Complex Gaussian multiplicative chaos

Vincent Vargas (with H. Lacoin and R. Rhodes)

June 9, 2014

1 Framework and Real Gaussian multiplicative Chaos

2 Complex Gaussian multiplicative chaos

3 Motivations from Liouville Quantum Gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want to give a precise meaning to distributions $M^{\gamma,\beta}$ defined formally by:

$$M^{\gamma,\beta}(A) = \int_A e^{\gamma X(x) + i\beta Y(x)} dx, \ A \subset D$$

where:

- $\gamma, \beta \geq 0$
- $D \subset \mathbb{C}$ a bounded domain
- *X*, *Y* two centered **independent** GFF with covariance given by:

$$E[X(x)X(y)] = G_D(x,y) \underset{|x-y|
ightarrow 0}{\sim} \ln rac{1}{|x-y|}$$

where G_D is the Green kernel:

 $-\Delta_{y}G_{D}(x,y)=2\pi\delta_{x}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We consider a family of centered Gaussian processes $(X_{\varepsilon}(x))_{x \in D}$ $(\varepsilon \leq 1)$:

• Covariance:
$$E[X_{\varepsilon}(x)X_{\varepsilon}(y)] \sim \ln \frac{1}{|x-y|+\varepsilon} \underset{\varepsilon \to 0}{\to} G_D(x,y)$$

Variance: E[X_ε(x)²] = ln ¹/_ε + ln C(x, D) + o(1) where C(x, D) conformal radius.

• $\varepsilon \mapsto X_{\varepsilon}$ independent increments

Same for $(Y_{\varepsilon}(x))_{x \in D}$ ($\varepsilon \leq 1$) independent from X.

We define:

$$M^{\gamma,\beta}_{\varepsilon}(A) = \int_{A} e^{\gamma X_{\varepsilon}(x) + i\beta Y_{\varepsilon}(x)} dx, \ A \subset D$$

Observe that:

$$M^{\gamma,0}_{arepsilon}(A) = \int_{A} e^{\gamma X_{arepsilon}(x)} dx, \ A \subset D$$

(ロ)、(型)、(E)、(E)、 E) の(の)

One can also work with other "smooth" cut-offs

- 1985: Kahane, H¹-basis decomposition
- 2006-2008: Robert, V., general convolutions
- 2008: Duplantier, Sheffield , circle averages

In fact, one can work with any log-correlated field in any dimension (Kahane, 1985, Robert, V., 2006, 2008): see our review with Rhodes.

Theorem (Kahane, 1985)

There exists a random measure $M^{\gamma,0}$ such that following limit exists almost surely in the space of Radon measures:

$$\varepsilon^{\frac{\gamma^2}{2}}M^{\gamma,0}_{\varepsilon}(dx) \xrightarrow[\varepsilon o 0]{} M^{\gamma,0}(dx).$$

 $M^{\gamma,0}$ is called Gaussian multiplicative chaos associated to the Green kernel.

Remark

When J.P. Kahane meets Paul Levy ...

Gaussian multiplicative chaos: $\beta = 0$

Theorem (Kahane, 1985)

The measure $M^{\gamma,0}$ is different from 0 if and only if $\gamma < 2$.

Theorem (Kahane, 1985)

For $\gamma < 2$, the measure $M^{\gamma,0}$ "lives" almost surely on a set of Hausdorff dimension $2 - \frac{\gamma^2}{2}$ (the set of γ -thick points).

See also Hu, Miller, Peres (2010).

Density of Gaussian multiplicative chaos with respect to γ

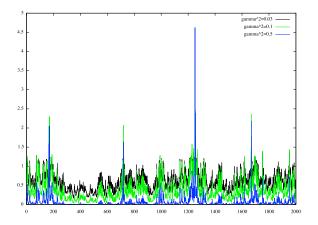
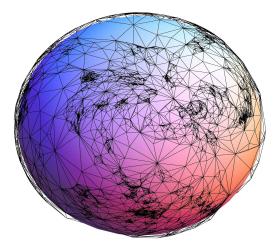


Figure: Density of Gaussian multiplicative chaos

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

Uniformisation of a uniform triangulation: courtesy of N. Curien



It is conjectured to be the limit of random planar maps weighted by a critical statistical physics system (CFT with central charge $c \leq 1$) and conformally mapped to a domain D:

- Ambjorn-Durhuus-Jonsson (2005): Quantum geometry: A Statistical Field Theory Approach.
- Sheffield (2010): Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Precise math conjectures.

- Curien (2013): A glimpse of the conformal structure of random planar maps (c = 0). First step in a mathematical proof.
- Miller, Sheffield (2014): Quantum Loewner evolution.

Theorem (Duplantier, Rhodes, Sheffield, V., 2012)

There exists a random measure M such that following limit exists almost surely in the space of Radon measures:

$$arepsilon^2(2\lnrac{1}{arepsilon}-X_arepsilon(x))M^{2,0}_arepsilon(dx) \stackrel{
ightarrow}{
ightarrow} M^{'}(dx).$$

M' is called critical Gaussian multiplicative chaos associated to the Green kernel.

Theorem (Duplantier, Rhodes, Sheffield, V., 2012)

The following limit exists almost surely (along suitable subsequences) in the space of Radon measures:

$$\sqrt{\ln \frac{1}{\varepsilon}} \varepsilon^2 M_{\varepsilon}^{2,0}(dx) \underset{\varepsilon \to 0}{\to} \sqrt{\frac{2}{\pi}} M'(dx).$$

Theorem (Barral, Kupiainen, Nikula, Saksman, Webb, 2013)

The measure M' lives on a set of Hausdorff dimension 0.

Complex Gaussian multiplicative chaos: Phase diagram

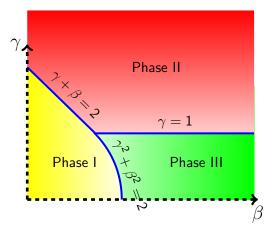


Figure: Phase diagram

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Previous work on the complex case:

• Computation of the Free Energy of complex multiplicative cascades: Derrida, Evans, Speer, 1993. In our context:

$$\lim_{\varepsilon \to 0} \frac{\ln |M_{\varepsilon}^{\gamma,\beta}([0,1]^2)|}{\ln \frac{1}{\varepsilon}}$$

• Complex multiplicative cascades: series of works in dimension 1 by Barral, Jin, Mandelbrot, 2010. Essentially investigated phase I. Partial results in phase III.

Convergence in phase I and it's frontier I/II (excluding extremal points)

Theorem (Lacoin, Rhodes, V., 2013)

On phase I and it's frontier I/II (excluding the extremal points), the D'(D)-valued distribution:

$$M_{\varepsilon}^{\gamma,\beta}: \varphi \to \varepsilon^{\frac{\gamma^2}{2} - \frac{\beta^2}{2}} \int_D \varphi(x) M_{\varepsilon}^{\gamma,\beta}(dx)$$

converges almost surely in the space $\mathcal{D}'_2(D)$ of distributions of order 2 towards a non trivial limit $M^{\gamma,\beta}$.

The probability measure is $e^{-S(Y)}dY$ where S(Y) is the action:

$$S(Y) = \frac{1}{4\pi} \int_D |\nabla Y(x)|^2 dx + \mu \int_D \cos(\beta Y(x)) dx$$

Different regimes ($\varepsilon \rightarrow 0$):

- $\beta^2 < 2$: non trivial convergence of $\mathbb{E}[e^{-\mu\varepsilon^{-\beta^2/2}\int_D \cos(\beta Y_{\varepsilon}(x))dx}]$ • $2 \leq \beta^2 < \beta_c^2$: $\varepsilon^{-\beta^2/2}\int_D \cos(\beta Y_{\varepsilon}(x))dx \approx \sigma_{\varepsilon}N + O(1)$ where $\sigma_{\varepsilon} \to \infty$ and N Gaussian variable.
- $\beta^2 > \beta_c^2$: more and more cumulants to take out...

Convergence in the inner phase III and it's frontier I/III

Theorem (Lacoin, Rhodes, V., 2013)

• When $\gamma \in [0,1[$ and $\beta^2 + \gamma^2 > 2$, we have

$$\left(\varepsilon^{\gamma^2-1}M_{\varepsilon}^{\gamma,\beta}(A)\right)_{A\subset D} \Rightarrow (W_{\sigma^2M^{2\gamma,0}}(A))_{A\subset D}.$$
 (1)

where $\sigma^2 := \sigma^2(\beta^2 + \gamma^2) > 0$ and W is a complex Gaussian measure on D with intensity $\sigma^2 M^{2\gamma,0}$.

• When $\gamma \in [0,1[$ and $\beta^2 + \gamma^2 = 2$, we have

$$\left(\varepsilon^{\gamma^2-1}|\log\varepsilon|^{-1/2}M_{\varepsilon}^{\gamma,\beta}(A)\right)_{A\subset D} \Rightarrow (W_{\sigma^2M^{2\gamma,0}}(A))_{A\subset D}.$$
 (2)

where $\sigma^2 > 0$ and W is a complex Gaussian measure on D with intensity $\sigma^2 M^{2\gamma,0}$.

Theorem (Lacoin, Rhodes, V., 2013)

When $\gamma = 1$ and $\beta^2 + \gamma^2 > 2$, we have

$$\left(|\ln \varepsilon|^{1/4} M_{\varepsilon}^{\gamma,\beta}(A)\right)_{A\subset D} \Rightarrow (W_{\sigma^2 M'}(A))_{A\subset D}.$$

with $\sigma^2 := \sigma^2(\beta) > 0$ and $W_{\sigma^2 M'}(\cdot)$ is a complex Gaussian random measure with intensity $\sigma^2 M'$.

Conformal Field theory c = 1 coupled to Liouville Quantum Gravity

Recall that, on phase I and it's frontier I/II (excluding the extremal points), the $\mathcal{D}'(D)$ -valued distribution:

$$M_{\varepsilon}^{\gamma,\beta}:\varphi\to\varepsilon^{\frac{\gamma^{2}}{2}-\frac{\beta^{2}}{2}}\int_{D}\varphi(x)M_{\varepsilon}^{\gamma,\beta}(dx)$$

converges almost surely in the space $\mathcal{D}'_2(D)$ of distributions of order 2 towards a non trivial limit $M_{X,Y}^{\gamma,\beta}$.

In fact, we must denote

$$M_{X,Y}^{\gamma,\beta}(dx) = e^{\gamma X(x) + i\beta Y(x) - \frac{\gamma^2}{2} \mathbb{E}[X(x)^2] + \frac{\beta^2}{2} \mathbb{E}[Y(x)^2]} C(x,D)^{\frac{\gamma^2}{2} - \frac{\beta^2}{2}} dx,$$

where C(x, D) is the conformal radius. This is because we do not renormalize by the mean!

(ロ)、(型)、(E)、(E)、 E) の(の)

Polyakov action on a domain D

$$S(X,Y) = \frac{1}{4\pi} \int_{D} |\nabla Y(x)|^2 dx + \frac{1}{4\pi} \int_{D} |\nabla X(x)|^2 + QR(x)X(x)dx,$$

R is the curvature and Q = 2

• Equivalence class of random surfaces:

$$(X, Y) \rightarrow (X \circ \psi + 2 \ln |\psi'|, Y \circ \psi),$$

where $\psi : \tilde{D} \to D$ is a conformal map. See Ginsparg, Moore (1993), Lectures on 2D gravity and 2D string theory.

Under the above equivalence class $(\psi: \tilde{D} \rightarrow D)$

$$M_{X\circ\psi+2\ln|\psi'|,Y\circ\psi}^{\gamma,\beta}(\varphi)=|\psi'\circ\psi^{-1}|^{2\gamma-\frac{\gamma^2}{2}+\frac{\beta^2}{2}-2}M_{X,Y}^{\gamma,\beta}(\varphi\circ\psi^{-1}),$$

for every function $\varphi \in C^2_c(\tilde{D})$

Tachyon Fields are conformally invariant. One must solve

$$2\gamma - \frac{\gamma^2}{2} + \frac{\beta^2}{2} - 2 = 0 \leftrightarrow \gamma \pm \beta = 2, \ \gamma \in]1, 2[.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

At the special point ($\gamma = 2, \beta = 0$), we recover the special tachyon field, i.e. the background measure

$$M^{\gamma,\beta}_{X,Y}(A) = M'(A)$$

(日) (日) (日) (日) (日) (日) (日) (日)

where M' is critical Gaussian multiplicative chaos.

The probability measure is $e^{-S(Y)}dY$ where S(Y) is the action:

$$S(Y) = \frac{1}{4\pi} \int_D |\nabla Y(x)|^2 dx + \mu \int_D \cos(\beta Y(x)) dx$$

Representation of the density of charge ρ of the Coulomb gas:

$$<
ho(x)
ho(y)>=\mathbb{E}[\sin(eta Y(x))\sin(eta Y(y))e^{-\mu\int_D\cos(eta Y(z))dz}]$$

Sine-Gordon model coupled to gravity?

The probability measure is $e^{-S(X,Y)}dXdY$ where S(X,Y) is the action:

$$S(X,Y) = \frac{1}{4\pi} \int_{D} |\nabla Y(x)|^2 dx + \frac{1}{4\pi} \int_{D} |\nabla X(x)|^2 dx + \mu_1 \int_{D} \cos(\beta Y(x)) e^{\gamma X(x)} dx + \mu_2 \int_{D} e^{2X(x)} dx$$

where $\gamma + \beta = 2$ (see G. Moore, Gravitational Phase transitions and the Sine-Gordon model).

The problem is linked to defining the Coulomb gas on a random lattice.