MA20034. Probability & Random Processes Example Sheet Seven

- 1. Suppose $p \ge 1$. Recall that $X \in \mathcal{L}^p$ means that $\mathbb{E}(|X|^p) < \infty$. Show that $X \in \mathcal{L}^p$ implies that $X \in \mathcal{L}^q$ for all $q \in [1, p]$. *Hint:* Observe that $y^q \le 1 + y^p$ for $y \ge 0$.
- 2. Use Markov's inequality to show that $X_n \to X$ in \mathcal{L}^1 implies that $X_n \to X$ in probability.
- 3. Suppose Y_1, Y_2, \ldots is a sequence of RVs with $\mathbb{P}(Y_n = 0) = n^{-2}$ and $\mathbb{P}(Y_n = n^3) = 1 n^{-2}$. Show that $Y_n \to 0$ in probability but it is not the case that $Y_n \to 0$ in \mathcal{L}^1 . Does $Y_n \to 0$ almost surely here? In general, does $Z_n \to Z$ almost surely imply that $Z_n \to Z$ in \mathcal{L}^1 ?
- 4. Let μ > 0, α ∈ (0,1) and λ_n := μ(1 − α)αⁿ. Suppose that X₀, X₁,... is a sequence of independent RVs where X_n ~ Po(λ_n).
 (a) Find the PGF of X_n, g_n(s) := E(s^{X_n}).
 (b) Define Y_n := ∑_{i=0}ⁿ X_i. Find the PGF of Y_n, h_n(s) := E(s^{Y_n}). Deduce the distribution of Y_n.
 (c) Suppose Z is a Poisson RV of parameter μ. Stating any result you appeal to, use PGFs to show that Y_n converges in distribution to Z, that is, for each k ∈ Z⁺, P(Y_n = k) → P(Z = k) as n → ∞.

(d) Define $Y := \sum_{i=1}^{\infty} X_i$. Use monotone convergence (or continuity of \mathbb{P}) to show that $\mathbb{P}(Y \leq k) = \lim_{n \to \infty} \mathbb{P}(Y_n \leq k)$, and thus $Y \sim Po(\mu)$. Show that (i) $Y_n \to Y$ in probability, (ii) $Y_n \to Y$ in \mathcal{L}^1 , and (iii) $Y_n \to Y$ almost surely.

Hint: For (i) and (ii), observe that $Y - Y_n \sim Po(\theta_n)$ where $\theta_n := \sum_{i=n+1}^{\infty} \lambda_n = \dots$ For (iii), use Borel-Cantelli to show only finitely many of the X_i 's are non-zero.

5. Jensen's inequality. Suppose that $c : \mathbb{R} \to \mathbb{R}$ is a *convex* function, so that for any $a \in \mathbb{R}$, there exists a constant $\lambda \in \mathbb{R}$ such that

 $\forall a \in \mathbb{R}, \exists \lambda \in \mathbb{R}, \text{ such that } c(x) \ge c(a) + \lambda(x-a), \quad \forall x \in \mathbb{R}.$

Draw a picture to visualise this property. Note that $x^2, e^{\theta x}, |x|$ are all convex functions.

Show that for any \mathbb{R} -valued RV X with $\mathbb{E}(|X|) < \infty$ and $\mathbb{E}(|c(X)|) < \infty$ for some convex function c, we have Jensen's inequality:

$$\mathbb{E}(c(X)) \ge c(\mathbb{E}(X)).$$

6. ‡ Cauchy-Schwarz inequality. Suppose $X, Y \in \mathcal{L}^2$. Prove the Cauchy-Schwarz inequality that

$$\{\mathbb{E}(XY)\}^2 \le \mathbb{E}(X^2)E(Y^2).$$

Hint: Set $Z := \lambda X - Y$ and note that $f(\lambda) := \mathbb{E}(Z^2) \ge 0$ is a quadratic in λ , so can have at most one real solution. Now think of what that means in the quadratic formula.

- 7. \ddagger Find a sequence of RVs X_1, X_2, \ldots taking values in $\{0, 1\}$ such that $X_n \to 0$ in \mathcal{L}^1 but it is *not* the case that $X_n \to 0$ almost surely.
- 8. ‡ Let p > q ≥ 1. Suppose (X_i)_{i≥1} is a sequence of real valued RVs with P(X_n = 0) = 1 n^{-(p+q)/2} and P(X_n = n) = n^{-(p+q)/2}.
 (a) Show that X_n → 0 in probability. Recall, Z_n → Z in L^p if E(|Z_n - Z|^p) → 0 as n → ∞.
 (b) Calculate E(|X_n|^q) and hence show that X_n → 0 in L^q.
 (c) Demonstrate that, in general, X_n → X in L^q for some q ≥ 1 does not imply that X_n → X in L^p for p > q.

Note: Questions marked with ‡ are optional and * are harder. 25/11/2009 http://people.bath.ac.uk/massch