

The Λ -asymmetric Moran model

Noemi Kurt (Goethe-Universität Frankfurt)

based on joint work with Adrián González Casanova and José Luis Pérez

Bath, June 2023

Motivation: Leading questions

How to model populations with **skewed offspring distribution** in the presence of **selection**?

How can we understand the **selective advantage** of one subpopulation with respect to another, if they have **very different reproductive behaviour**?

Motivation: A quick and incomplete look at the literature

- Standard and very classical population genetics models: Kingman-coalescent universality class: Wright-Fisher model, Moran model (including selection)
- Populations with skewed offspring distribution: Genealogy follows multiple merger coalescents (Λ -coalescents)?
 - ▶ [PITMAN 99, SAGITOV 99] introduced Λ -coalescents
 - ▶ For some discussion on the role of Λ -coalescents in modelling skewed offspring distributions see e.g. [ELDON AND WAKELEY 2007, BIRKNER AND BLATH 2009] (and many others)
 - ▶ For recent results and state of the art see [ÁRNASON, KOSKELA, HALLDÓRSDÓTTIR, ELDON 2023]
- Moran Model with Λ -type selection [ETHERIDGE, GRIFFITHS, TAYLOR 2010]
- Subpopulations with different reproductive mechanism [GILLESPIE 1973, 1974]

The classical continuous time Moran model

- Population of fixed population size N
- Overlapping generations, continuous time
- Each individual independently has an exponential clock, when it rings, the individual reproduces, and the (unique) child replaces a uniformly chosen individual in the population.
- Assuming there are two inheritable types $-$, $+$ of individuals, we can count the relative frequency of type $-$ at time t . The frequency process X_t , $t \geq 0$ converges (after rescaling by N) to the Wright-Fisher diffusion.
- The genealogy of the Moran model is given by the Kingman coalescent.
- Classical Moran model with selection: Individuals of type $-$ reproduce at rate 1, individuals of type $+$ reproduce at rate $1 + s_N$, $s_N > 0$.
- Genealogy of the Moran model with selection is provided by the ancestral selection graph, [KRONE AND NEUHAUSER 1997].

Λ -asymmetric Moran model

- Fixed population size N , continuous time
- Two types $-$, $+$, where $+$ has a selective advantage over $-$ (to be explained later)
- Two finite measures Λ^- , Λ^+ on $[0, 1]$ governing reproduction
- An individual of type $-$ reproduces independently of everybody else at rate $N^{-1} \|\Lambda^-\|$. Upon reproduction, a random number $Y^- \in [0, 1]$ distributed according to $\Lambda^- / \|\Lambda^-\|$ determines the **number of offspring** in the following way: Each of the $N - 1$ non-reproducing individuals dies **independently with probability Y^-** and is replaced by a child of the reproducing individual.
- An individual of type $+$ reproduces in an analogous way, with Λ^+ instead of Λ^- .
- Types are inherited.

Λ -asymmetric Moran model

Figure: A realisation of the Λ -asymmetric frequency process. Filled dots represent the reproducing individuals, filled squares the offspring.

Frequency process

The number of offspring at a reproductive event is **binomial** with parameters Y^- resp. Y^+ and $N - 1$.

Denote by X_t^N the relative frequency at time t of individuals of type $-$. This gives a continuous time Markov chain with state space $\{0, 1/N, \dots, (N-1)/N, 1\}$ and transitions

$$x \mapsto \begin{cases} x + \frac{k}{N} & \text{at rate } x \int_0^1 \binom{(1-x)N}{k} y^k (1-y)^{(1-x)N-k} \Lambda^-(dy), \\ x - \frac{k}{N} & \text{at rate } (1-x) \int_0^1 \binom{xN}{k} y^k (1-y)^{xN-k} \Lambda^+(dy). \end{cases}$$

Generator:

$$\begin{aligned} \mathcal{B}^N f(x) = & x \|\Lambda^-\| \mathbb{E} \left[f \left(x + \frac{1}{N} \text{Binom}(N(1-x), Y^-) \right) - f(x) \right] \\ & + (1-x) \|\Lambda^+\| \mathbb{E} \left[f \left(x - \frac{1}{N} \text{Binom}(Nx, Y^+) \right) - f(x) \right]. \end{aligned}$$

Expectation is taken with respect to the random variables Y^- resp. Y^+ , distributed according to $\Lambda^- / \|\Lambda^-\|$ resp. $\Lambda^+ / \|\Lambda^+\|$.

Where is selection in this model?

To say that one type has a **selective advantage** over the other only makes sense if there is some kind of order that allows to compare the measures Λ^- and Λ^+ . For example, we would like to treat (at least) the two cases:

- ① (Faster reproduction) if $\Lambda^+ = (1 + \alpha)\Lambda^-$ for some $\alpha > 0$.
- ② (Bigger reproductive events) There exists a function $s : [0, 1] \mapsto [0, 1]$ such that $s(x) - x \geq 0$ and $\Lambda^-(s(A)) = \Lambda^+(A)$.

In the first case we have in particular $\|\Lambda^+\| = (1 + \alpha)\|\Lambda^-\|$. An example of the second case is $\Lambda^- = \delta_a$ and $\Lambda^+ = \delta_b$, with $0 \leq a \leq b \leq 1$.

(Definition) In general we say that $\Lambda^- \leq \Lambda^+$ in the **partial order of adaptation** if $\Lambda^-[x, 1] \leq \Lambda^+[x, 1]$ for every $x \in [0, 1]$.

Both of the above cases are covered by this.

The magical coupling

Coupling Lemma

Let $\Delta = \{(y, z) \in [0, 1]^2 : y + z \in [0, 1]\}$ and consider two finite measures Λ^+, Λ^- on $[0, 1]$. If $\Lambda^- \leq \Lambda^+$ then there exists a finite measure Λ^1 on Δ and two finite measures $\Lambda^{+,1}$ and $\Lambda^{+,2}$ on $[0, 1]$ such that $\Lambda^+ = \Lambda^{+,1} + \Lambda^{+,2}$, and such that the following are satisfied:

- $\Lambda^-(A) = \Lambda^1(\{(y, z) : y \in A\})$ for any $A \in \mathcal{B}([0, 1])$.
- $\Lambda^{+,1}(A) = \Lambda^1(\{(y, z) : y + z \in A\})$ for any $A \in \mathcal{B}([0, 1])$.
- $\Lambda^+(A) = \Lambda(\{(y, z) : y + z \in A\})$, where the measure Λ on Δ is defined by

$$\Lambda(dy, dz) = \Lambda^1(dy, dz) + \delta_0(dy) \otimes \Lambda^{+,2}(dz).$$

In particular, if $\|\Lambda^-\| = \|\Lambda^+\|$, then we can take $\Lambda^+ = \Lambda^{+,1}$, $\Lambda = \Lambda^1$, and the measure ρ on $[0, 1]^2$ defined by

$$\rho(A \times B) = \Lambda(\{(y, z) : y \in A, y + z \in B\}), \quad A, B \in \mathcal{B}([0, 1]),$$

is a coupling of Λ^- and Λ^+ such that $\rho\{(y, z) : y > z\} = 0$.

Remark: There is a nice connection to the theory of optimal transport.

Applying the coupling

For any measurable function $f : [0, 1] \mapsto [0, 1]$ such that $f(0) = 0$,

$$\int_{\Delta} f(y) \Lambda(dy, dz) = \int_{[0,1]} f(y) \Lambda^-(dy), \text{ and } \int_{\Delta} f(y+z) \Lambda(dy, dz) = \int_{[0,1]} f(z) \Lambda^+(dz).$$

Therefore the generator of the frequency process of the Λ -asymmetric Moran model becomes

$$\begin{aligned} \mathcal{B}^N f(x) &= x \int_{\Delta} \mathbb{E} \left[f \left(x + \frac{1}{N} \text{Binom}(N(1-x), y) \right) - f(x) \right] \Lambda(dy, dz) \\ &\quad + (1-x) \int_{\Delta} \mathbb{E} \left[f \left(x - \frac{1}{N} \text{Binom}(Nx, y+z) \right) - f(x) \right] \Lambda(dy, dz). \end{aligned}$$

We only need one measure Λ now, not two.

Applying the coupling

- Construction of the Λ -asymmetric ancestral selection graph
- Scaling limits of the forward and backward processes
- Griffiths' representation for the fixation probabilities

Reconsidering the frequency process

Figure: The realisation of the Λ -asymmetric frequency process from before, now in terms of the coupling construction. Black arrows occur with probability y , grey ones with probability z sampled according to Λ . Individuals of type $+$ may reproduce through any arrow, individuals of type $-$ only through black arrows.

The Λ -asymmetric ancestral selection graph

Λ -asymmetric ancestral selection graph, ASG

Consider a Poisson processes M^N with values in $\mathbb{R}_+ \times [0, 1] \times [N] \times \Delta \times [0, 1]^N$ and intensity measure $dt \times dm \times \Lambda(dy, dz) \times du_1 \times du_2 \dots \times du_N$, where dm denotes the uniform measure on $[N]$. Each point $(t, i) \in \mathbb{R} \times [N]$, represents the i -th individual alive at time t .

- We say that at time t there is a *neutral arrow* between i and j if there is a point $(t, i, y, z, u_1, u_2, \dots, u_N) \in M^N$ such that $u_j \in [0, y]$.
- We say that at time t there is a *selective arrow* between i and j if there is a point $(t, i, y, z, u_1, u_2, \dots, u_N) \in M^N$ such that $u_j \in [0, y + z]$.

The ancestral selection graph is then given by $(\mathbb{R}_+ \times [N], M^N)$.

This is the formal construction behind the previous figure.

Ancestral process

From the ancestral selection graph resp. its graphical representation we can consider the ancestry of a sample (going backward in time).

We denote by A_t^N the number of potential ancestors of a sample of n individuals, at backward time t .

Ancestral process

$(A_t^N)_{t \geq 0}$ is a continuous-time Markov chain with values in $[N]$ starting at $A_0^{N,T} = n$ and transition rates

$$n \mapsto \begin{cases} n - k & \text{at rate } \frac{n}{N} \int_{\Delta} \binom{n-1}{k} y^k (1-y)^{n-1-k} \Lambda(dy, dz), \quad k = 1, \dots, n-1 \\ n - k + 1 & \text{at rate } (1 - \frac{n}{N}) \int_{\Delta} \binom{n}{k} y^k (1-y)^{n-k} \Lambda(dy, dz), \quad k = 2, \dots, n \\ n + 1 & \text{at rate } (1 - \frac{n}{N}) \int_{\Delta} [(1-y)^n - (1-y-z)^n] \Lambda(dy, dz). \end{cases}$$

Duality

The processes $(X_t^N)_{t \geq 0}$ and $(A_t^N)_{t \geq 0}$ are dual with respect to the sampling function $S_0(x, n) = \prod_{i=1}^n \frac{Nx+1-i}{N+1-i}$, that is,

$$\mathbb{E}_x[S_0(X_t^N, n)] = \mathbb{E}_n[S_0(x, A_t^N)] \quad \forall t \geq 0, x \in [N_0]/N, n \in \mathbb{N}.$$

Open Problems

- ① Relatively straightforward: Include mutation:
 - ▶ Which types of mutation, how to include in the Λ -asymmetric Moran model
 - ▶ Equilibrium frequencies in the model with mutation
 - ▶ Stationary distribution, characterisation
- ② A more substantial project: Statistical aspects, test for selection etc.
- ③ Can you detect Λ -selection
- ④ What else could be considered: Special cases, limits as rates tend to 0 or ∞ , connections to other models...

Thank you - and let's get started!