MA20034. Probability & random processes . Example Sheet One

- 1. Which of the following three events is most likely?
 - (a) You get at least 1 head when 2 coins are flipped.
 - (b) You get at least 2 heads when 4 coins are flipped.
 - (c) You get at least 3 heads when 6 coins are flipped.
- 2. Suppose you are at a birthday party with n other people. How large must n be to ensure that the probability that you share your birthday with at least one other person is greater than 1/2?
 [Hint: Assume 365 days per year and birthdays are uniformly distributed. Note, ln 2 ≈ 0.693 and log(1 + x) ≈ x for x small.]
- 3. A tennis tournament for 2ⁿ equally matched players is organised as a knock-out with n rounds, the last round being the final. Two players are chosen at random. Calculate the probabilities that they meet:
 (i) in the first round, (ii) in the final, (iii)* in any round.
- 4. The hat matching problem. N people go to a party, each leaving their coat at the door. When they leave, each takes a coat at random.(a) What's the probability that nobody gets the correct coat?
 - (b) What happens to this probability as $N \to \infty$?

(c) Show the expected number of people to get the correct coat is 1. [*Hints:* (a) Let A_i be the event the i^{th} person gets the correct coat, and use the inclusion-exclusion formula. (c) Let $R_N := \sum_{i=1}^N I_{A_i}$.]

A committee of size r is chosen at random from a set of n people. Calculate the probability that m given people will all be on the committee

 (a) directly, and
 (b) using the inclusion-exclusion formula. Deduce that

$$\binom{n-m}{r-m} = \sum_{j=0}^{m} (-1)^j \binom{m}{j} \binom{n-j}{r}.$$

6. *Each packet of Frosties contains one of five possible plastic figures from the Simpsons, the probability a packet contains any specific figure being 1/5, independently of all other packets. After purchasing six packets, show that the probability of having figures of Homer, Bart and Lisa is

$$1 - 3\left(\frac{4}{5}\right)^6 + 3\left(\frac{3}{5}\right)^6 - \left(\frac{2}{5}\right)^6.$$

- 7. Continuity of \mathbb{P} . If events $F_n \uparrow F$, show that $\mathbb{P}(F_n) \uparrow \mathbb{P}(F)$. Deduce that $G_n \downarrow G \Rightarrow \mathbb{P}(G_n) \downarrow \mathbb{P}(G)$. [*Hint:* Note $F = \bigcup_n F_n = \bigcup_n \{F_n \setminus F_{n-1}\}$ with $F_0 := \emptyset$.]
- 8. Properties of the Distribution Function (DF) F_X of RV X.
 (i) State what it means for X to be an ℝ-valued random variable on a probability space (Ω, F, ℙ).
 Define the distribution function F_X : ℝ → [0, 1] by F_X(x) := ℙ(X ≤ x) for all x ∈ ℝ. Show that ℙ(a < X ≤ b) = F_X(b) F_x(a), and
 (a) F_X is non-decreasing,
 (b) lim_{y↓-∞} F_X(y) = 0 and lim_{y↑+∞} F_X(y) = 1,
 (c) F_X is right continuous: for x ∈ ℝ, lim_{y↓x} F_X(y) = F_X(x).
 [*Hint:* Use the continuity of ℙ for (b) and (c).]
 (ii) If Y is a RV on [-∞, +∞], what can you say about F_Y?
- 9. ‡ Extending the fundamental model. Suppose F : ℝ → [0, 1] is a function satisfying properties 8(a)-(c) above.
 (a) Use right-continuity to show that

$$G(u) := \inf\{y : F(y) \ge u\} = \min\{y : F(y) \ge u\},\$$

that is, the infimum is attained. Illustrate G for a simple choice of F. (b) Show that $G(u) \le x \iff u \le F(x)$.

(c) Let U be a uniformly distributed on [0, 1]. Deduce that X := G(U) is a RV on \mathbb{R} with distribution function F.

- 10. \ddagger^* Extending the fundamental model, again. Let U be a uniformly distributed RV on [0, 1]. Write U as its binary expansion, that is, let $U = 0 \cdot B_1 B_2 B_3 B_4 \ldots$ where $(B_i)_{\geq 1}$ is a sequence with $B_i \in \{0, 1\}$ for each i and $U = \sum_{i>1} B_i 2^{-i}$.
 - (i) What can you say about B_1, B_2, \ldots ?

(ii) Explain intuitively how this can be used to *model infinitely many* tosses a fair coin. Draw some diagrams to illustrate your answer.

(iii) Starting from the single uniform random variable U, explain intuitively you can create an *infinite sequence of independent* $RVs U_1, U_2, \ldots$ *each uniformly distributed on* [0, 1]. Amazingly, this means the fundamental model contains infinitely many copies of itself!!! [**Hint:** Place numbered balls in order inside an infinite triangle from the top down!]

Note: Questions marked with ‡ are optional and * are harder. 3/10/2008 http://people.bath.ac.uk/massch