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Gaussian multiplicative Chaos

We want to give a precise meaning to distributions M2 defined

formally by:
MVB(A) = / eX)HBYX) gy Ac D
A
where:
* 7,620

e D C C a bounded domain

e X, Y two centered independent GFF with covariance given
by:
1

E[X(x)X(y)] = Gp(x,y) o x—yI

where Gp is the Green kernel:

—A,Gp(x,y) = 2mox



Framework

We consider a family of centered Gaussian processes (X:(x))xep
(e <1):

e Covariance: E[X.(x)Xz(y)] ~ _e Gp(x,y)

N T

e Variance: E[X:(x)?] =Inl+InC(x, D)+ o(1) where C(x, D)
conformal radius.

e ¢ — X, independent increments

Same for (Yz(x))xep (¢ < 1) independent from X.



Gaussian multiplicative Chaos: notations

We define:

M4 (A) = / EPCITIBY)dy AC D
A

Observe that:

3

M2O(A) = / eXMdx, AcD
A



Other Frameworks

One can also work with other "smooth” cut-offs
e 1985: Kahane, H!-basis decomposition
e 2006-2008: Robert, V., general convolutions
e 2008: Duplantier, Sheffield , circle averages

In fact, one can work with any log-correlated field in any dimension
(Kahane, 1985, Robert, V., 2006, 2008): see our review with
Rhodes.



Gaussian multiplicative chaos: 8 =0

Theorem ( , 1985)

There exists a random measure MY0 such that following limit
exists almost surely in the space of Radon measures:

2
ez MI(dx) — M70(dx).

e—0

M0 js called Gaussian multiplicative chaos associated to the
Green kernel.

RENEILS

When J.P. Kahane meets Paul Levy...



Gaussian multiplicative chaos: 8 =0

Theorem ( , 1985)

The measure M""° s different from 0 if and only if v < 2.

Theorem ( , 1985)

For ~y < 2, the measure M"'? "lives” almost surely on a set of
2
Hausdorff dimension 2 — % (the set of y-thick points).

See also Hu, Miller, Peres (2010).



Density of Gaussian multiplicative chaos with respect to ~
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Figure: Density of Gaussian multiplicative chaos
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Liouville quantum gravity

It is conjectured to be the limit of random planar maps weighted
by a critical statistical physics system (CFT with central charge
¢ < 1) and conformally mapped to a domain D:

e Ambjorn-Durhuus-Jonsson (2005): Quantum geometry: A
Statistical Field Theory Approach.

e Sheffield (2010): Conformal weldings of random surfaces: SLE
and the quantum gravity zipper. Precise math conjectures.

e Curien (2013): A glimpse of the conformal structure of
random planar maps (¢ = 0). First step in a mathematical
proof.

e Miller, Sheffield (2014): Quantum Loewner evolution.



Critical Gaussian multiplicative chaos: v=2,6 =0

Theorem ( , 2012)
There exists a random measure M such that following limit exists

almost surely in the space of Radon measures:

2(21n é — X (x))M2O(dx) — M (d).

e—0

M’ is called critical Gaussian multiplicative chaos associated to the
Green kernel.



Critical Gaussian multiplicative chaos: v=2,6 =0

Theorem ( , 2012)

The following limit exists almost surely (along suitable
subsequences) in the space of Radon measures:

\/In 152M20(dx) — 2M(dx)
e—0

Theorem ( , 2013)

The measure M’ lives on a set of Hausdorff dimension Q.



Complex Gaussian multiplicative chaos: Phase diagram

Figure: Phase diagram



Previous works on the topic

Previous work on the complex case:

e Computation of the Free Energy of complex multiplicative
cascades: Derrida, Evans, Speer, 1993. In our context:

i I IM27([0,1P%)

1
e—0 In 2

e Complex multiplicative cascades: series of works in dimension
1 by Barral, Jin, Mandelbrot, 2010. Essentially investigated
phase I. Partial results in phase Ill.



Convergence in phase | and it's frontier /Il (excluding

extremal points)

Theorem ( , 2013)

On phase | and it's frontier |/l (excluding the extremal points),
the D'(D)-valued distribution:

2 32

M2% g 55 [ pmrd(an
D

converges almost surely in the space D, (D) of distributions of
order 2 towards a non trivial limit M.



The Sine Gordon model

The probability measure is e=>(Y)dY where S(Y) is the action:
S(Y) = /|VY )| dx+u/ cos(BY (x))dx

Different regimes (¢ — 0):

)
e 32 < 2: non trivial convergence of e+ " b cos(8Y=(x))dx]

° 2< B2 < B2 e=B/2 Jp cos(BYe(x))dx ~ o-N + O(1) where
0. — oo and N Gaussian variable.

o« 32> ,82: more and more cumulants to take out...



Convergence in the inner phase Il and it's frontier 1/1lI

Theorem ( , 2013)

e When v € [0,1] and % + % > 2, we have

(M) = Wormpro(Aacp- (1)
AcD

where 02 := 0(3% + v%) > 0 and W is a complex Gaussian
measure on D with intensity o> M?70.

o When v € [0,1] and 8% + % = 2, we have

(=" 1ogel2M2P(A)) = (Wornmo(A)acp - (2)

ACD

where 0> > 0 and W is a complex Gaussian measure on D
with intensity o2 M?7/0.



Convergence in the frontier phase 11/

Theorem ( , 2013)
When v = 1 and 3% +~v% > 2, we have

(Imel*M2(A)) = (Wornr(Aaco-

with 02 := 02(8) > 0 and W2y (-) is a complex Gaussian random
measure with intensity o®M'.



Conformal Field theory ¢ = 1 coupled to Liouville

Quantum Gravity

Recall that, on phase | and it's frontier 1/1l (excluding the extremal
points), the D'(D)-valued distribution:

’YQ 52

Mg’g o — 52_2/ (p(x)l\/lg’ﬁ(dx)
D

converges almost surely in the space D5 (D) of distributions of
order 2 towards a non trivial limit M}ﬁy



In fact, we must denote

M (de) = XY= BT TRV G C(x, D)5~ i,

where C(x, D) is the conformal radius. This is because we do not
renormalize by the mean!



CFT with central charge ¢ = 1 coupled to Gravity

e Polyakov action on a domain D

SX¥) = /D VY ()Pt /D VX () P+ QRO)X (x) d,

R is the curvature and Q =2
e Equivalence class of random surfaces:

(X,Y) = (Xoy+2In||, Y o)),

where ¢ : D — D is a conformal map. See Ginsparg, Moore
(1993), Lectures on 2D gravity and 2D string theory.



The Tachyon fields

Under the above equivalence class (¢ : D — D)

M%B ( ) —_ ’w/ o ¢—1‘27—L22+§—2M%5 ( o w—l)
Xow+2In[y/], Yo\ P X, y\¥ ;

for every function ¢ € C2(D)

Tachyon Fields are conformally invariant. One must solve

72 52
2 -5+ —2=00y£6=2 7eL2]



The Tachyon field for (y =2,

At the special point (v = 2,8 = 0), we recover the special tachyon
field, i.e. the background measure

MY (A) = M'(A)

where M’ is critical Gaussian multiplicative chaos.



Sine-Gordon model

The probability measure is e=5(Y)dY where S(Y) is the action:

S5(Y) = /|VY )| dx—{—,u/cos(BY( ))dx

Representation of the density of charge p of the Coulomb gas:

< p(x)ply) >= E[sin(5Y (x)) sin(BY (y))e  Joeos8¥ ()]



Sine-Gordon model coupled to gravity?

The probability measure is e >(X:Y)dXdY where S(X, Y) is the
action:

1

_ 1 2 1/ 2
S(X,Y) = 47T/D|VY(X)] dx + pp D|VX(X)| dx

+u1/ cos(BY(x))eWX(X)dx—i—uz/ X () dx
D D

where 7 + 3 = 2 (see G. Moore, Gravitational Phase transitions
and the Sine-Gordon model).

The problem is linked to defining the Coulomb gas on a random
lattice.
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