
Cover time for branching random walks on regular trees

Matthew I. Roberts∗

March 15, 2021

Abstract

Let T be the regular tree in which every vertex has exactly d ≥ 3 neighbours. Run
a branching random walk on T , in which at each time step every particle gives birth to a
random number of children with mean d and finite variance, and each of these children moves
independently to a uniformly chosen neighbour of its parent. We show that, starting with one
particle at some vertex 0 and conditionally on survival of the process, the time it takes for
every vertex within distance r of 0 to be hit by a particle of the branching random walk is
r + 2

log(3/2)
log log r + o(log log r).
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1 Introduction and main result

Consider a branching random walk (BRW) on a graphG, beginning with one particle at some vertex,
where each particle branches into a random number of offspring (independently and according to
some fixed distribution), each of which jumps to a uniformly chosen neighbour. The behaviour
of BRW when G = Z is a well studied subject starting with Hammersley [12], Kingman [14] and
several papers by Biggins; see for example [4, 5, 6]. We also highlight an early paper of Bramson
[8], which contrasts with more recent results of Aidekon [1] and Bramson, Ding and Zeitouni [9].

In this article we consider instead the case when the underlying graph G is the regular tree
in which every vertex has exactly d ≥ 3 neighbours (of course, G = Z can be viewed as the case
d = 2). We suppose that the expected number of offspring of each particle in the branching random
walk is also d; this is critical in the geometric sense that the expected number of offspring moving
to each neighbouring site has mean 1. We start with one particle at the root (an arbitrary vertex)
of the tree, and ask for the cover time of a ball of radius r. That is, how long does it take before
every site within distance r of the root has been visited by a particle of the BRW?

To state our result precisely, let T be the infinite d-ary tree in which every vertex has d
neighbours, and fix a vertex which we label 0 and refer to as the root or origin. Suppose that
µ is a probability measure on Z+ such that

∑
j≥0 jµ(j) = d and

∑
j≥0 j

2µ(j) < ∞. Consider a
branching random walk on T , starting with one particle at the root, in which at every time step:

(a) each particle at any site x ∈ T dies and gives birth to a random number of children indepen-
dently and with distribution µ;

(b) each of these offspring independently jumps to a neighbour of x, uniformly at random.

For each vertex x ∈ T , let H(x) be the first time at which there is a particle at x. For r ≥ 0, let
B(r) = {x ∈ T : d(0, x) ≤ r} and ∂B(r) = {x ∈ T : d(0, x) = brc}. We are interested in the cover
time of B(r), defined to be

Tcov(r) = max
x∈B(r)

H(x),
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when r is large. Of course, if µ(0) > 0, there is a positive probability that the process will die
out in finite time; however, since µ has mean larger than one and finite variance, there is strictly
positive probability that the process does not die out in finite time [13]. In this case we say that
the process survives.

Theorem 1. For any d ≥ 3, given that the process survives,

lim
r→∞

Tcov(r)− r
log log r

=
2

log(3/2)
almost surely.

This result is initially surprising for two reasons. The first is that the cover time is so close
(within a constant times log log r) to its trivial lower bound of r. However, upon reading Bramson’s
article [8], one can see the reason for the log log r term, and might guess convergence of the quantity
in our theorem to 2/ log 2. Indeed, in the case d = 2, this is the correct answer. The appearance of
2/ log(3/2) instead comes from the fact that there are exponentially many vertices in ∂B(r), some
of which are hit unusually late; although it is interesting then that the answer does not depend on
the value of d ≥ 3. We give a short heuristic in Section 2.

The article is set out as follows. In Section 2 we give some background to Theorem 1 as well as
a heuristic walkthrough of the proof; we also state some related open problems. In Section 3 we
introduce the key ingredient for our proof of Theorem 1, which is a variant of our BRW in which
we freeze particles that do not move in a particular direction. We then prove the lower bound for
Theorem 1 in Section 4, and the upper bound in Section 5.

2 Notation, background, heuristics and open problems

We write f(n) � g(n) to mean that there exist constants 0 < c ≤ C <∞ such that c ≤ f(n)/g(n) ≤
C for all large n. We write Pn,x for the probability measure under which we start with n particles
at the vertex x. More generally, for a collection Γ = (x1, . . . , xn) of vertices, we write PΓ for the
probability measure under which we start with a particle at each of the vertices x1, . . . , xn. For
example P(x,x,x) = P3,x, and P = P(0) = P1,0.

2.1 Background

The problem of how fast a branching random walk spreads first appeared in the mid-1970s, with
papers by Hammersley [12], Kingman [14] and Biggins [4, 5, 6] giving—amongst other results—the
first-order behaviour of the particle at maximal (or minimal) distance from the origin after n steps.
In 1978, Bramson [8] described a branching random walk on Z+, beginning with one particle at 0,
in which at each time step each particle branched into an average of m > 1 new particles, each of
which stayed at its previous location with probability 1/m and moved one step to the right with
probability 1− 1/m. Letting Mn be the position of the minimal particle after n steps, he showed
that

Mn −
⌈ log logn− log(V + o(1))

log 2

⌉
→ 0 (1)

almost surely, where V is some non-trivial random variable. One of the purposes of looking at
this model was that it showed significantly different behaviour from Bramson’s concurrent work
on branching Brownian motion (BBM) [7], demonstrating that giving a result on the detailed
behaviour of Mn was much harder in general for BRW than BBM. In fact, results in the spirit of
[7] were not given for BRW in R until relatively recently, by Aidekon [1] and then Bramson, Ding
and Zeitouni [9]. Bramson’s result (1) is very closely related to the cover time problem in the case
d = 2, and we will use elements of Bramson’s proof in this article.

For branching random walks on other graphs, particularly trees, much of the existing literature
is concerned with recurrence and transience and related questions: see for example [11, 16, 18, 20].
The “maximal particle” question mentioned above for BRW on R has no direct analogue on trees.
One could ask for the maximal distance from the origin over all particles after n steps; it is easy to
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see that with our choice of parameters (d-ary tree and offspring distribution mean d), conditionally
on survival, this is n − O(1) almost surely. Studying the cover time, or equivalently the largest
ball that has been covered in n steps, is an equally natural alternative, and with our choice of
parameters it is a much more delicate and interesting question.

For our proof we will need the following well-known result on critical Galton-Watson processes,
which is originally due to Kolmogorov [15] under a third moment assumption. See for example [17,
Theorem 12.7] for a modern proof.

Lemma 2 (Kolmogorov). Suppose that (Zn, n ≥ 0) is a Galton-Watson process started from
Z0 = 1 satisfying E[Z1] = 1 and σ2 := E[Z2

1 ]− 1 <∞. Then

nP(Zn > 0)→ 2/σ2.

Key to our argument will be a result on the total progeny of a Galton-Watson process up to
generation n due to Pakes [19].

Lemma 3 (Pakes). Suppose that (Zn, n ≥ 0) is a Galton-Watson process started from Z0 = 1
satisfying E[Z1] = 1 and σ2 := E[Z2

1 ]− 1 <∞. Let Sn =
∑n
i=0 Zi. Then for any γ ∈ (0,∞),

P(Sn ≥ γn2 |Zn > 0)→ 1− F (γ)

where F satisfies ∫ ∞
0

e−θvdF (v) =
√

2σ2θ cosech
(√

2σ2θ
)

for all θ ∈ [0,∞).

We will not need the precise form of F , only that F (γ) is strictly smaller than 1 for each finite
γ. As a result, combining Lemmas 2 and 3 (using the same notation), and noting that

P(Sn ≥ γn2) ≥ P({Sn ≥ γn2} ∩ {Zn > 0}) = P(Sn ≥ γn2 |Zn > 0)P(Zn > 0),

we obtain that for each γ ∈ [0,∞) there exists a constant q(γ) > 0 depending only on γ and σ2

such that
lim inf
n→∞

nP(Sn ≥ γn2) ≥ q(γ). (2)

We will also use the following simple and well-known Chernoff bound. Suppose that X is a finite
sum of independent Bernoulli random variables. Then

P

(
X ≤ E[X]

2

)
≤ exp

(
−E[X]

8

)
. (3)

2.2 Heuristics

We now give a heuristic for Theorem 1. We hope that it will provide useful intuition for our proof.
Fix a vertex y in ∂B(r) for large r. In order to hit y by time close to r, some particles must

make long “runs” of consecutive steps towards y without taking any steps away from y. (We
associate each particle with all its ancestors, so that although technically a particle only lives for
one unit of time, when we talk about it making a run of length ` towards y, we mean that it and
its last `− 1 ancestors all stepped towards y.)

Start from one particle at 0, and let Zi be the number of particles at time i that have taken i
steps towards y. Then (Zi, i ≥ 0) forms a critical Galton-Watson process. Although this process
will eventually die out (likely before any particle hits y), its total progeny has infinite mean. This
gives rise to a potentially large number of particles that have taken exactly one step away from
y. Suppose this number is A. Each of these A particles starts another critical Galton-Watson
tree of particles that have taken i − 1 steps towards y at time i. It is known that if we run A
independent critical Galton-Watson processes, or equivalently one critical Galton-Watson process
starting with A initial particles, then with probability of order 1 it will survive for of order A
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generations, with a total progeny of order A2. This gives rise to of order A2 particles that have
taken exactly two steps away from y. Repeating this argument k times suggests that we should

expect (very roughly) A2k−1

particles that have taken exactly k steps away from y, giving rise to

another critical Galton-Watson process starting with (very roughly) A2k−1

initial particles, which

survives for (very roughly) A2k−1

generations.
As soon as one of these processes—say the kth—survives for d(0, y) + k generations, then y

must have been hit by a particle. At the moment it hits y, this particle will have taken k steps in

the wrong direction, and therefore d(0, y) + 2k steps in total. In other words, if A2k−1

> d(0, y) +k

then H(y) ≤ d(0, y) + 2k. The converse is not quite true, but the fact that A2k−1

grows so
quickly means that it is almost true, in that the correction is of smaller order. This implies
that H(y) ≈ d(0, y) + (2/ log 2) log log d(0, y), which can be made rigorous and holds with high
probability for each y.

We might thus expect the cover time of the ball of radius r to equal roughly r+(2/ log 2) log log r.
Indeed, this is essentially the explanation for the (1/ log 2) log log n term in (1) (the extra factor of
2 accounts for the fact that our particles cannot stay still, but must either move towards or away
from y at each step), and gives the correct answer to the cover time problem when d = 2. The fact
that we instead see r+ 2

log(3/2) log log r when d ≥ 3 boils down to the fact that while most vertices

y ∈ ∂B(r) are hit by time r + (2/ log 2) log log r, there are many vertices in ∂B(r), and some are
not hit until later.

To see how this happens, again suppose that we have A particles that have taken exactly one
step away from y. The probability that the resulting critical Galton-Watson process starting with
A initial particles survives for fewer than A1/2+ε generations (for some small ε > 0) is roughly
(1 − c/A1/2+ε)A ≈ exp(−cA1/2−ε). In doing so the particles cover distance roughly A1/2+ε, and
therefore the number of possible vertices y at this distance from the origin that could see such

behaviour is of order (d − 1)A
1/2+ε

. Since, for A large and d > 3, we have (d − 1)A
1/2+ε �

exp(cA1/2−ε), we might expect that some vertices do see such behaviour. The total number of
particles seen if this occurs is of order A ·A1/2+ε = A3/2+ε.

Continuing recursively, we might expect that some vertices y see only A(3/2+ε)k particles that
have taken k steps away from y. Following the same argument as above, we deduce that these
vertices have hitting times satisfying

H(y) ≈ d(0, y) +
2

log(3/2 + ε)
log log d(0, y),

and since ε > 0 was arbitrarily small, this agrees with our desired result.
This argument gives us essentially a first moment estimate on the number of vertices whose

hitting times are of the order stated in Theorem 1. Unfortunately a naive second moment bound
does not work, since the processes seen from two different vertices in the tree are highly dependent,
especially if the two vertices are near each other. To get around this we use the tree structure of
the graph strongly. We fix r′ < r and show that many vertices in ∂B(r′) behave “normally”, in
that they are not hit too early and the number of particles moving towards them is not too large.
For each of these “normal” vertices x we fix a vertex z(x) ∈ ∂B(r) that is in the subtree rooted at
x, by which we mean that any path from 0 to z must pass through x. Using the argument above,
we estimate the probability that z(x) is hit later than usual and has a relatively small number of
particles moving towards it (given that x is normal), and use the tree structure to get independence
of these events for different vertices x. In fact, rather than just carrying out this procedure for the
desired choice of r, we carry out a multi-scale argument using the scales dictated by the argument

above: very roughly, rk ≈ A(1/2+ε)(3/2+ε)k for each k.

2.3 Criticality of µ

We mentioned in the introduction that our model is critical in a certain geometric sense. To explain
more thoroughly, we consider a branching random walk on T where the offspring distribution µ
has mean m not necessarily equal to d. It is well-known that the Galton-Watson tree underlying
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our BRW becomes exinct almost surely when µ ≤ 1, and survives with positive probability when
µ > 1. When µ > 1 we may condition on survival and ask whether the whole of T is eventually
covered by particles of the BRW. A standard calculation shows that the spectral radius of the

d-ary tree is ρ = 2
√
d−1
d , and a (much more general) result of Gantert and Müller [11, Theorem

3.2] implies that when m ≤ 1/ρ there is local extinction and some vertices in T are never hit by
particles of the BRW, whereas when m > 1/ρ the system is recurrent on survival. In the latter
case the cover time Tcov(r) is finite for all r. Since we consider simple random walk in discrete
time, Tcov(r) is at least r, and when m > d it is easy to see—for example via a simple second
moment calculation—that Tcov(r) = r + O(1) almost surely given survival. We expect that for
m ∈ (1/ρ, d), conditionally on survival, Tcov satisfies

lim
r→∞

Tcov(r)− c1r
log r

= c2 almost surely

for some constants c1 and c2; in fact, c1 = c1(m, d) > 1 should satisfy

c1 logm+

(
c1 − 1

2

)
log

(
(d− 1)(c1 + 1)

c1 − 1

)
+ c1 log

(
2c1

d(c1 + 1)

)
= 0. (4)

Determining the value of c2 may be possible using techniques related to those in this paper, together
with tail estimates for the maximal particle in a random walk on a one-dimensional lattice available
from [9, Proposition 3.1]; see also [9, Section 5] for discussion on lattice branching random walks.

We therefore have the following categorisation:

• m ≤ 1: global extinction.

• m ∈ (1, d
2
√
d−1

]: global survival with positive probability, but local extinction and Tcov(r) =

∞ for all large r, almost surely.

• m ∈ ( d
2
√
d−1

, d): conjecture that on survival,

lim
r→∞

Tcov(r)− c1r
log r

= c2 almost surely

for c1 = c1(m, d) > 1 satisfying (4) and some as yet unknown c2.

• m = d: Theorem 1 states that for d ≥ 3, on survival,

lim
r→∞

Tcov(r)− r
log log r

=
2

log(3/2)
almost surely,

and it follows from (1) that when d = 2, on survival

lim
r→∞

Tcov(r)− r
log log r

=
2

log 2
almost surely.

• m > d: Tcov(r) = r +O(1).

2.4 Open questions

One open question is whether our main result, Theorem 1, can be strengthened further, perhaps
along the lines of the result (1) of Bramson [8]. It would also be interesting to give results when
the offspring distribution has mean m ∈ ( d

2
√
d−1

, d), as discussed above.

Our model considers only the simple random walk in discrete time, and one could consider other
random walks, either in discrete or continuous time. One important observation in continuous time
is that the random walk is no longer restricted to any finite set by a fixed time t, and therefore we
will not have Tcov(r) = r −O(1) when the offspring mean is larger than d; instead we expect that
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limr→∞ Tcov(r)/r > 1, with corrections of order log r, as in the (geometrically) subcritical case.
The critical case when the offspring mean equals d should also show a correction of order log r
in this setting, unlike the behaviour identified in Theorem 1. This is more “typical” behaviour,
in that only branching random walks with carefully chosen parameters will see a correction of
order log log r. One example that can be expected to demonstrate a delay of order log log r is the
(discrete-time) lazy branching random walk with offspring distribution mean 2d, where particles
remain at their parent’s location with probability 1/2, or jump to each neighbour with probability
1/(2d). In this case we should have (for d ≥ 3)

lim
r→∞

Tcov(r)− r
log log r

=
1

log(3/2)
almost surely, (5)

since the “mis-steps” that break up long runs are able to remain in place, rather than stepping
in the wrong direction. Alternatively one may consider a system where particles give birth to on
average d children who each jump independently to a uniformly chosen neighbour, but the original
particle remains in place and gives birth to another family at each subsequent time step. Again,
since particles are able to remain in place rather than either jumping towards or away from their
target, we expect (5) to hold for d ≥ 3. A proof of (5) in either of these cases would require a
relatively minor alteration to the strategy used in this paper.

Another option is to extend our results to other trees. For example, what is the cover time
when the underlying graph G is itself a non-trivial Galton-Watson tree? This is a much more
delicate question than the one in this paper. The speed of simple random walk on (non-trivial)
Galton-Watson trees with mean offspring distribution d− 1 is slower than on regular d-ary trees,
and our proof techniques no longer apply. Work is underway to at least partially address this
question.

Further, one may ask for the cover time of tree-indexed random walk on trees, where the time
tree has branching number d, and the space tree has branching number d′. See [2] for the study of
tree-indexed random walks and the book [17] for background. Variants of BRW and tree-indexed
random walks were used in [3, 21] to study the embedding of trees into graphs.

Finally, this paper relies heavily on the fact that the underlying graph G is a tree, so that
there is only one path between any two vertices. It seems natural to expect qualitatively similar
behaviour in more general settings, for example on planar hyperbolic lattices.

3 Freezing particles

3.1 Freezing particles after one step in the wrong direction

Fix a vertex x in our d-ary tree T . Consider our usual BRW (with offspring mean d) on T , but
freeze any particle (that is, prevent it from moving or branching) as soon as it either (a) takes a
step away from x, or (b) reaches x, whichever happens first. In this picture, let Yx be the number
of particles that hit x, let Fx be the number of particles that are frozen as they step away from x,
and let Sx be the total number of particles ever seen (until the time that all particles have become
frozen). If we start with any finite collection of particles, then Sx is finite since at each step any
non-frozen particle must step either towards or away from x and particles are frozen as soon as
they step away from x or reach x.

For x ∈ T and r ≥ 0, let T (x, r) be the set of vertices at distance brc from x in the subtree
rooted at x; that is, those vertices at distance brc from x and brc + d(0, x) from 0. We aim to
provide upper and lower bounds on the number of particles in the freezing process outlined above.
First we give an upper bound in the form of the following simple expectation calculation.

Lemma 4. Fix n ∈ N, R ≥ 1 and x ∈ T . Suppose that Γ consists of vertices which are at distance
at most R from x. Then

EΓ[Yx] = |Γ| and EΓ[Sx] ≤ (d+ 1)R|Γ|.
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Proof. Fix a vertex v ∈ Γ and label the vertices in the path from v to x as v = v0, v1, . . . , vk = x.
Let Zj be the number of particles that reach vj after j steps, for each j ≤ k. For j < k, each
particle at vj independently has a random number of children with distribution µ, which has
mean d and finite variance, each of which moves to vj+1 with probability 1/d. Thus the sequence
(Zj , j = 0, . . . , k) forms a critical Galton-Watson process with finite variance, stopped at generation
k. As a result,

E1,v[Yx] = E1,v[Zk] = 1.

Now, the total number of particles seen is exactly those that contribute to Zj for 0 ≤ j ≤ k − 1,
together with their frozen children. Thus

E1,v[Sx] ≤ (d+ 1)E1,v

[ k−1∑
j=0

Zj

]
= (d+ 1)k

and since v ∈ Γ we have k = d(v, x) ≤ R so E1,v[Sx] ≤ (d + 1)R. To complete the proof of the
lemma we simply sum over v ∈ Γ.

For a lower bound it is easier to bound the number of unfrozen particles, rather than the number
of frozen particles. However, we will eventually need to bound the number of frozen particles, so
we will need the following lemma which checks that if the number of unfrozen particles is large
then the number of frozen particles should be large.

Lemma 5. There exists a constant ν ∈ (0, 1/2) such that for any R,M ∈ N and v, x ∈ T with
d(v, x) ≤ R,

P1,v(Fx + Yx ≤ νSx −RM) ≤ Re−νM .

Proof. As in the proof of Lemma 4, label the vertices in the path from v to x as v = v0, v1, . . . , vk =
x. For each j ≤ k − 1, let Zj be the number of (non-frozen) particles that reach vj after j steps,
and Wj be the number of these particles that have at least one child that is frozen as it steps away
from x.

Note that for each non-frozen particle at vj , the event that it has no children that step away
from x is independent of other non-frozen particles at vj , and has probability

µ(0) + µ(1)(1/d) + µ(2)(1/d)2 + . . . = E[1/dL] < 1

where L is a random variable with distribution µ. Therefore for each j ≤ k − 1,

E1,v[Wj |Zj ] = Zj(1− E[1/dL]).

Given the value of Zj , Wj is the sum of Zj independent Bernoulli random variables. Thus we can
apply the Chernoff bound (3), giving

P1,v

(
Wj ≤ E1,v[Wj |Zj ]/2

∣∣Zj) ≤ e−E1,v [Wj |Zj ]/8

Setting κ = 1− E[1/dL] ∈ (0, 1) and combining the two equations above, we have

P1,v(Wj ≤ κZj/2 |Zj) ≤ e−κZj/8

and so
P1,v(Zj ≥M and Wj ≤ κZj/2) ≤ e−κM/8.

By a union bound, since k = d(v, x) ≤ R,

P1,v(∃j ≤ k − 1 : Zj ≥M and Wj ≤ κZj/2) ≤ ke−κM/8 ≤ Re−κM/8. (6)
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Since Sx =
∑k−1
j=0 Zj + Fx + Yx, we have

P1,v(Fx + Yx ≤ νSx −RM) = P1,v

(
Fx + Yx ≤ ν

k−1∑
j=0

Zj + νFx + νYx −RM
)

= P1,v

(
(1− ν)(Fx + Yx) ≤ ν

k−1∑
j=0

Zj −RM
)

≤ P1,v

(
(1− ν)Fx ≤ ν

k−1∑
j=0

Zj − (1− ν)kM
)

where the last line follows trivially since Yx ≥ 0 and RM ≥ kM ≥ (1 − ν)kM . Now note that

Fx ≥
∑k−1
j=0 Wj , so following on from the above,

P1,v(Fx + Yx ≤ νSx −RM) ≤ P1,v

(
(1− ν)

k−1∑
j=0

Wj ≤ ν
k−1∑
j=0

Zj − (1− ν)kM
)

= P1,v

( k−1∑
j=0

(Wj +M) ≤ ν

1− ν

k−1∑
j=0

Zj

)
≤ P1,v

(
∃j ≤ k − 1 : Wj +M ≤ ν

1− ν
Zj

)
.

Choosing ν ∈ (0, 1/2) such that ν/(1− ν) ≤ κ/2 and ν ≤ κ/8, the result follows from (6).

We can now give our lower bound on the number of frozen particles.

Lemma 6. Suppose that A,n ∈ N, x ∈ T and y ∈ T (x,A). Suppose also that Γ consists of at least
n vertices, none of which is in the subtree rooted at x except possibly at x itself, and all of which
are at distance at most 2A from y. Then provided that A is sufficiently large, we have

PΓ(Fy + Yy ≤ δAn) ≤ e−δn/A

for some constant δ ∈ (0, 1] depending only on d and the variance of µ.

Proof of Lemma 6. Without loss of generality we may assume that |Γ| = n. Label the initial n
particles from 1 to n and say that particle i starts from vertex vi. Run the y-freezing process and
set Xi equal to 1 if particle i has at least A2 descendants in total, and Xi = 0 otherwise. Fix
ν > 0 as in Lemma 5 and let X ′i equal 1 if particle i has at least νA2/2 frozen descendants (that
is, descendants that contribute to either Fy or Yy), and X ′i = 0 otherwise.

By the argument in the proof of Lemma 4, the number of non-frozen descendants of particle
i after 0, 1, 2, . . . , d(vi, y) − 1 steps forms a critical Galton-Watson process with finite variance,
stopped at generation d(vi, y) − 1. Thus the total number of non-frozen descendants of particle
i is distributed as the total progeny up to generation d(vi, y) − 1 ≥ A − 1 of a Galton-Watson
process with mean offspring number 1 and finite variance. By (2), the probability that a critical
Galton-Watson process with finite variance has total progeny up to generation A − 1 of at least
A2 is at least c/A, for some constant c > 0 depending on the variance. Thus, for each i,

PΓ(Xi = 1) ≥ c/A.

Also, by Lemma 5, choosing M = νA/4 and R = 2A,

PΓ(Xi = 1 but X ′i = 0) ≤ 2Ae−ν
2A/4.

which for A sufficiently large is at most c/(2A). Therefore, for A sufficiently large,

PΓ(X ′i = 1) ≥ PΓ(Xi = 1)− PΓ(X = 1 but X ′ = 0) ≥ c

A
− c

2A
=

c

2A
.
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Letting X =
∑n
i=1X

′
i, we have

EΓ[X] ≥ cn

2A
.

Since X is a sum of independent Bernoulli random variables we can apply the Chernoff bound (3),
obtaining

PΓ

(
X ≤ cn

4A

)
≤ exp

(
− cn

16A

)
.

But if X > cn/(4A), then Fy + Yy must be at least

cn

4A
· νA

2

2
=
cνnA

8
.

Since ν < 1/2, choosing δ = min{cν/8, 1} gives the result.

3.2 Ulam-Harris notation and the FKG inequality

For our next lemma we will need to introduce the FKG inequality in the context of a certain class
of marked forests. To make our discussion precise, we need to introduce some more notation, which
will also be useful in the next section. We introduce the Ulam-Harris set

Ω =
⋃
j∈N

Nj ;

the particles (we talk about particles to avoid confusion with the vertices in our spatial tree T )
in our forest will be elements of Ω, with (3, 2, 7) for example representing the 7th child of the 2nd
child of the 3rd root. For u, v ∈ Ω, we write u ◦ v for the concatenation of u and v, so for example
(3, 2, 7) ◦ (1, 5) = (3, 2, 7, 1, 5). We write u ≤ v and say that u is an ancestor of v if there exists
w ∈ Ω such that u ◦ w = v, and say that u is in generation j if it has j ancestors, or equivalently
if u ∈ Nj+1.

A forest is a subset f ⊂ Ω such that:

• There exists k ∈ N such that (1), (2), . . . , (k) ∈ f , but (`) 6∈ f for ` > k. That is, there are
k ≥ 1 roots.

• For any u, v ∈ Ω, if u ◦ v ∈ f then u ∈ f . That is, if f contains a particle then it contains all
ancestors of that particle.

• For any u ∈ f , there exists Au ∈ {0, 1, 2, . . .} such that u ◦ (1), u ◦ (2), . . . , u ◦ (Au) ∈ f but
u ◦ (`) 6∈ f for ` > Au. That is, every particle in f has a finite number of children.

Say that an up-down k-forest of height at most r is a forest with k roots and no vertices of
generation greater than r, in which every particle except the root in each tree is marked either
“up” or “down”, and internal particles (i.e. those with at least one child) can only be marked “up”.
In the freezing process outlined above, if we start with k particles at y ∈ T , we can think of r as
d(y, x), the number of roots in the forest as k, particles that step towards x being marked as “up”,
and particles that step away from x being marked as “down”.

Indeed, we define a probability measure Pk,r on the set of up-down k-forests of height at most r,
under which each root independently has j children in generation 1 with probability µ(j), and each
child is independently marked “up” with probability 1/d and “down” otherwise. Then each of the
generation 1 particles marked “up” independently has j children in generation 2 with probability
µ(j), each of which is independently marked “up” with probability 1/d and “down” otherwise.
(Particles marked “down” do not have any children.) This continues until we reach generation r,
when all particles have 0 children.

For two up-down k-forests of height at most r, say F1 and F2, we define F1 ∧ F2 to be the
up-down k-forest of height at most r given by taking the intersection of the two forests (as subsets
of Ω), and marking each non-root vertex “up” only if it is marked “up” in both F1 and F2. Also
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define F1 ∨ F2 to be the up-down k-forest of height at most r given by taking the union of the
two forests (as subsets of Ω) and marking a vertex “up” if it is marked “up” in either F1 or F2.
Moreover introduce the partial order � by setting F1 � F2 if F1 ∧ F2 = F1.

Say that an event A is decreasing if 1A(F1) ≥ 1A(F2) whenever F1 � F2. The FKG inequality
[10] says that if A and B are both decreasing events, then

Pk,r(A ∩B) ≥ Pk,r(A)Pk,r(B). (7)

(It is easy to check that Pk,r satisfies the FKG lattice condition with equality, since Pk,r(F ) can be
written as a product over the particles in F of the probability that that particle has the required
number of children and the required mark. Indeed, the collection of offspring numbers and marks
of F1 and F2 together equals the collection of offspring numbers and marks of F1 ∨F2 and F1 ∧F2

together, so Pk,r(F1)Pk,r(F2) = Pk,r(F1 ∨ F2)Pk,r(F1 ∧ F2).)
We deduce the following lemma, which will be needed in the next section.

Lemma 7. Suppose that y ∈ T and x ∈ T (y, r). Then for any k,N ∈ N,

Pk,y(Yx = 0 and Sx ≤ N) ≥ Pk,y(Yx = 0)Pk,y(Sx ≤ N).

Proof. As mentioned above, the freezing process started with k particles at y corresponds to an
up-down k-forest of height at most d(y, x) = r, where particles that step towards x are marked
“up” and particles that step away from x are marked “down”. For F an up-down k-forest of height
at most r, let Ỹ (F ) be the number of “up” particles in generation r and S̃(F ) the total number of
particles in F .

Then Yx, the number of particles frozen at x, has the same distribution as Ỹ (F ) under Pk,r;
and Sx, the total number of particles seen until all particles are frozen, has the same distribution
as S̃(F ) under Pk,r. Thus

Pk,y(Yx = 0 and Sx ≤ N) = Pk,r(Ỹ (F ) = 0 and S̃(F ) ≤ N),

and since the events {Ỹ (F ) = 0} and {S̃(F ) ≤ N} are decreasing, by (7) we have

Pk,r(Ỹ (F ) = 0 and S̃(F ) ≤ N) ≥ Pk,r(Ỹ (F ) = 0)Pk,r(S̃(F ) ≤ N) = Pk,y(Yx = 0)Pk,y(Sx ≤ N),

which completes the proof.

3.3 Freezing particles after k steps in the wrong direction

Fix a vertex x ∈ T and k ∈ N, and consider our original branching random walk. We would like
to generalise the discussion in the previous section, allowing ourselves to freeze any particle (that
is, prevent it from moving or branching) as soon as it either (a) takes its kth step away from x,
or (b) hits x, whichever happens first; we call this the (x, k)-freezing process. However, we would
like to do this in a consistent way for all vertices x, and for all k, so that the analogues of Yx, Fx
and Sx are coupled in a natural way.

To do this we will use the Ulam-Harris labels Ω =
⋃
j∈N Nj and the definition of a forest given

in the previous section, recalling that each particle is an element of Ω and (3, 2, 7) for example
represents the 7th child of the 2nd child of the 3rd initial particle. Recall also that Au is the number
of children of particle u. We can then interpret our original (i.e. unfrozen) branching random walk
as a labelled forest, where every particle has a label X(u) ∈ T corresponding to its position (recall
that T is our d-ary tree).

Let τ be the (random) forest generated by our branching random walk. For each particle

u ∈ τ , let
�
u be the parent of u. To each particle u ∈ τ and vertex x ∈ T we associate the following

additional labels: Jx(u) counts the number of steps that u has taken away from x, and Hx(u)
counts the number of times that u has hit x. We note that these are functions of X(w) for the
ancestors w of u; they do not include any new information. Then define

Y (k)
x = #{u ∈ τ : X(u) = x, Jx(u) ≤ k − 1},
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F (k)
x = #{u ∈ τ : Jx(u) = k, Jx(

�
u) = k − 1, Hx(u) = 0},

and
S(k)
x = #{u ∈ τ : Jx(u) ≤ k − 1}+ F (k)

x .

In the (x, k)-freezing proces described above, Y
(k)
x corresponds to the number of particles that are

frozen at x, F
(k)
x the number of particles that are frozen as they take their kth step away from

x, and S
(k)
x the total number of particles ever seen (until all particles are frozen). In particular,

Y
(1)
x , F

(1)
x and S

(1)
x have the same distributions as the quantities Yx, Fx and Sx described in the

previous section.
We also let Fkx be the σ-algebra generated by the (x, k)-freezing process. More precisely,

Fkx = σ
(
{Au : Jx(u) ≤ k − 1, Hx(u) = 0} ∪ {X(u) : Jx(

�
u) ≤ k − 1, Hx(

�
u) = 0}

)
.

In words, Fkx knows everything about particles that have taken strictly fewer than k steps away
from x and have not hit x; and it knows the position of particles that have just taken their kth
step away from x, or just hit x for the first time (after taking fewer than k steps away from x).

We will use freezing processes in both the lower and upper bounds for Theorem 1. In the
remainder of this section we aim to prove the following proposition, which uses Lemma 4 and will
be used in the lower bound for Theorem 1.

Proposition 8. Suppose that k, n ∈ N, k ≤ n1/2 and x ∈ T (0, n1/2). Then on the event {F (k−1)
x ≤

n and Y
(k−1)
x = 0} we have

P
(
∃z ∈ T (x,An1/2) : Y (k)

z = 0 and F (k)
z ≤ An3/2

∣∣Fk−1
x

)
≥ 1− c/A1/2

for some constant c (depending only on d and the variance of µ) and all large A and n.

We now aim to prove this result. Take a ≥ 5d. We will use a two-stage argument, first showing

that there are, with high probability, many vertices y in T (x, an1/2) that satsify Y
(k−1)
y = 0,

Y
(k)
y < an and F

(k)
y < 3a2n3/2. We call such vertices “good”. Then in the second stage we will

show that with high probability, there is a vertex z in T (y, an1/2) with our desired properties for
at least one of the good vertices y.

To make this argument rigorous, define

Mn(x) = {y ∈ T (x, an1/2) : Y (k−1)
y = 0, Y (k)

y < an and F (k)
y < 3a2n3/2}

and
M̄n(x) = {y ∈ T (x, an1/2) : Y (k−1)

y > 0 or Y (k)
y ≥ an or F (k)

y ≥ 3a2n3/2}.

That is, Mn(x) is the set of good vertices and M̄n(x) is its complement in T (x, an1/2).

Our first aim is to show that Mn(x) is large with high probability, on the event that F
(k−1)
x ≤ n

and Y
(k−1)
x = 0.

Lemma 9. Suppose that k, n ∈ N, k ≤ n1/2, a ≥ 4d and x ∈ T (0, n1/2). Then on the event

{F (k−1)
x ≤ n and Y

(k−1)
x = 0} we have

P
(
|Mn(x)| ≥ 1

2
|T (x, an1/2)|

∣∣∣Fk−1
x

)
≥ 1− 4d

a
.

Proof. Fix y ∈ T (x, an1/2). Note that if we start from one particle at 0, then in order to be (y, k)-

frozen, a particle must first be (x, k − 1) frozen. If furthermore Y
(k−1)
x = 0, then all (x, k − 1)-

frozen particles may take exactly one more step away from y before they are (y, k)-frozen. Thus,

if Y
(k−1)
x = 0, running the (y, 1)-freezing process from the starting configuration consisting of

the (x, k − 1)-frozen particles is equivalent to running the (y, k)-freezing process. Thus, letting
Γ = (v1, . . . , vm) consist of the locations of the (x, k − 1)-frozen particles, we have

P
(
Y (k)
y ≥ an or F (k)

y ≥ 3a2n3/2
∣∣Fk−1

x

)
1{Y (k−1)

x =0} = PΓ(Y (1)
y ≥ an or F (1)

y ≥ 3a2n3/2). (8)
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Since the (x, k − 1)-frozen particles have taken at most k − 1 steps away from x (in fact, if

Y
(k−1)
x = 0, then they have taken exactly k − 1 steps away from x), we know that d(vi, y) ≤
k + d(0, x) + d(x, y) ≤ (1 + 1 + a)n1/2 ≤ 3an1/2. By Lemma 4, we have

EΓ[Y (1)
y ] = EΓ[Yy] = m and EΓ[F (1)

y ] ≤ EΓ[Sy] ≤ (d+ 1) · 3an1/2 ·m

and therefore by Markov’s inequality

PΓ(Y (1)
y ≥ an or F (1)

y ≥ 3a2n3/2) ≤ EΓ[Y
(1)
y ]

an
+

EΓ[F
(1)
y ]

3a2n3/2
≤ m

an
+

3a(d+ 1)mn1/2

3a2n3/2
.

Note that on the event {F (k−1)
x ≤ n and Y

(k−1)
x = 0} we have |Γ| = m ≤ n, so combining the

above with (8), we have

P
(
Y (k)
y ≥ an or F (k)

y ≥ 3a2n3/2
∣∣Fk−1

x

)
1{F (k−1)

x ≤n and Y
(k−1)
x =0} ≤ (2 + d)/a ≤ 2d/a.

Then since Y
(k−1)
x = 0 implies that Y

(k−1)
y = 0, we have

E
[
|M̄n(x)|

∣∣Fk−1
x

]
1{F (k−1)

x ≤n and Y
(k−1)
x =0}

= |T (x, an1/2)| · P
(
Y (k)
y ≥ an or F (k)

y ≥ 3a2n3/2
∣∣Fk−1

x

)
1{F (k−1)

x ≤n and Y
(k−1)
x =0}

≤ 2d

a
|T (x, an1/2)|.

Thus, applying Markov’s inequality again,

P
(
|M̄n(x)| ≥ 1

2
|T (x, an1/2)|

∣∣∣Fk−1
x

)
1{F (k−1)

x ≤n and Y
(k−1)
x =0} ≤

4d

a

and therefore, since |Mn(x)|+ |M̄n(x)| = |T (x, an1/2)|, we have

P
(
|Mn(x)| ≥ 1

2
|T (x, an1/2)|

∣∣∣Fk−1
x

)
1{F (k−1)

x ≤n and Y
(k−1)
x =0} ≥ 1− 4d

a
,

as required.

Next we aim to bound from below the probability that, if y is a good vertex, then there is a
vertex z in T (y, an1/2) such that Yz = 0.

Lemma 10. Suppose that k, n ∈ N, k ≤ n1/2, a ≥ 4d and x ∈ T (0, n1/2). There exists c > 0 such
that if y ∈Mn(x) and n is large, then for any z ∈ T (y, an1/2) we have

P
(
Y

(k)
z(y) = 0 and F

(k)
z(y) − F

(k)
y ≤ 2(d+ 1)a2n3/2

∣∣∣Fky ) ≥ 1

2
e−2cn1/2

.

Proof. Fix z ∈ T (y, an1/2). Note that if we start with one particle at 0, then in order for a particle

to be (z, k)-frozen, it must also be (y, k)-frozen. In fact, to contribute to either Y
(k)
z or F

(k)
z −F (k)

y ,
a particle must be (y, k)-frozen at y specifically. Also, if y ∈ Mn(x), then all particles that are

(y, k)-frozen at y have taken exactly k−1 steps away from y, since Y
(k−1)
y = 0. Thus, if y ∈Mn(x),

then

P
(
Y (k)
z = 0 and F (k)

z − F (k)
y ≤ 2(d+ 1)a2n3/2

∣∣Fky ) ≥ Pbanc,y(Yz = 0 and Fz ≤ 2(d+ 1)a2n3/2).

Of course Fz ≤ Sz, so for y ∈Mn(x) we have

P
(
Y (k)
z = 0 and F (k)

z − F (k)
y ≤ 2(d+ 1)a2n3/2

∣∣Fky ) ≥ Pbanc,y(Yz = 0 and Sz ≤ 2(d+ 1)a2n3/2).
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Applying Lemma 7, we deduce that for y ∈Mn(x),

P
(
Y (k)
z = 0 and F (k)

z − F (k)
y ≤ 2(d+ 1)a2n3/2

∣∣Fky )
≥ Pbanc,y(Yz = 0)Pbanc,y(Sz ≤ 2(d+ 1)a2n3/2). (9)

Note that, starting with any number j ∈ N of particles at y,

Pj,y(Yz = 0) = P1,y(Yz = 0)j .

Recall from the proof of Lemma 6 that under P1,y, the event that Yz equals zero is the event that a
critical Galton-Watson tree (with finite variance) survives for fewer than ban1/2c generations; this
has probability at least 1− c/(an1/2) for some finite constant c by Lemma 2. Thus for large n

Pj,y(Yz = 0) ≥
(

1− c

an1/2

)j
≥ exp

(
− 2cj

an1/2

)
where for the second inequality we used the fact that 1− u ≥ e−2u for 0 ≤ u ≤ 1/2. Also

Pj,y(Sz ≤ 2(d+ 1)a2n3/2) = 1− Pj,y(Sz > 2(d+ 1)a2n3/2) ≥ 1− Ej,y[Sz]

2(d+ 1)a2n3/2

so applying Lemma 4,

Pj,y(Sz ≤ 2(d+ 1)a2n3/2) ≥ 1− (d+ 1) · an1/2 · j
2(d+ 1)a2n3/2

= 1− j

2an
.

Substituting these bounds back into (9), we get that for y ∈Mn(x),

P
(
Y (k)
z = 0 and F (k)

z − F (k)
y ≤ 2(d+ 1)a2n3/2

∣∣Fky ) ≥ exp
(
− 2can

an1/2

)
·
(

1− an

2an

)
=

1

2
e−2cn1/2

which completes the proof.

We now state a simple lemma that will be used in the proof of Proposition 8. Recall that
�
u

denotes the parent of particle u.

Lemma 11. Suppose that x, y ∈ T and x is not in the subtree rooted at y. If X(u) = y and

Hy(
�
u) = 0, then Jx(u) ≥ Jy(u) + 1.

Proof. Let u0 ≤ u1 ≤ . . . ≤ uk = u be the ancestors of u. Take any j ∈ {1, . . . , k − 1} such that
Jy(uj) = Jy(uj−1) + 1, i.e. such that uj jumps away from y. Since T is a tree and X(u) = y, every
step along the path of u that moves away from y must later be retraced. That is, there must be
` > j such that X(u`) = X(uj−1) and X(u`−1) = X(uj); and of course this step is towards y,
so Jy(u`) = Jy(u`−1). But then one of the two steps identified, either from X(uj−1) to X(uj) or
from X(uj) to X(uj−1), must be away from x. In other words, either Jx(uj) = Jx(uj−1) + 1 or
Jx(u`) = Jx(u`−1) + 1. We deduce that, over the jth and `th steps together, the path of u makes
one step towards y and one step away from y, and one step towards x and another away from x.
That is,(

Jy(uj)− Jy(uj−1)
)

+
(
Jy(u`)− Jy(u`−1)

)
=
(
Jx(uj)− Jx(uj−1)

)
+
(
Jx(u`)− Jx(u`−1)

)
.

This is true for any step where Jy(uj) increases, and Jx(uj) is non-decreasing in j, so for other
steps

Jy(uj)− Jy(uj−1) = 0 ≤ Jx(uj)− Jx(uj−1).

As a result,

Jy(uk−1) =

k−1∑
j=1

(
Jy(uj)− Jy(uj−1)

)
≤
k−1∑
j=1

(
Jx(uj)− Jx(uj)

)
= Jx(uk−1).
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On the other hand, at the final step u steps towards y and away from x, so

Jy(u) = Jy(uk−1) ≤ Jx(uk−1) = Jx(u)− 1.

This completes the proof.

Now we prove Proposition 8 by putting the estimates from Lemmas 9 and 10 together, and
using Lemma 11 to ensure that there is enough independence between different freezing processes.

Proof of Proposition 8. Take a ≥ 5d. Let

Gk,rx = σ

( ⋃
y∈T (x,r)

Fky
)
,

the σ-algebra generated by the (y, k)-freezing processes for all y ∈ T (x, r). For each y ∈ T (x, an1/2),

arbitrarily choose a vertex z(y) ∈ T (y, an1/2). Say that y ∈ T (x, an1/2) is “special” if Y
(k)
z(y) = 0

and F
(k)
z(y) − F

(k)
y ≤ 2(d+ 1)a2n3/2.

If y ∈ Mn(x), then since Y
(k−1)
y = 0, any particle u that is (y, k)-frozen at y satisfies Jy(u) =

k − 1 and (obviously) X(u) = y. Thus by Lemma 11, for any other y′ ∈ T (x, ban1/2c), we must

have Jy′(u) ≥ k. This means that no information about descendants of u is included in Gk,ban
1/2c

x .

Since only particles that are (y, k)-frozen at y can contribute to either Y
(k)
z(y) or F

(k)
z(y) − F

(k)
y , we

deduce that

(a) the events
{
{y is special} : y ∈Mn(x)

}
are independent given Gk,ban

1/2c
x , and

(b) P
(
y is special

∣∣Gk,ban1/2c
x

)
= P

(
y is special

∣∣Fky ) for all y ∈Mn(x).

We note next that if y is both good and special, then Y
(k)
z(y) = 0 and F

(k)
z(y) ≤ (2d + 5)a2n3/2.

Thus, using also that Fk−1
x ⊂ Gk,rx for any r ≥ 0,

P
(
∃z ∈ T (x, 2an1/2) : Y (k)

z = 0 and F (k)
z ≤ (2d+ 5)a2n3/2

∣∣Fk−1
x

)
≥ P

(
|Mn(x)| ≥ 1

2
|T (x, an1/2)|, ∃y ∈Mn(x) : y is special

∣∣∣Fk−1
x

)
= E

[
1{|Mn(x)|≥ 1

2 |T (x,an1/2)|}P
(
∃y ∈Mn(x) : y is special

∣∣∣Gk,ban1/2c
x

) ∣∣∣Fk−1
x

]
.

By (a) the above is at least

E
[
1{|Mn(x)|≥ 1

2 |T (x,an1/2)|}

(
1−

∏
y∈Mn(x)

P
(
y is not special

∣∣Gk,ban1/2c
x

)) ∣∣∣∣Fk−1
x

]
.

By (b) and Lemma 10, for any y ∈Mn(x) we have

P
(
y is not special

∣∣Gk,ban1/2c
x

)
= P

(
y is not special

∣∣Fky ) ≤ 1− e−2cn1/2

2
≤ exp

(
− e−2cn1/2

2

)
.

Putting all this together we have shown that

P
(
∃z ∈ T (x, 2an1/2) : Y (k)

z = 0 and F (k)
z ≤ (2d+ 5)a2n3/2

∣∣Fk−1
x

)
≥ E

[
1{|Mn(x)|≥ 1

2 |T (x,an1/2)|}

(
1−

∏
y∈Mn(x)

exp(−e−2cn1/2

/2)

) ∣∣∣∣Fk−1
x

]
≥ P

(
|Mn(x)| ≥ 1

2
|T (x, an1/2)|

∣∣∣Fk−1
x

)(
1− exp(−|T (x, an1/2)|e−2cn1/2

/4)
)
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By Lemma 9, on the event {F (k−1)
x ≤ n and Y

(k−1)
x = 0} this is at least(

1− 4d

a

)(
1− exp

(
− e−2cn1/2

|T (x, an1/2)|/4
))
.

Since |T (y, an1/2)| ≥ (d − 1)an
1/2

, we have exp
(
− e−2cn1/2 |T (y, an1/2)|/4

)
≤ 1/a provided

that a and n are large, so the above is at least 1 − 5d/a. And of course if Y
(k)
z = 0 and F

(k)
z ≤

(2d + 5)a2n3/2, then for any j ≥ 0, any vertex v ∈ T (z, j) ⊂ T (x, 2an1/2 + j) also has Y
(k)
v = 0

and F
(k)
v ≤ (2d+ 5)a2n3/2. Thus

P
(
∃v ∈ T (x, (2d+ 5)a2n1/2) : Y (k)

v = 0 and F (k)
v ≤ (2d+ 5)a2n3/2

∣∣Fk−1
x

)
≥ 1− 5d/a.

Writing A = (2d+ 5)a2 completes the proof.

4 Proof of the lower bound in Theorem 1

We aim to prove that for any η > 0,

P
(

lim inf
n→∞

Tcov(n)− n
log log n

<
2

log(3/2)
− η
)

= 0.

Take δ ∈ (0, 1/4) small and M large, both to be fixed later. For k ≥ 1, let

nk = M (3/2+δ)k , pk = M−δ(3/2+δ)k−1/2, and Rk =

k−1∑
j=0

M (1/2+δ)(3/2+δ)j .

Say that x ∈ ∂B(Rk) is slow if Y
(k)
x = 0 and F

(k)
x ≤ nk. Define Ak to be the event that there is

at least one slow vertex in ∂B(Rk); that is,

Ak = {∃z ∈ ∂B(Rk) : Y (k)
z = 0 and F (k)

z ≤ nk}.

Let Xk be a uniformly chosen slow vertex in ∂B(Rk), or Xk = 0 if there are no such vertices.

Note that when M is large, Rk−1 ≤ n
1/2
k−1 and k ≤ n

1/2
k . Thus, setting A = nδk−1 so that

nk = An
3/2
k−1, Rk − Rk−1 = An

1/2
k−1 and pk = A−1/2, Proposition 8 tells us that for any slow

x ∈ ∂B(Rk−1), we have

P
(
∃z ∈ T (x,Rk −Rk−1) : Y (k)

z = 0 and F (k)
z ≤ nk

∣∣Fk−1
x

)
≥ 1− cpk.

In particular,
P(Ak ∩ Ak−1) = E[P(Ak | Fk−1

Xk−1
)1Ak−1

] ≥ (1− cpk)P(Ak−1)

and therefore
P(Ack ∩ Ak−1) ≤ cpkP(Ak−1) ≤ cpk.

Since

P
( k⋃
j=1

Acj
)
≤ P

( k−1⋃
j=1

Acj
)

+ P(Ack,Ak−1) ≤ P
( k−1⋃
j=1

Acj
)

+ cpk,

by induction we have

P
( k⋃
j=1

Acj
)
≤ c

k∑
j=2

pj + P(Ac1) ≤ c
∞∑
j=2

pj + P(Ac1).

Note that we can make P(Ac1) arbitrarily small by choosing M sufficiently large, since for large
enough r any vertex z ∈ ∂B(r) satisfies Yz = 0 and Fz ≤ r with probability at least 1− ε.
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Choose ε > 0 and δ > 0 arbitrarily small, and M large enough that c
∑∞
j=2 pj + P(Ac1) < ε.

Then P(
⋃
kAck) < ε. On the event Ak, there is a vertex z ∈ ∂B(Rk) such that no particles hit z

without first taking at least k steps away from z. In this case the first hitting time of z (and all
its descendants in the tree) must be at least Rk + 2k. We deduce that

P(Tcov(r) ≥ r + 2k ∀r ≥ Rk, ∀k ≥ 1) > 1− ε.

All that remains now is to invert Rk. Note that if k ≤ log logn
log(3/2+3δ) then exp((3/2 + 3δ)k) ≤ n, so if

n is large then M (3/2+2δ)k ≤ n and indeed Rk ≤ n. Therefore

P
(
Tcov(n) ≥ n+

2 log log n

log(3/2 + 3δ)
for all large n

)
> 1− ε,

and since δ and ε were arbitrary, this completes the proof of the lower bound in Theorem 1.

5 Proof of the upper bound in Theorem 1

We want to show that for any η > 0,

P
(

lim sup
n→∞

Tcov(n)− n
log log n

>
2

log(3/2)
+ η
)

= 0.

Suppose that x ∈ T and y ∈ T (x,A), for some large A ∈ N. Lemma 6 tells us that if Γ consists
of at least n particles none of which is in the subtree rooted at x except possibly at x itself, and
none of which have distance greater than 2A from y, then

PΓ(Fy + Yy ≤ δAn) ≤ e−δn/A

where δ ∈ (0, 1] is some fixed constant.
Now fix N ∈ N. If we start with N particles all at 0, then (for any k ≥ 2) none of the (x, k−1)-

frozen particles are within the subtree rooted at x except possibly at x itself, and all have distance
at most d(0, y) + k from y. Thus if d(0, y) + k ≤ 2A, then recalling that Fk−1

x is the σ-algebra

generated by the (x, k − 1)-freezing process, on the event {F (k−1)
x + Y

(k−1)
x ≥ n} we have

PN,0(F (k)
y + Y (k)

y ≤ δAn | Fk−1
x ) ≤ e−δn/A.

For each k ∈ N set

Nk =
e(3/2)k

δ2a2
and Rk =

k−1∑
j=1

aN
1/2
j

for some small a > 0 to be chosen later, and for z ∈ T define the event

Bkz = {F (k)
z + Y (k)

z ≥ Nk}.

Note that provided a is sufficiently small, we have Rk + k ≤ 2aN
1/2
k−1 for all k ∈ N. Thus by the

argument above, if k ≥ 2, x ∈ ∂B(Rk−1) and y ∈ T (x, aN
1/2
k−1), then on the event Bk−1

x we have

PN,0
(
F (k)
y + Y (k)

y ≤ δaN3/2
k−1

∣∣Fk−1
x

)
≤ exp

(
− δNk−1/aN

1/2
k−1

)
.

Since δaN
3/2
k−1 = Nk, we deduce that

PN,0
(
(Bky )c ∩ Bk−1

x

)
≤ exp

(
− δN1/2

k−1/a
)
.

Let Bk =
⋂
x∈∂B(Rk) Bkx. There are d(d− 1)Rk−1 vertices in ∂B(Rk), so a union bound gives

PN,0
(
Bck ∩ Bk−1

)
≤ d(d− 1)Rk−1 exp

(
− δN1/2

k−1/a
)
.
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Since

PN,0
( k⋃
j=1

Bcj
)
≤ PN,0

( k−1⋃
j=1

Bcj
)

+ PN,0(Bck,Bk−1),

by induction we have

PN,0
( k⋃
j=1

Bcj
)
≤

k∑
j=2

d(d− 1)Rj−1 exp
(
− δN1/2

j−1/a
)

+ PN,0(Bc1). (10)

Now fix k ≥ 1 and suppose that Bk occurs, so for each z ∈ ∂B(Rk), there are at least Nk
particles that are (z, k)-frozen. All such particles have taken at most k steps away from z when
they are frozen. Each of these particles has distance at most Rk + k from z, and therefore the
probability that it has a descendant that hits z without taking any more steps away from z is
bounded from below by the probability that a critical Galton-Watson process with finite variance
survives for Rk + k ≤ 2Rk generations. This is at least c/Rk for some constant c by Lemma 2.
Thus the probability that none of the (z, k)-frozen particles has a descendant that hits z without
taking any more steps away from z is at most (1− c/Rk)Nk ≤ exp(−cNk/Rk). Therefore if H(z)
is the first hitting time of z, we have

PN,0(H(z) > Rk + 2k | Bk) ≤ exp(−cNk/Rk).

Now, if a particle hits z without taking more than k steps away from z, then for every x on the
path from 0 to z, x is hit by time d(0, x) + 2k. Thus

PN,0(∃r ≤ Rk : Tcov(r) > r + 2k | Bk) = PN,0(∃r ≤ Rk, x ∈ ∂B(r) : H(x) > r + 2k | Bk)

≤ PN,0(∃z ∈ ∂B(Rk) : H(z) > Rk + 2k | Bk)

≤ d(d− 1)Rk−1 exp(−cNk/Rk). (11)

Then

PN,0
(
∃k : max

r≤Rk

(Tcov(r)− r) > 2k
)

≤ PN,0
( ∞⋃
j=1

Bcj
)

+ PN,0
(
{∃k, r ≤ Rk : Tcov(r) > r + 2k} ∩

∞⋂
j=1

Bj
)

≤ PN,0
( ∞⋃
j=1

Bcj
)

+

∞∑
k=1

PN,0({∃r ≤ Rk : Tcov(r) > r + 2k} ∩ Bk)

≤ PN,0
( ∞⋃
j=1

Bcj
)

+

∞∑
k=1

PN,0(∃r ≤ Rk : Tcov(r) > r + 2k | Bk).

By (10) and (11), this is at most

∞∑
j=2

d(d− 1)Rj−1e−δN
1/2
j−1/a + PN,0(Bc1) +

∞∑
k=1

d(d− 1)Rk−1 exp(−cNk/Rk).

Recalling that for k ≥ 1

Nk =
e(3/2)k

δ2a2
and Rk =

k−1∑
j=1

aN
1/2
j ,

we note that for any ε > 0, by choosing a sufficiently small we can ensure that

∞∑
j=2

d(d− 1)Rj−1e−δN
1/2
j−1/a +

∞∑
k=1

d(d− 1)Rk−1 exp(−cNk/Rk) < ε
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and thus
PN,0

(
∃k : max

r≤Rk

(Tcov(r)− r) > 2k
)
≤ PN,0(Bc1) + ε.

Since R1 = 0 and N1 = e3/2/(δ2a2), we have B1 = {F (1)
0 + Y

(1)
0 ≥ e3/2/(δ2a2)}. However, under

PN,0, we have F
(1)
0 = 0 and Y

(1)
0 = N , so for N ≥ e3/2/(δ2a2) we have PN,0(B1) = 1 and therefore

PN,0
(
∃k : max

r≤Rk

(Tcov(r)− r) > 2k
)
< ε.

In our original model we started with 1 particle (rather than N particles) at the origin, but by
waiting until the first time at which the number of particles at 0 is at least e3/2/(δ2a2), which is
almost surely finite given that the process survives, we may choose t large enough such that

P1,0

(
∃k : max

r≤Rk

(Tcov(r)− r) > 2k + t
∣∣∣ survival

)
< 2ε.

Since ε > 0 was arbitrary, applying this with k = (1+η) log logn
log(3/2) for arbitrarily small η > 0 completes

the proof of the upper bound in Theorem 1.
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