Hammond and Sheffield's power law Pólya's urn

Jan Lukas Igelbrink
JGU Mainz \& GU Frankfurt

(2)

NewScientist

Nows Podcasts Video Technology Space Physics Health More * Shop Courses Events
Extinct date palms grown from 2000-year-old seeds found near Jerusalem

LIFE 5 February 202
By Alice Klein

A simple model...

$$
\mu(\{n, n+1, \ldots\})=n^{-\alpha} L(n), \quad \alpha>0, L \text { slowly varying. }
$$

$$
L \text { slowly varying }: \Leftrightarrow \lim _{x \rightarrow \infty} \frac{L(a x)}{L(x)}=1 \quad \forall a>0
$$

Just think of $L(n) \equiv 1$.

The random partition G_{μ}（of \mathbb{Z} ）

Two regimes

1. $\alpha \in\left(0, \frac{1}{2}\right) \Rightarrow \mathbf{E}\left[R^{\frac{1}{2}}\right]=\infty$ for $R \sim \mu$
2. $\alpha \in\left(\frac{1}{2}, 1\right) \Rightarrow \mathbf{E}[R]=\infty$ and $\mathbf{E}\left[R^{\frac{1}{2}}\right]<\infty$ for $R \sim \mu$

$\alpha \in\left(0, \frac{1}{2}\right)$

The random partition G_{μ} of \mathbb{Z} has infinitely many components a.s.!

This story is told in Hammond\& Sheffield Power law Pólya's urn and fractional Brownian motion, PRTF 2013 and taken up in
I.\& Wakolbinger Asymptotic gaussianity via coalescence probabilites in the Hammond-Sheffield urn, ALEA2023,
as well as in ongoing work with A. González Casanova Branching fractional Brownian motion: discrete approximations and maximal displacement.

$\alpha \in\left(\frac{1}{2}, 1\right)$

The random partition G_{μ} of \mathbb{Z} has one component a.s.!

MRCA of two individuals i and j

Distribution of $\operatorname{MRCA}(0, n)$ for $n \rightarrow \infty$

$\frac{\operatorname{MRCA}(0, n)}{n} \stackrel{(d)}{=} \frac{\operatorname{MRCA}(i, i+n)}{n} \stackrel{n \rightarrow \infty}{\Longrightarrow} \operatorname{Beta}^{\prime}(1-\alpha, 2 \alpha-1)$

Distribution of $\operatorname{MRCA}(0, n)$ for $n \rightarrow \infty$

$$
\frac{\operatorname{MRCA}(0, n)}{n} \stackrel{(d)}{=} \frac{\operatorname{MRCA}(i, i+n)}{n} \stackrel{n \rightarrow \infty}{\Longrightarrow} \operatorname{Beta}^{\prime}(1-\alpha, 2 \alpha-1)
$$

In particular this means

$$
\mathbf{P}(\operatorname{MRCA}(0, n) / n>x) \sim \text { const } \cdot x^{1-2 \alpha}
$$

and even more for all sequences $\theta_{n} \rightarrow \infty$

$$
\mathbf{P}\left(\operatorname{MRCA}(0, n) / n>x \theta_{n}\right) \sim \text { const } \cdot\left(x \theta_{n}\right)^{1-2 \alpha} .
$$

But what about MRCA $([0, n])$?

Observe first that only $\approx n^{1-\alpha}$ individuals do not coalesce in their first jump.

But what about MRCA $([0, n]) ?$

Observe first that only $\approx n^{1-\alpha}$ individuals do not coalesce in their first jump.

Open questions:

- How long does it take for $n^{1-\alpha}-n^{1-\varepsilon}$ many individuals to find their MRCA?
- On which scale does $\operatorname{MRCA}([0, n])$ typically live?
- Is the game decided by the one individual of $[0, n]$ with the largest jump? This would be of order $n^{\frac{1}{\alpha}}$.

