn > 0 (which must occur for all but finitely many n) then by the mean value the-

orem we can choose cn ∈ (Tn, tn) such that L′(cn) ≥ eεtn/2tn. But L(cn) ≥ eεtn/2,

so L′(cn)L(cn) ≥ e2εtn/4tn, contradicting the assumption that (f, L) satisfies the usual

conditions (specifically the requirement that L′(t)L(t) = o(t)).

Thirdly, we show that
∫ t

0 f̃
′(s)2ds =

∫ t
0 f
′(s)2ds+ o(t). By Minkowski’s inequality,

(∫ t

0
f̃ ′(s)2ds

)1/2

=

(∫ t

0
(f ′(s) + L′(s)− L̃′(s))2ds

)1/2

≤
(∫ t

0
f ′(s)2ds

)1/2

+

(∫ t

0
L′(s)2ds

)1/2

+

(∫ t

0
L̃′(s)2ds

)1/2

but ∫ t

0
L′(s)2ds = L(t)L′(t)− L(0)L′(0)−

∫ t

0
L′′(s)L(s)ds = o(t)

and the same calculation holds for L̃. Similarly by writing out (
∫ t

0 f
′(s)2ds)1/2 in terms

of f̃ ′, L′ and L̃ and applying Minkowski’s inequality we get that∫ t

0
f ′(s)2ds ≤

∫ t

0
f̃ ′(s)2ds+ o(t).

Our final claim is that S̃ := S f̃ ,L̃ ≥ Sf,L/2 > 0. Indeed, using various facts just
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established,

1

t

∫ t

0

(
r − 1

2
f̃ ′(s)2 − π2

8L̃(s)2
+
L̃′(s)

L̃(s)

)
ds

≥ 1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2

)
ds− 1

t

∫ t

0

π2

8L2
0

ds+
1

t
log L̃(t)− 1

t
log L̃(0) + o(1)

≥ 1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2

)
ds− S/2 +

1

t
log(L(t) ∧ 1)− 1

t
log L̃(0) + o(1)

so that (since lim sup 1
t logL(t) ≤ 0)

lim inf
t→∞

1

t

∫ t

0

(
r − 1

2
f̃ ′(s)2 − π2

8L̃(s)2
+
L̃′(s)

L̃(s)

)
ds

≥ lim inf
t→∞

{
1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L̃(s)2

)
ds+

1

t
logL(t)

}
− S/2

≥ lim inf
t→∞

1

t

∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

L(s)

)
ds− S/2

= Sf,L/2

as required.

Our next lemma establishes that for sufficiently small α, Uα — which we think of as

the good part of the tube — stretches to near the top and bottom edges of the L-tube

for almost S/2r proportion of the time. To do this we use the identity given in Lemma

3.4 combined with the spine decomposition. For δ ∈ (0, 1) and t ≥ 0, let

L̂(t) := ((1− δ)L(t)) ∨ (L(t)− δ).

Lemma 5.21:

Fix δ ∈ (0, 1) and β < 1. If S > 0 then for sufficiently small α > 0 and large T , we have∫ t

0
1{(s,x)∈Uα ∀x∈[f(s)−L̂(s),f(s)+L̂(s)]}ds ≥ β

S

2r
t ∀t ≥ T.

Proof. Fix q ∈ (0, 1−β
3 ) and p ∈ (β + 3q, 1); we show that for

α =
qS̃ cos(πδ/2)

2re(L0+1)(r
√

2/qS̃+1)
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and all sufficiently large t we have∫ t

0
1{(s,x)∈Uα ∀x∈[f(t)−L̂(s),f(t)+L̂(s)]}ds ≥ (p− 3q)

S

2r
t.

We begin working with f̃ and L̃; we shall move back to f and L towards the end of the

proof. Let

Jt = inf
s≥t

{∫ s

0

(
r − π2

8L̃(u)2
− 1

2
f̃ ′(u)2 +

L̃′(u)

2L̃(u)
− qS̃

)
du− E f̃ ,L̃(s)

}
,

and define three subsets, U , V and W , of [0,∞) by

U = {t ≥ 0 : Jt is increasing at t}, V =

{
t ≥ 0 : |f̃ ′(t)| < r

√
2/qS̃

}
and

W = {t ≥ 0 : |L̃′(t)| ≤ 1}.

If J is increasing at t, then clearly for any s > 0

∫ t+s

0

(
r − π2

8L̃(u)2
− 1

2
f̃ ′(u)2 +

L̃′(u)

2L̃(u)
− qS̃

)
du− E f̃ ,L̃(t+ s)

>

∫ t

0

(
r − π2

8L̃(u)2
− 1

2
f̃ ′(u)2 +

L̃′(u)

2L̃(u)
− qS̃

)
du− E f̃ ,L̃(t),

and hence∫ t+s

t

(
r − π2

8L̃(u)2
− 1

2
f̃ ′(u)2 +

L̃′(u)

2L̃(u)

)
du− E f̃ ,L̃(t+ s) + E f̃ ,L̃(t) > qS̃s.

Thus if t ∈ U ∩V ∩W then, as in Proposition 5.15, we can apply the spine decomposition,

the fact that ζ is a non-negative martingale and thus has a finite limit almost surely, and
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Lemma 5.14 to get, for any x ∈ (−L̃(t), L̃(t)),

Q̃f̃t,L̃t
x [Z f̃t,L̃t(∞)|G∞] =

∫ ∞
0

2re−rsζ f̃t,L̃t(s)ds+ lim
t→∞

e−rtζ f̃t,L̃t(t)

≤
∫ ∞

0
2re
−

∫ s
0 (r− π2

8L̃t(u)
2−

1
2
f̃ ′t(u)2+

L̃′t(u)
2L̃t(u)

)du+Ef̃t,L̃t (s)
ds

≤
∫ ∞

0
2re
−

∫ t+s
t (r− π2

8L̃(u)2
− 1

2
f̃ ′(u)2+

L̃′(u)
2L̃(u)

)du

· eEf̃ ,L̃(t+s)−Ef̃ ,L̃(t)+|f̃ ′(t)|L̃(t)+ 1
2
|L̃′(t)|L̃(t)ds

≤ e|f̃ ′(t)|L̃(t)+ 1
2
|L̃′(t)|L̃(t)

∫ ∞
0

2re−qS̃sds

≤ 2r

qS̃
e(r
√

2/qS̃+1/2)(L0+1)

Using the identity from Lemma 3.4 together with Jensen’s inequality gives that for any

x ∈ [f̃(t)− (((1− δ)L̃(t)) ∨ (L̃(t)− δ)), f̃(t) + ((1− δ)L̃(t)) ∨ (L̃(t)− δ)],

Px(Z f̃t,L̃t(∞) > 0) = Qf̃t,L̃t
x

[
Z f̃t,L̃t(0)

Z f̃t,L̃t(∞)

]

≥ Q̃f̃t,L̃t
x

[
Q̃f̃t,L̃t
x

[
1

Z f̃t,L̃t(∞)

∣∣∣∣∣G∞
]]

e−
1
2
|L̃′(t)|L̃(t) cos

(
πx

2L̃(t)

)

≥ Q̃f̃t,L̃t
x

[
1

Q̃f̃t,L̃t
x [Z f̃t,L̃t(∞)|G∞]

]
e−

1
2
L0+1 cos

(
π(L0 + 1− δ)

2(L0 + 1)

)

≥ qS̃

2re(r
√

2/qS̃+1)(L0+1)
cos

(
π(L0 + 1− δ)

2(L0 + 1)

)
.

Now, since

[f̃(t)− (((1− δ)L̃(t)) ∨ (L̃(t)− δ)), f̃(t)− (((1− δ)L̃(t)) ∨ (L̃(t)− δ))]

⊇ [f(t) + L(t)− L̃(t)− L̂(t), f(t) + L̂(t)]

we have shown that if t ∈ U ∩ V ∩W then Px(Zft,Lt(∞) > 0) is large enough for all

x ∈ [f(t) + L(t) − L̃(t) − L̂(t), f(t) + L̂(t)]. If x ∈ [f(t), f(t) + L(t) − L̃(t) − L̂(t)) then

running the same argument as above but using f̃ (x)(s) := f̃(s)− f̃(0)+x, s ≥ 0 in place of

f̃ gives exactly the same result: so we have that Px(Zft,Lt(∞) > 0) is large enough for the

half-region [f(t), f(t)+L̂(t)] and by symmetry for the whole region [f(t)−L̂(t), f(t)+L̂(t)].
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Hence it now suffices to show that for large t,∫ t

0
1U∩V ∩W (s)ds ≥ (p− 3q)

S

2r
t.

But for all large enough t, since J increases at rate at most r (recall that
∫ t

0
L̃′(s)

2L̃(s)
ds =

log L̃(t)− log L̃(0), which is bounded) and limt→∞ Jt = (1− q)S̃,

(p− q)S̃t ≤ Jt ≤
∫ t

0
r1U (s)ds.

Also, for large enough t we must have
∫ t

0 f̃
′(s)2ds ≤ 2rt (otherwise S̃ would not be

positive). Thus for large t

2rt ≥
∫ t

0
f̃ ′(s)2ds ≥

∫ t

0

2r2

qS̃
1V c(s)ds;

finally, ∫ t

0
L̃′(s)2ds = L̃(t)L̃′(t)− L̃(0)L̃′(0) +

∫ t

0
L̃(s)L̃′′(s)ds

so since E f̃ ,L̃ = o(t) we have (again for large t)∫ t

0
1W c(s)ds ≤

∫ t

0
L̃′(s)2ds ≤ qS̃

r
t.

Hence for all large t,∫ t

0
1U∩V ∩W (s)ds ≥

∫ t

0
1U (s)ds−

∫ t

0
1V c(s)ds−

∫ t

0
1W c(s)ds

≥ (p− q) S̃
r
t− q S̃

r
t− q S̃

r
t ≥ (p− 3q)

S

2r
t

as required.

We now show that if a particle has remained in the tube for a long time, then it is

very likely to have spent a long time in Uα. The idea is that if Uα stretches to within δ

of the edge of the tube for a proportion of time, then in order to stay out of Uα a particle

must spend a long time in a tube of radius δ. We use simple estimates for the time spent

by Brownian motion in such a tube and apply these to our problem via the many-to-one

theorem (Theorem 2.10).

Lemma 5.22:
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Fix β < 1 and γ > 0. If S > 0 then for sufficiently small α > 0 and large T , we have

P(∃u ∈ N̂(t) : Iα(u; t) < β
S

2r
t) ≤ e−γt ∀t ≥ T.

Proof. For any δ ∈ (0, 1), by Lemma 5.21 we may choose α > 0 and T such that∫ t

0
1{(s,x)∈Uα ∀x∈[f(t)−L+δ,f(t)+L−δ]}ds ≥

(
1 + β

2

)
S

2r
t ∀t ≥ T.

Then if the spine particle is to have spent less than β S
2r t time in Uα (yet remained within

the tube of width L) then it must have spent at least (1−β
2 ) S2r t within δ of the edge of

the tube (provided that t is large enough). That is, for t ≥ T , if we let

V 1
s := (f(s)− L(s), f(s)− L(s) + δ) ∪ (f(s) + L(s)− δ, f(s) + L(s))

then

P̃
(
ξt ∈ N̂(t), Iα(ξt; t) < β

S

2r
t

)
≤ P̃

(
ξt ∈ N̂(t),

∫ t

0
1{ξs∈V 1

s }ds >

(
1− β

2

)
S

2r
t

)
.

In fact, using the fact that if ξt ∈ N̂(t) then we may apply two simple Girsanov measure

changes and our usual estimates on them. The first will give the spine drift f ′, and the

second will give it an extra drift L′. Letting

V 2
s := (−L(s),−L(s) + δ) ∪ (L(s)− δ, L(s))
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we have

P̃
(
ξt ∈ N̂(t), Iα(ξt; t) < β

S

2r
t

)
≤ P̃

[
1{|ξs|<L(s) ∀s∈[0,t]}

e
∫ t
0 f
′(s)dξs− 1

2

∫ t
0 f
′(s)2ds

1{
∫ t
0 1{ξs∈V 2

s }
ds>( 1−β

2
) S
2r
t}

]
≤ e|f ′(t)|L(t)+

∫ t
0 |f
′′(s)|L(s)ds

· P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈V 2

s }ds >

(
1− β

2

)
S

2r
t

)
≤ 2e|f

′(t)|L(t)+
∫ t
0 |f
′′(s)|L(s)ds

· P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈(L(s)−δ,L(s))}ds >

(
1− β

2

)
S

4r
t

)
≤ 2e|f

′(t)|L(t)+
∫ t
0 |f
′′(s)|L(s)ds

· P̃
[

1|ξs|<2L(s) ∀s∈[0,t]

e
∫ t
0 L
′(s)dξs− 1

2

∫ t
0 L
′(s)2ds

1{
∫ t
0 1{ξs∈(−δ,0)}ds>( 1−β

2 ) S4r t}

]
≤ 2e|f

′(t)|L(t)+
∫ t
0 |f
′′(s)|L(s)ds+2|L′(t)|L(t)+2

∫ t
0 |L
′′(s)|L(s)ds

· P̃
(∫ t

0
1{ξs∈(−δ,0)}ds >

(
1− β

2

)
S

4r
t

)
.

Using the estimate given in Lemma 4.11, and usual condition (III), we get that for large

enough t

P̃
(
ξt ∈ N̂(t), Iα(ξt; t) < β

S

2r
t

)
≤ e(r+1)t− 1

4δ (
1−β
2 ) S4r t.

Finally, taking δ = (1−β)S
32r(2r+γ+1) and using the many-to-one theorem (Theorem 2.10), for

large t

P̃
(
∃u ∈ N̂(t) : Iα(u; t) < β

S

2r
t

)
≤ ertP̃

(
ξt ∈ N̂(t), Iα(ξt; t) < β

S

2r
t

)
≤ e−γt.

We now combine the above results to achieve the aim of this section.

Proposition 5.23:

Recall that Υ is the extinction time for the process. If S > 0 then

P(Υ =∞) = P(Z(∞) > 0).

Proof. We note that {Z(∞) > 0} ⊆ {Υ =∞}, so it suffices to show that for any ε > 0,

P(Υ =∞, Z(∞) = 0) < ε.
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To this end, fix ε > 0 and choose α small enough and T0 large enough that

P(∃u ∈ N̂(t) : Iα(u; t) <
S

4r
t) < ε/3 ∀t ≥ T0

(this is possible by Lemma 5.22). Now choose an integer m large enough such that

(1− α)m < ε/3. Finally, choose T ≥ T0 large enough that

m−1∑
j=0

e−ST/4(ST/4)j

j!
< ε/3.

Then

P(Υ =∞, Z(∞) = 0) ≤ P(∃u ∈ N̂(T ), Z(∞) = 0)

< P
(
∃u ∈ N̂(T ), Iα(u;T ) ≥ S

4r
T, Z(∞) = 0

)
+ ε/3.

Now, if a particle u has spent at least S
4rT time in Uα then (by the choice of T , since the

births along u form a Poisson process of rate r) it has probability at least (1 − ε/3) of

having at least m births whilst in Uα. Each of these particles born within Uα launches

an independent population from a point (t, x) ∈ Uα, so that

Z(∞) ≥
∑
v<u

e−r(Sv−σv)Zv(∞)1{(Sv−σv ,Xu(Sv−σv))∈Uα}

where each Zv is a non-negative martingale on the interval [Sv−σv,∞) with law equal to

that of Zft,Lt started from x for some (t, x) ∈ Uα, and hence satisfying P(Zv(∞) > 0) ≥ α.

Thus

P(Υ =∞, Z(∞) = 0)

≤ P
(
∃u ∈ N̂(T ), Iα(u;T ) ≥ S

4r
T, Z(∞) = 0

)
+ ε/3

≤ P

(
∃u ∈ N̂(T ),

{
u has had at least

m births within Uα

}
, Z(∞) = 0

)
+ 2ε/3

≤ (1− α)m + 2ε/3 < ε

which completes the proof.

We draw our results together as follows.

Proof of Theorem 5.1:

All that remains is to combine Proposition 5.15 with Corrolary 5.18 to gain the desired
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growth bounds; Proposition 5.23 guarantees that we are working on the correct set.

5.7 Extending the class of functions

As promised, we can extend Theorem 5.1 to cover more general subsets of C[0,∞) in an

obvious way: if a set B ⊂ C[0,∞) is contained within (or contains) an L-tube about a

function f , then the set of particles with paths in B is a subset (respectively, superset)

of the set of particles with paths within L of f , and if (f, L) satisfies our usual conditions

then we have an immediate upper (lower) bound on the number of particles within B.

That is, for any B ⊂ C[0,∞),

supP(N̂f,L(t) 6= ∅) ≤ P(N̂B(t) 6= ∅) ≤ inf P(N̂f,L(t) 6= ∅) (5.5)

and

sup |N̂f,L(t)| ≤ |NB(t)| ≤ inf |N̂f,L(t)| (5.6)

where both suprema are taken over all f and L such that (f, L) satisfies our usual condi-

tions and

{g ∈ C[0,∞) : |g(s)− f(s)| < L(s) ∀s ∈ [0,∞)} ⊆ B,

both infima are taken over all f and L such that (f, L) satisfies our usual conditions and

B ⊆ {g ∈ C[0,∞) : |g(s)− f(s)| < L(s) ∀s ∈ [0,∞)},

and

NB(t) := {u ∈ N(t) : ∃g ∈ B with Xu(s) = g(s) ∀s ∈ [0, t]}.

The obvious question now is whether this allows us to give growth rates for all sets in

C[0,∞). The answer is no: there are still some seemingly reasonable sets that are not

covered (which we shall see shortly).

Thus the natural question becomes whether we can instead characterise, in a more

succinct way, the class of functions that Theorem 5.1 does cover, subject to using the

extensions provided by (5.5) and (5.6). Can we weaken our usual conditions in some way

that we can easily write down? The answer again seems to be, more or less, no. We may

drop condition (I) as our eventual growth rate does not depend on the initial position of

the particle as long as there is a path within our set that starts at the same point as the

initial position of the first particle. We may also effectively drop condition (IV) — since

it is not possible to get S = ∞ without violating condition (III), and the case S = −∞
can always be covered either by bounding above using (5.5) and (5.6) or by using the
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5.7. Extending the class of functions

many-to-one theorem, Theorem 2.10, more directly. However the interesting conditions

(II) and (III) are difficult to shake off, a fact which is best demonstrated by a series of

examples.

It is easiest to first consider condition (III).

Example 5.24:

Take L(t) ≡ L > 0 to be constant, and let

fδ(t) := δ sin(t/δ);

then as δ → 0, fδ converges uniformly to the zero function, f(t) ≡ 0. By Theorem 5.1 we

know that on survival,

lim
t→∞

1

t
log |N̂f,L(t)| = r − π2

8L2
.

However, if the result of Theorem 5.1 held for each fδ then by approximation via (5.5)

and (5.6) we would have (on survival)

lim
t→∞

1

t
log |N̂f,L(t)| = r − π2

8L2
− 1

4
.

Of course, (fδ, L) does not satisfy usual condition (III) and hence this contradiction does

not appear – but the example shows that we cannot simply drop the requirement that∫ t
0 |f

′′(s)|L(s)ds = o(t).

Example 5.25:

Take f(t) ≡ 0 and L(t) = 2 + sin(t3/2). Intuitively, the sine term oscillates so fast for

large t that we are effectively constrained within a tube of constant width 1. Thus we

expect (and it is not too hard to imagine a hands-on proof using Theorem 5.1) that we

should have a growth rate of r−π2/8. However, one may show (for example by using the

periodicity of sine and approximating the integral by a sum) that∫ t

0

1

L(s)2
ds .

2t

3
√

3

so that if the result of Theorem 5.1 held in this case we would have a growth rate of at

least r − π2/12
√

3. Again, (f, L) does not satisfy usual condition (III) and we see that

we cannot just drop the requirement that
∫ t

0 |L
′′(s)|L(s)ds = o(t).

Example 5.26:

Take f0(t) ≡ 0, L0(t) =
√
t, f1(t) = t and L1(t) = t +

√
t. Then the growth rate for

(f0, L0) is r; and since the L0-tube about f0 is contained in the L1-tube about f1, we

must have a growth rate for (f1, L1) of at least r (in fact it is exactly r since it is well-
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known that the growth rate of the entire system is r). If the result of Theorem 5.1 held

for (f1, L1) then its growth rate would be r − 1/2; so we see that we cannot simply drop

the condition that |f ′(t)|L(t) + |L′(t)|L(t) = o(t).

Now consider condition (II). We can approximate any continuous function with twice

continuously differentiable functions, but then how do we approach the conditions on the

second derivative (from condition (III))? Even for constant L, there are some nowhere-

differentiable paths f such that we may find a growth rate for N̂f,L using (5.5) and (5.6),

and some for which we may not. The lack of even a first derivative to work with in these

cases precludes the existence of an obvious simple condition to tell us where to draw

the line between these two groups. We claim simply that any non-smooth sets are best

considered on a case-by-case basis using Theorem 5.1 together with (5.5) and (5.6).

For example, again with constant L, we may easily (by approximating by its partial

sums) give a growth rate for the function

f(t) =

∞∑
n=0

an(cos(bnπ log(t+ 1))− 1)

(where b is a positive odd integer, 0 < a < 1 and ab > 1 + 3π/2), which is a time

change of a Weierstrass function and hence, by the chain rule, nowhere differentiable. On

the other hand we cannot give an exact growth rate along (almost) any given Brownian

path: any uniformly approximating functions must (by the fact that Brownian motion

has independent increments) violate our conditions on the second derivative of f in (III).

5.8 The critical case S = 0

It would be remiss not to consider what can be done when S = 0. This is an interesting

but delicate matter: our methods, as they stand, are not always sharp enough to say

what will happen. There are several situations, however, where something can be done.

Unfortunately we are again unable to provide a general theory, as our methods must be

adapted carefully to the set in question. We give two such examples in Theorems 5.27

and 5.28 below.

Fix α > 0, β ∈ (0, 1) and γ > 0, and for t ≥ 0 let

f(t) = α+
√

2rt− α(t+ 1)β and L(t) = γ(t+ 1)β.

Theorem 5.27:
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If β < 1/3 then we have P(Υ =∞) = 0, and

logP(N̂(t) 6= ∅)
t1−2β

−→ − π2

8γ2(1− 2β)
.

If β > 1/3, we have P(Υ =∞) > 0, and almost surely on survival

lim inf
t→∞

log |N̂(t)|
tβ

≥ α
√

2r

and

lim sup
t→∞

log |N̂(t)|
tβ

≤ (α+ γ)
√

2r.

Proof. In the case β < 1/3 we may simply mimic the requisite part of the proof of

Proposition 5.15, using the fact that for β < 1/3,∫ t

0

(
r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

2L(s)

)
ds =

π2

8γ2(1− 2β)
(t+ 1)1−2β + o(t1−2β)

and

E(t) = γ
√

2r(t+ 1)β + o(tβ).

Now suppose that β > 1/3. We proceed in very much the same way as in the main part

of the article, leaving out many of the details. Direct calculation reveals that for β > 1/3,∫ t

0
(r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

2L(s)
)ds = α

√
2r(t+ 1)β + o(tβ)

and

E(t) = γ
√

2r(t+ 1)β + o(tβ).

Thus, by the spine decomposition,

Q̃[Z(t)|G∞] ≤
∫ t

0
2re−(α−γ)

√
2r(s+1)β+o(sβ)ds+ e−(α−γ)

√
2r(t+1)β+o(tβ)

which converges as t → ∞ provided that α > γ. We deduce that P(Z(∞) > 0) > 0

provided that α > γ, and indeed for all α and γ since for fixed α, increasing γ can only

increase the probability of survival. The same argument as in Proposition 5.16 gives that

on {Z(∞) > 0} we have

lim inf
t→∞

log |N̂(t)|
tβ

≥ (α− γ)
√

2r,
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and again we decide that since increasing γ can only increase |N̂(t)|, we can take γ

arbitrarily small and deduce that for any γ, on {Z(∞) > 0},

lim inf
t→∞

log |N̂(t)|
tβ

≥ α
√

2r.

The same argument as Proposition 5.17 also gives

lim sup
t→∞

log |N̂(t)|
tβ

≤ (α+ γ)
√

2r.

We must now check that {Z(∞) > 0} agrees with {Υ =∞} up to a set of zero probability.

The argument given, in Lemma 5.21, to show that the set Uα (different α!) stretches to

near the top and bottom of the tube about f , breaks down. However we can use an

alternative approach: fix δ > 0, and choose ε > 0 such that even when we are distance

δ from the top edge of the tube at time T , the smaller tube with radius ε(t+ 1)β about√
2rt − α(t + 1)β + γ(T + 1)β − δ fits (for all times t ≥ T ) within the tube of radius L

about f . Then by using the spine decompositon and Jensen’s inequality as in Proposition

5.15, we can bound the probability of contributing to Z(∞) away from zero (over all T ).

We may take the same approach when starting from a position closer to the centre of the

tube (that is, further than δ from the edge). Thus, for small enough α′, Uα′ stretches to

within δ of the edge of the tube for all times t ≥ 0. The rest of the proof follows as in

Lemma 5.22 and Proposition 5.23.

We saw in our introduction that the asymptotic speed of the right-most particle in a

BBM is
√

2r. The theorem above concerns asking particles to stay close to this critical

line forever: for example, we might ask particles to be in (
√

2rt−2αtβ,
√

2rt) for all times

t ≥ 0. If β > 1/3 then particles manage this with positive probability; if β < 1/3 then

they do not. What if β = 1/3? Intuitively this question is “even more critical” than the

previous theorem. Indeed, our methods are not able to give a full answer, but they can

identify regimes where each behaviour (growth or death) is observed.

Theorem 5.28:

Consider the case β = 1/3. Let

γ0 :=

(
3π2

8
√

2r

)1/3

and γ1 :=

(
3π2

4
√

2r

)1/3

.
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5.8. The critical case S = 0

If γ < γ0 and α < 3π2

8γ2
√

2r
− γ, then P(Υ =∞) = 0; in fact

lim inf
t→∞

logP(N̂(t) 6= ∅)
t1/3

≥ α
√

2r − 3π2

8γ2
− γ
√

2r

and

lim sup
t→∞

logP(N̂(t) 6= ∅)
t1/3

≤ α
√

2r − 3π2

8γ2
+ γ
√

2r.

On the other hand, if γ ≥ γ1 and α > 3γ1/2, or if γ < γ1 and α > γ + 3π2

8γ2
√

2r
, then

P(Υ =∞) > 0 and almost surely on survival

lim inf
t→∞

log |N̂(t)|
t1/3

≥ α
√

2r − 3π2

8(γ ∨ γ1)2
− (γ ∨ γ1)

√
2r

and

lim sup
t→∞

log |N̂(t)|
t1/3

≤ α
√

2r − 3π2

8γ2
+ γ
√

2r.

Proof. The first part of the proof proceeds exactly as that of Theorem 5.27, but with∫ t

0
(r − 1

2
f ′(s)2 − π2

8L(s)2
+
L′(s)

2L(s)
)ds =

(
α
√

2r − 3π2

8γ2

)
(t+ 1)1/3 + o(t1/3)

and

E(t) = γ
√

2r(t+ 1)1/3 + o(t1/3) :

the spine decomposition converges if

−α
√

2r +
3π2

8γ2
+ γ
√

2r < 0,

so P(Z(∞) > 0) > 0 if

α > γ +
3π2

8γ2
√

2r
.

But increasing γ makes the right-hand side of this inequality larger as soon as γ ≥ γ1,

and increasing γ can only make P(Z(∞) > 0) larger, so (after some rearrangements) we

deduce that P(Z(∞) > 0) > 0 provided either γ ≥ γ1 and α > 3γ1/2 or γ < γ1 and

α > γ + 3π2

8γ2
√

2r
.

Under Q, Z(t) diverges to infinity if −α
√

2r + 3π2

8γ2
− γ
√

2r > 0. Since α > 0, this is

impossible if γ ≥ γ0; so we need γ < γ0 and α < 3π2

8γ2
√

2r
− γ. If Z(t)→∞ almost surely

under Q, then by Lemma 2.8, Z(t)→ 0 almost surely under P.

The calculations of the lim infs and lim sups are standard, as in Propositions 5.15, 5.16

and 5.17. However, we must again take a different approach to show that {Z(∞) > 0}
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agrees with {Υ = ∞} up to a set of zero probability. Our proof, below, is specially

adapted to this particular case and takes advantage of the convenient — and well-known

— fact that 1
3 + 2× 1

3 = 1.

We can easily show, straight from the spine decomposition and as in previous calcu-

lations, that for any δ ∈ (0, γ/2), there exists α′ > 0 such that Uα′ stretches to within

δt1/3 of the edges of the tube at time t for any t > 0. Thus (in analogy with Lemma

5.22) we would like to show, loosely speaking, that with high probability, particles spend

a long time outside the tubes of radius δ(s+ 1)1/3, s ∈ [0, t] nested just inside the upper

and lower boundaries of our main tube about f . The idea is that if particles do not want

to leave N̂(t) then staying near the boundaries of the tube is a bad tactic. To be more

precise about this, following the direction of part of the proof of Lemma 5.22 and setting

V 1
s := (f(s)− L(s), f(s)− L(s) + δ(s+ 1)1/3) ∪ (f(s) + L(s)− δ(s+ 1)1/3, f(s) + L(s))

and

V 2
s := (−L(s),−L(s) + δ(s+ 1)1/3) ∪ (L(s)− δ(s+ 1)1/3, L(s))

we have

P̃
(
ξt ∈ N̂(t), Iα(ξt; t) < t/2

)
≤ P̃

(
ξt ∈ N̂(t),

∫ t

0
1{ξs∈V 1

s }ds > t/2

)
≤ P̃

[
1{|ξs|<L(s) ∀s∈[0,t]}

e
∫ t
0 f
′(s)dξs− 1

2

∫ t
0 f
′(s)2ds

1{
∫ t
0 1{ξs∈V 2

s }
ds>t/2}

]
≤ e−

1
2

∫ t
0 f
′(s)2ds+|f ′(t)|L(t)+

∫ t
0 |f
′′(s)|L(s)ds

· P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈V 2

s }ds > t/2

)
≤ 2e−

1
2

∫ t
0 f
′(s)2ds+|f ′(t)|L(t)+

∫ t
0 |f
′′(s)|L(s)ds

· P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈(L(s)−δ(s+1)1/3,L(s))}ds > t/4

)
.

Now, by our calculation of E above, the exponential part

2e−
1
2

∫ t
0 f
′(s)2ds+|f ′(t)|L(t)+

∫ t
0 |f
′′(s)|L(s)ds

is at most exp(−rt+κ(t+ 1)1/3) for some constant κ and all large t. By the many-to-one
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theorem,

P̃
(
∃u ∈ N̂(t) : Iα(u; t) < t/2

)
≤ ertP̃

(
ξt ∈ N̂(t), Iα(ξt; t) < t/2

)
≤ eκ(t+1)1/3P̃

(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈(L(s)−δ(s+1)1/3,L(s))}ds > t/4

)
.

We attempt to show that, for small δ > 0, the probability

P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈(L(s)−δ(s+1)1/3,L(s))}ds > t/4

)
is at most exp(−2κ(t+ 1)1/3).

For the sake of brevity we make some approximations here: for example we will use t

instead of t+ 1 in various places, and assume throughout that t is large. Let τ := δ2t2/3,

define

T0 := inf{s > 0 : ξs ∈ (L(s)− δ(s+ 1)1/3, L(s))} ∧ t

and for k ≥ 1 let

Tk := inf{s > Tk−1 + τ : ξs ∈ (L(s)− δ(s+ 1)1/3, L(s))} ∧ t.

Then for any k ≥ 0,

P̃(|ξTk+τ | < L(Tk + τ)) ≤ P̃(ξTk+τ − ξTk < L(Tk + τ)− L(Tk) + δ(Tk + 1)1/3)

= P̃(ξτ < γ(Tk + τ + 1)1/3 − γ(Tk + 1)1/3 + δ(Tk + 1)1/3)

≤ P̃(ξτ < γ(τ + 1)1/3 + δ(t+ 1)1/3)

≈ P̃

(
ξ1 <

γt2/9

δ1/3t2/3
+ 1

)

which is smaller than P̃(ξ1 < 2) when t is large. We now ask how many of the Tk occur

strictly before t. We know that if∫ t

0
1{ξs∈(L(s)−δ(s+1)1/3,L(s))}ds > t/4

then

T0 +
∑

k≥1:Tk−1<t

(Tk − (Tk−1 + τ)) ≤ 3t

4
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and

T0 +
∑

k≥1:Tk−1<t

(Tk − Tk−1) ≥ t.

This tells us that ∑
k≥1:Tk−1<t

τ ≥ t

4

and hence there must be at least t/4τ −1 = t1/3/4δ2−1 of the Tk strictly before t. Let Y

be a binomial random variable with parameters (bt1/3/4δ2 − 2c, P̃(ξ1 < 2)). At each Tk,

the spine is within distance δ(t+ 1)1/3 of the boundary of the tube. If it jumps upwards

by too much by time Tk + τ , then it leaves the tube; and it has at least bt1/3/4δ2 − 2c
opportunities to do so. Thus we deduce that

P̃
(
|ξs| < L(s) ∀s ∈ [0, t],

∫ t

0
1{ξs∈(L(s)−δ(s+1)1/3,L(s))}ds > t/4

)
≤ P (Y = 0) ≈ (1− P̃(ξ < 2))t

1/3/4δ2 .

By choosing δ small we can make this smaller than exp(−2κ(t+ 1)1/3), which is what we

required. The rest of the proof follows just as in Proposition 5.23.

Theorems 5.27 and 5.28 should be compared with what is currently known about the

right-most particle, for example the work of Bramson [4], results on branching Brownian

motion with killing, for example Kesten [25], and work on the branching random walk,

for example Hu and Shi [19] and Jaffuel [23]. The recent article by Jaffuel [23], in par-

ticular, gives results almost analogous to our Theorems 5.27 and 5.28. Kesten [25], if

translated into the language of this article, effectively considers a “one-sided” tube with

lower boundary the critical line
√

2rt and no upper boundary — he shows that there

is extinction almost surely, and that the probability of survival up to time t decays like

e−t
1/3

. Indeed, if we were to consider a tube with lower boundary the line
√

2rt and upper

boundary
√

2rt+αt1/3 we could obtain, by the above methods, a lower bound for Kesten’s

asymptotic for the probability of survival up to time t, which would agree with Kesten’s

results up to a constant in the exponent. Unfortunately the corresponding upper bound,

and more accurate calculations on the right-most particle in the style of Bramson [4], do

not seem to be accessible via our current methods: the error term E(t) outweighs the fine

adjustments necessary to investigate such quantities. We hope to carry out further work

on these issues in the future.
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Probabilités, XXXII, volume 1686 of Lecture Notes in Math., pages 108–127. Springer,

Berlin, 1998.

[9] P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth,

and Extinction of Populations. Cambridge University Press, Cambridge, UK, 2005.

[10] R. Hardy and S. C. Harris. A conceptual approach to a path result for branching

Brownian motion. Stochastic Process. Appl., 116(12):1992–2013, 2006.

109



Bibliography

[11] R. Hardy and S. C. Harris. A new formulation of the spine approach to branching

diffusions. Preprint, http://arxiv.org/abs/math/0611054, 2008.

[12] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications
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