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Gaussian multiplicative Chaos

We want to give a precise meaning to distributions Mγ,β defined
formally by:

Mγ,β(A) =

∫
A

eγX (x)+iβY (x)dx , A ⊂ D

where:

• γ, β ≥ 0

• D ⊂ C a bounded domain

• X ,Y two centered independent GFF with covariance given
by:

E [X (x)X (y)] = GD(x , y) ∼
|x−y |→0

ln
1

|x − y |
where GD is the Green kernel:

−∆yGD(x , y) = 2πδx



Framework

We consider a family of centered Gaussian processes (Xε(x))x∈D
(ε ≤ 1):

• Covariance: E [Xε(x)Xε(y)] ∼ ln 1
|x−y |+ε →ε→0

GD(x , y)

• Variance: E [Xε(x)2] = ln 1
ε + ln C (x ,D) + o(1) where C (x ,D)

conformal radius.

• ε 7→ Xε independent increments

Same for (Yε(x))x∈D (ε ≤ 1) independent from X .



Gaussian multiplicative Chaos: notations

We define:

Mγ,β
ε (A) =

∫
A

eγXε(x)+iβYε(x)dx , A ⊂ D

Observe that:

Mγ,0
ε (A) =

∫
A

eγXε(x)dx , A ⊂ D



Other Frameworks

One can also work with other ”smooth” cut-offs

• 1985: Kahane, H1-basis decomposition

• 2006-2008: Robert, V., general convolutions

• 2008: Duplantier, Sheffield , circle averages

In fact, one can work with any log-correlated field in any dimension
(Kahane, 1985, Robert, V., 2006, 2008): see our review with
Rhodes.



Gaussian multiplicative chaos: β = 0

Theorem (Kahane, 1985)

There exists a random measure Mγ,0 such that following limit
exists almost surely in the space of Radon measures:

ε
γ2

2 Mγ,0
ε (dx) →

ε→0
Mγ,0(dx).

Mγ,0 is called Gaussian multiplicative chaos associated to the
Green kernel.

Remark

When J.P. Kahane meets Paul Levy...



Gaussian multiplicative chaos: β = 0

Theorem (Kahane, 1985)

The measure Mγ,0 is different from 0 if and only if γ < 2.

Theorem (Kahane, 1985)

For γ < 2, the measure Mγ,0 ”lives” almost surely on a set of

Hausdorff dimension 2− γ2

2 (the set of γ-thick points).

See also Hu, Miller, Peres (2010).



Density of Gaussian multiplicative chaos with respect to γ

Figure: Density of Gaussian multiplicative chaos



Uniformisation of a uniform triangulation: courtesy of N.
Curien

Figure: vvvvvv



Liouville quantum gravity

It is conjectured to be the limit of random planar maps weighted
by a critical statistical physics system (CFT with central charge
c ≤ 1) and conformally mapped to a domain D:

• Ambjorn-Durhuus-Jonsson (2005): Quantum geometry: A
Statistical Field Theory Approach.

• Sheffield (2010): Conformal weldings of random surfaces: SLE
and the quantum gravity zipper. Precise math conjectures.

• Curien (2013): A glimpse of the conformal structure of
random planar maps (c = 0). First step in a mathematical
proof.

• Miller, Sheffield (2014): Quantum Loewner evolution.



Critical Gaussian multiplicative chaos: γ = 2, β = 0

Theorem (Duplantier, Rhodes, Sheffield, V., 2012)

There exists a random measure M such that following limit exists
almost surely in the space of Radon measures:

ε2(2 ln
1

ε
− Xε(x))M2,0

ε (dx) →
ε→0

M
′
(dx).

M
′

is called critical Gaussian multiplicative chaos associated to the
Green kernel.



Critical Gaussian multiplicative chaos: γ = 2, β = 0

Theorem (Duplantier, Rhodes, Sheffield, V., 2012)

The following limit exists almost surely (along suitable
subsequences) in the space of Radon measures:√

ln
1

ε
ε2M2,0

ε (dx) →
ε→0

√
2

π
M
′
(dx).

Theorem (Barral, Kupiainen, Nikula, Saksman, Webb, 2013)

The measure M ′ lives on a set of Hausdorff dimension 0.



Complex Gaussian multiplicative chaos: Phase diagram
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Figure: Phase diagram



Previous works on the topic

Previous work on the complex case:

• Computation of the Free Energy of complex multiplicative
cascades: Derrida, Evans, Speer, 1993. In our context:

lim
ε→0

ln |Mγ,β
ε ([0, 1]2)|

ln 1
ε

• Complex multiplicative cascades: series of works in dimension
1 by Barral, Jin, Mandelbrot, 2010. Essentially investigated
phase I. Partial results in phase III.



Convergence in phase I and it’s frontier I/II (excluding
extremal points)

Theorem (Lacoin, Rhodes, V., 2013)

On phase I and it’s frontier I/II (excluding the extremal points),
the D′(D)-valued distribution:

Mγ,β
ε : ϕ→ ε

γ2

2
−β

2

2

∫
D
ϕ(x)Mγ,β

ε (dx)

converges almost surely in the space D′2(D) of distributions of
order 2 towards a non trivial limit Mγ,β.



The Sine Gordon model

The probability measure is e−S(Y )dY where S(Y ) is the action:

S(Y ) =
1

4π

∫
D
|∇Y (x)|2dx + µ

∫
D

cos(βY (x))dx

Different regimes (ε→ 0):

• β2 < 2: non trivial convergence of E[e−µε
−β2/2 ∫

D cos(βYε(x))dx ]

• 2 ≤ β2 < β2c : ε−β
2/2
∫
D cos(βYε(x))dx ≈ σεN + O(1) where

σε →∞ and N Gaussian variable.

• β2 > β2c : more and more cumulants to take out...



Convergence in the inner phase III and it’s frontier I/III

Theorem (Lacoin, Rhodes, V., 2013)

• When γ ∈ [0, 1[ and β2 + γ2 > 2, we have(
εγ

2−1Mγ,β
ε (A)

)
A⊂D

⇒ (Wσ2M2γ,0(A))A⊂D . (1)

where σ2 := σ2(β2 + γ2) > 0 and W is a complex Gaussian
measure on D with intensity σ2M2γ,0.

• When γ ∈ [0, 1[ and β2 + γ2 = 2, we have(
εγ

2−1| log ε|−1/2Mγ,β
ε (A)

)
A⊂D

⇒ (Wσ2M2γ,0(A))A⊂D . (2)

where σ2 > 0 and W is a complex Gaussian measure on D
with intensity σ2M2γ,0.



Convergence in the frontier phase II/III

Theorem (Lacoin, Rhodes, V., 2013)

When γ = 1 and β2 + γ2 > 2, we have(
| ln ε|1/4Mγ,β

ε (A)
)
A⊂D

⇒ (Wσ2M′(A))A⊂D .

with σ2 := σ2(β) > 0 and Wσ2M′(·) is a complex Gaussian random
measure with intensity σ2M ′.



Conformal Field theory c = 1 coupled to Liouville
Quantum Gravity

Recall that, on phase I and it’s frontier I/II (excluding the extremal
points), the D′(D)-valued distribution:

Mγ,β
ε : ϕ→ ε

γ2

2
−β

2

2

∫
D
ϕ(x)Mγ,β

ε (dx)

converges almost surely in the space D′2(D) of distributions of

order 2 towards a non trivial limit Mγ,β
X ,Y .



Setup

In fact, we must denote

Mγ,β
X ,Y (dx) = eγX (x)+iβY (x)− γ

2

2
E[X (x)2]+β2

2
E[Y (x)2]C (x ,D)

γ2

2
−β

2

2 dx ,

where C (x ,D) is the conformal radius. This is because we do not
renormalize by the mean!



CFT with central charge c = 1 coupled to Gravity

• Polyakov action on a domain D

S(X ,Y ) =
1

4π

∫
D
|∇Y (x)|2dx+

1

4π

∫
D
|∇X (x)|2+QR(x)X (x)dx ,

R is the curvature and Q = 2

• Equivalence class of random surfaces:

(X ,Y )→ (X ◦ ψ + 2 ln |ψ′|,Y ◦ ψ),

where ψ : D̃ → D is a conformal map. See Ginsparg, Moore
(1993), Lectures on 2D gravity and 2D string theory.



The Tachyon fields

Under the above equivalence class (ψ : D̃ → D)

Mγ,β
X◦ψ+2 ln |ψ′|,Y ◦ψ(ϕ) = |ψ′ ◦ ψ−1|2γ−

γ2

2
+β2

2
−2Mγ,β

X ,Y (ϕ ◦ ψ−1),

for every function ϕ ∈ C 2
c (D̃)

Tachyon Fields are conformally invariant. One must solve

2γ − γ2

2
+
β2

2
− 2 = 0↔ γ ± β = 2, γ ∈]1, 2[.



The Tachyon field for (γ = 2, β = 0)

At the special point (γ = 2, β = 0), we recover the special tachyon
field, i.e. the background measure

Mγ,β
X ,Y (A) = M ′(A)

where M ′ is critical Gaussian multiplicative chaos.



Sine-Gordon model

The probability measure is e−S(Y )dY where S(Y ) is the action:

S(Y ) =
1

4π

∫
D
|∇Y (x)|2dx + µ

∫
D

cos(βY (x))dx

Representation of the density of charge ρ of the Coulomb gas:

< ρ(x)ρ(y) >= E[sin(βY (x)) sin(βY (y))e−µ
∫
D cos(βY (z))dz ]



Sine-Gordon model coupled to gravity?

The probability measure is e−S(X ,Y )dXdY where S(X ,Y ) is the
action:

S(X ,Y ) =
1

4π

∫
D
|∇Y (x)|2dx +

1

4π

∫
D
|∇X (x)|2dx

+ µ1

∫
D

cos(βY (x))eγX (x)dx + µ2

∫
D

e2X (x)dx

where γ + β = 2 (see G. Moore, Gravitational Phase transitions
and the Sine-Gordon model).

The problem is linked to defining the Coulomb gas on a random
lattice.
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