Mixing times and Coarse Ricci curvature on the permutation group

Batı Şengül

with Nathanaël Berestycki

University of Cambridge/University of Bath

June 2014

Batı Şengül

イロト イポト イヨト イヨト

S_n is the set of permutations of $\{1, \ldots, n\}$.

 S_n is the set of permutations of $\{1, \ldots, n\}$. $X = (X_t : t \ge 0)$ continuous time random walk: $X_t = \gamma_1 \circ \cdots \circ \gamma_{N_t}$ with $\gamma_i \stackrel{\text{i.i.d.}}{\sim} \gamma$

• Transposition: $\gamma = (i, j)$ with $i \neq j$ both uniform

 S_n is the set of permutations of $\{1, \ldots, n\}$. $X = (X_t : t \ge 0)$ continuous time random walk: $X_t = \gamma_1 \circ \cdots \circ \gamma_{N_t}$ with $\gamma_i \stackrel{\text{i.i.d.}}{\sim} \gamma$

- Transposition: $\gamma = (i, j)$ with $i \neq j$ both uniform
- k-cycles: γ = (x₁,...,x_k) with x_i ≠ x_j for all i ≠ j chosen uniformly

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

 S_n is the set of permutations of $\{1, \ldots, n\}$. $X = (X_t : t \ge 0)$ continuous time random walk: $X_t = \gamma_1 \circ \cdots \circ \gamma_{N_t}$ with $\gamma_i \stackrel{\text{i.i.d.}}{\sim} \gamma$

- Transposition: $\gamma = (i, j)$ with $i \neq j$ both uniform
- k-cycles: γ = (x₁,...,x_k) with x_i ≠ x_j for all i ≠ j chosen uniformly
- X has invariant distribution μ (when k is even μ is uniform on S_n)

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

$$d_{TV}(t) = \|X_t - \mu\|_{TV} = \sum_{\sigma \in \mathcal{S}_n} |\mathbb{P}(X_t = \sigma) - \mu(\sigma)|$$
$$= \inf_{X'_t \sim X_t, Y' \sim \mu} \mathbb{P}(X'_t \neq Y')$$

$$d_{TV}(t) = \|X_t - \mu\|_{TV} = \sum_{\sigma \in S_n} |\mathbb{P}(X_t = \sigma) - \mu(\sigma)|$$
$$= \inf_{X'_t \sim X_t, Y' \sim \mu} \mathbb{P}(X'_t \neq Y')$$

Theorem (Diaconis & Shahshahani (1981))

Let
$$t_{mix} = (1/2)n \log n$$
. Then each $\epsilon > 0$ we have that
for the **transposition random walk** $(k = 2)$:

$$\lim_{n\to\infty} d_{TV}((1-\epsilon) t_{\mathsf{mix}}) = 1 \quad \lim_{n\to\infty} d_{TV}((1+\epsilon) t_{\mathsf{mix}}) = 0.$$

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

E

・ロト ・回ト ・モト ・モト

$$d_{TV}(t) = \|X_t - \mu\|_{TV} = \sum_{\sigma \in S_n} |\mathbb{P}(X_t = \sigma) - \mu(\sigma)|$$
$$= \inf_{X'_t \sim X_t, Y' \sim \mu} \mathbb{P}(X'_t \neq Y')$$

Theorem (Diaconis & Shahshahani (1981))

Let
$$t_{mix} = (1/2)n \log n$$
. Then each $\epsilon > 0$ we have that for the transposition random walk $(k = 2)$:

$$\lim_{n\to\infty} d_{TV}((1-\epsilon) t_{\mathsf{mix}}) = 1 \quad \lim_{n\to\infty} d_{TV}((1+\epsilon) t_{\mathsf{mix}}) = 0.$$

The above is referred to as the **cut-off phenomenon** and t_{mix} is called the **mixing time**.

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

Theorem (Berestycki & Ş. (2014))

Let $t_{mix} = (1/k)n \log n$ and suppose that k = k(n) = o(n). Then each $\epsilon > 0$ we have that

$$\lim_{n\to\infty} d_{TV}((1-\epsilon) t_{\mathsf{mix}}) = 1 \quad \lim_{n\to\infty} d_{TV}((1+\epsilon) t_{\mathsf{mix}}) = 0.$$

Э

(日) (同) (三) (三)

Cutoff phenomenon $t_{mix} = (1/k)n \log n$ for $k \ge n/2$.

Cutoff phenomenon $t_{mix} = (1/k)n \log n$ for $k \ge n/2$.

Theorem (Roichman(1996))

 $t_{\min} \leq (C/k) n \log n$ when k = o(n).

Cutoff phenomenon $t_{mix} = (1/k)n \log n$ for $k \ge n/2$.

Theorem (Roichman(1996))

 $t_{\min} \leq (C/k) n \log n$ when k = o(n).

Theorem (Roussel (2000))

Cutoff phenomenon $+ t_{mix} = (1/k)n \log n$ for $k \leq 6$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Cutoff phenomenon $t_{mix} = (1/k)n \log n$ for $k \ge n/2$.

Theorem (Roichman(1996))

 $t_{\min} \leq (C/k) n \log n$ when k = o(n).

Theorem (Roussel (2000))

Cutoff phenomenon $+ t_{mix} = (1/k)n \log n$ for $k \leq 6$.

Theorem (Berestycki, Schramm, Zeitouni (2011))


```
Cutoff phenomenon + t_{\sf mix} = (1/k)n\log n for k fixed
```


Mixing times and coarse Ricci curvature on the permutation group

L^1 transportation distance:

$$W_1(\nu,\pi) = \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[d(X,Y)]$$

 L^1 transportation distance:

$$W_1(\nu,\pi) = \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[d(X,Y)]$$

Definition (Ollivier (2009))

Let (E, d) be a graph and $\{m_x\}_{x \in E}$ a collection of probability measures on E. For $x, y \in E$ with $x \neq y$ define $W_{t}(m, m)$

$$\kappa(x,y)=1-\frac{vv_1(m_x,m_y)}{d(x,y)}.$$

Define the coarse Ricci curvature as $\kappa = \inf_{x \neq y} \kappa(x, y)$.

Batı Şengül

イロト イポト イヨト イヨト

 $\kappa(x, y) < 0$ if and only if $W_1(m_x, m_y) > d(x, y)$:

 $\kappa(x,y) < 0$ if and only if $W_1(m_x,m_y) > d(x,y)$:

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

- ● ● ●

Now $(E, d) = (S_n, d)$ where $d(\sigma, \sigma')$ minimum number of transpositions τ_1, \ldots, τ_n so that $\sigma = \sigma' \circ \tau_1 \circ \cdots \circ \tau_n$.

Now $(E, d) = (S_n, d)$ where $d(\sigma, \sigma')$ minimum number of transpositions τ_1, \ldots, τ_n so that $\sigma = \sigma' \circ \tau_1 \circ \cdots \circ \tau_n$. For c > 0 we take $m_x = X_{cn/2}^x$ transposition random walk started at x.

Now $(E, d) = (S_n, d)$ where $d(\sigma, \sigma')$ minimum number of transpositions τ_1, \ldots, τ_n so that $\sigma = \sigma' \circ \tau_1 \circ \cdots \circ \tau_n$. For c > 0 we take $m_x = X_{cn/2}^x$ transposition random walk started at x.

Theorem (Berestycki & Ş. (2014))

For c > 0 let κ_c denote the coarse Ricci curvature. Then for $c \leq 1$

$$\lim_{n\to\infty}\kappa_c=0$$

and for c > 1

$$\theta(c)^4 \leq \liminf_{n \to \infty} \kappa_c \leq \limsup_{n \to \infty} \kappa_c \leq \theta(c)^2$$

where $\theta(c) \in (0,1)$ is the solution to $\theta(c) = 1 - e^{-c\theta(c)}$.

Batı Şengül

・ロト ・ 同ト ・ ヨト ・ ヨト

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

590

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

590

æ

$$||\nu-\pi||_{\mathcal{T}V} = \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[\mathbf{1}_{\{X \neq Y\}}] \le \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[d(X, Y)] = W_1(\nu, \pi)$$

$$||\nu-\pi||_{TV} = \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[\mathbf{1}_{\{X \neq Y\}}] \le \inf_{X \sim \nu, Y \sim \pi} \mathbb{E}[d(X, Y)] = W_1(\nu, \pi)$$

Proposition (Bubley & Dyer (1997), Ollivier (2009))

For each
$$s \ge 0$$
,
 $\|m_x^{*s} - \mu\|_{TV} \le diam(E)(1-\kappa)^s$

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

イロト イポト イヨト イヨト

For c > 1 we have that

$$\lim_{n\to\infty} d_{TV}\left(\frac{c}{-\log(1-\theta(c)^4)}\frac{n}{2}\log n\right) = 0.$$

For c > 1 we have that

$$\lim_{n\to\infty} d_{TV}\left(\frac{c}{-\log(1-\theta(c)^4)}\frac{n}{2}\log n\right) = 0.$$

Easy computation:

$$\lim_{c\uparrow\infty}\frac{c}{-\log(1-\theta(c)^4)}=1$$

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

E

< □ > < □ > < □ > < □ > < □ > < □ >

For c > 1 we have that

$$\lim_{n\to\infty} d_{TV}\left(\frac{c}{-\log(1-\theta(c)^4)}\frac{n}{2}\log n\right) = 0.$$

Easy computation:

$$\lim_{c\uparrow\infty}\frac{c}{-\log(1-\theta(c)^4)}=1$$

Hence for each $\epsilon > 0$,

$$\lim_{n\to\infty} d_{TV}((1+\epsilon)(1/2)n\log n) = 0$$

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

Э

< □ > < □ > < □ > < □ > < □ > < □ >

Let t = cn/2, then

 $\kappa_c(x,y) = 1 - \frac{\inf_{X'_t \sim X^x_t, Y'_t \sim X^y_t} \mathbb{E}[d(X'_t, Y'_t)]}{d(x,y)}$

・ロト ・回ト ・モト ・モト

Let t = cn/2, then

$$\kappa_{c}(\mathsf{id}, x) = 1 - \frac{\inf_{X'_{t} \sim X^{\mathsf{id}}_{t}, Y'_{t} \sim X^{\mathsf{x}}_{t}} \mathbb{E}[d(X'_{t}, Y'_{t})]}{d(\mathsf{id}, x)}$$

Batı Şengül

590

E

・ロト ・四ト ・ヨト ・ヨト

Let t = cn/2, then $\kappa_c(\mathsf{id}, \tau) = 1 - rac{\inf_{X'_t \sim X^{\mathsf{id}}_t, Y'_t \sim X^{ au}_t} \mathbb{E}[d(X'_t, Y'_t)]}{1}$

・ロト ・四ト ・ヨト ・ヨト

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

Let t = cn/2, then

$$\kappa_{c}(\mathsf{id},\tau) = 1 - \frac{\inf_{X_{t}' \sim X_{t}^{\mathsf{id}}, Y_{t}' \sim X_{t}^{\tau}} \mathbb{E}[d(X_{t}', Y_{t}')]}{1}$$

Take τ to be a uniform transposition and take $\tau_1=\tau,$ coupling up to time $t_0=t-\log n$

$$X_{t_0}^{\text{id}} = \tau_1 \circ \cdots \circ \tau_{N_{t_0}}$$
$$X_{t_0}^{\tau} = \tau_1 \circ \cdots \circ \tau_{N_{t_0}} \circ \tau_{N_{t_0}+1}.$$

Mixing times and coarse Ricci curvature on the permutation group

L'ANT

Batı Şengül

Э

A D > A D > A D > A D >

Let t = cn/2, then

$$\kappa_{c}(\mathsf{id},\tau) = 1 - \frac{\inf_{X'_{t} \sim X^{\mathsf{id}}_{t}, Y'_{t} \sim X^{\tau}_{t}} \mathbb{E}[d(X'_{t}, Y'_{t})]}{1}$$

Take τ to be a uniform transposition and take $\tau_1 = \tau$, coupling up to time $t_0 = t - \log n$

$$X_{t_0}^{\text{id}} = \tau_1 \circ \cdots \circ \tau_{N_{t_0}}$$
$$X_{t_0}^{\tau} = \tau_1 \circ \cdots \circ \tau_{N_{t_0}} \circ \tau_{N_{t_0}+1}$$

Theorem (Schramm (2005))

There exists a set $A(t_0) \subset \{1, \ldots, n\}$ of size $\approx \theta(c)n$ such that X_{t_0} restricted to $A(t_0)$ "looks like" the uniform permutation.

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

Э

・ロト ・ 同ト ・ ヨト ・ ヨト

Two cases: $\tau_{N_{t_0}+1} = (i,j)$ with $i,j \in A(t_0)$. Then there exists a coupling during $[t_0, t]$ such that

$$X_t^{\mathrm{id}} = X_t^{\tau}$$

Two cases: $\tau_{N_{t_0}+1} = (i,j)$ with $i, j \in A(t_0)$. Then there exists a coupling during $[t_0, t]$ such that

$$X_t^{\mathsf{id}} = X_t^{\tau}.$$

 $au_{N_{t_0}+1} = (i,j)$ with $i \notin A(t_0)$ or $j \notin A(t_0)$. Then take

$$X_t^{\text{id}} = \tau_1 \circ \cdots \circ \tau_{N_t}$$
$$X_t^{\tau} = \tau_1 \circ \cdots \circ \tau_{N_t} \circ \tau_{N_t+1}.$$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Two cases: $\tau_{N_{t_0}+1} = (i,j)$ with $i,j \in A(t_0)$. Then there exists a coupling during $[t_0, t]$ such that

$$X_t^{\mathsf{id}} = X_t^{\tau}.$$

 $au_{N_{t_0}+1}=(i,j)$ with $i\notin A(t_0)$ or $j\notin A(t_0)$. Then take

$$X_t^{\mathsf{id}} = \tau_1 \circ \cdots \circ \tau_{N_t}$$
$$X_t^{\tau} = \tau_1 \circ \cdots \circ \tau_{N_t} \circ \tau_{N_t+1}$$

Conclusion

$$d(X^{ ext{id}}_t,X^ au) = egin{cases} 0 & ext{pba.} \ heta(c)^2 \ 1 & ext{pba.} \ 1- heta(c)^2 \end{cases}$$

i.e. $\kappa_c \geq 1 - \mathbb{E}[d(X_t^{\mathsf{id}}, X^{\tau})] = \theta(c)^2$.

Mixing times and coarse Ricci curvature on the permutation group

No.

Batı Şengül

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Thank You!

Mixing times and coarse Ricci curvature on the permutation group

Batı Şengül

・ロト ・回ト ・モト ・モト