

Liouville Brownian motion and its heat kernel

Rémi Rhodes

Paris-Bath meeting, june 2014

Joint works with
C.Garban, P.Maillard, V.Vargas, O.Zeitouni

- 1 Gaussian Free Field
- 2 Liouville Brownian motion
- 3 Small times asymptotics of the heat kernel

- 1 Gaussian Free Field
- 2 Liouville Brownian motion
- 3 Small times asymptotics of the heat kernel

Gaussian Free Field on the $2d$ -torus \mathbb{T} Gaussian random distribution (Schwartz) $(X_x)_{x \in \mathbb{T}}$ on D s.t.:

- a.s. X lives in the Sobolev $H^{-1}(D)$
- X is centered and formally $\mathbb{E}[X_x X_y] = G(x, y)$
where G = Green function of Laplacian with vanishing mean

$$-\Delta u = 2\pi f, \quad \int_{\mathbb{T}} u = 0.$$

- short scale divergent behaviour:

$$G(x, y) \sim \ln \frac{1}{d_{\mathbb{T}}(x, y)}, \quad \text{as } d_{\mathbb{T}}(x, y) \rightarrow 0.$$

- cannot be defined as a pointwise function

- Let $(\lambda_n)_n$ be the (positive) eigenvalues of \triangle and $(e_n)_n$ the eigenfunctions

$$X(x) = \sum_{k \geq 1} \frac{\alpha_k e_k(x)}{\sqrt{\lambda_k}}$$

where $(\alpha_n)_n$ are i.i.d. with law $\mathcal{N}(0, 1)$.

- n-th level approximation $X_n(x) = \sum_{k=1}^n \frac{\alpha_k e_k(x)}{\sqrt{\lambda_k}}$

- 1 Gaussian Free Field
- 2 Liouville Brownian motion
- 3 Small times asymptotics of the heat kernel

(critical) Liouville Field Theory (LFT)

Study the "metric tensor" on the torus

$$e^{\gamma X(z)} dz^2$$

where X is a Gaussian Free Field and $\gamma \geq 0$ a parameter.

- Motivations coming from $2d$ Liouville quantum gravity
Refs: Polyakov 81, David 88, Distler-Kawai 88, Duplantier-Sheffield 08,...
- Mathematically not straightforward: $e^{\gamma X(z)}$ is not pointwise defined.
⇒ renormalization procedure required

Liouville measure (volume form)

How to give sense to the random measure on \mathbb{T} ?

$$\forall A \subset \mathbb{T}, \quad M_\gamma(A) = \int_A e^{\gamma X(x)} dx.$$

Gaussian multiplicative chaos (Kahane 85):

- Cut off the singularity of the field X : use the "smooth" approximations $(X_n)_n$ and define the approximate measures for $\gamma > 0$

$$M_\gamma^n(A) = \int_A e^{\gamma X_n(x) - \frac{\gamma^2}{2} \mathbb{E}[X_n(x)^2]} dx.$$

- Positive martingale \Rightarrow almost sure convergence towards a limit $M_\gamma(A)$
- Uniform integrability $\Leftrightarrow \gamma < 2$
- for $\gamma < 2$, M_γ is diffuse and is carried by the γ -thick points, which have Hausdorff dimension $2 - \frac{\gamma^2}{2}$.

(Loading...)

Main goal

Construct the Brownian motion \mathcal{B} of the metric tensor

$$e^{\gamma X(x)} dx^2.$$

Formally

$$\mathcal{B}_t^x = B_{F_\gamma^{-1}(t)}^x, \quad F_\gamma(t) = \int_0^t e^{\gamma X(B_r^x)} dr.$$

with B standard Brownian motion on \mathbb{T} .

- Once again, not straightforward because $e^{\gamma X(z)}$ is not pointwise defined.
 \Rightarrow renormalization procedure required

Fix $x \in \mathbb{T}$. How to give sense to the change of times?

$$F_\gamma(t) = \int_0^t e^{\gamma X(B_r^x)} dr.$$

Gaussian multiplicative chaos (again):

- Cut off the singularity of the field X : use the "smooth" approximations $(X_n)_n$ and define the approximation

$$F_\gamma^n(t) = \int_0^t e^{\gamma X_n(B_r^x) - \frac{\gamma^2}{2} \mathbb{E}[X_n(B_r^x)^2]} dr.$$

- For each sampling of B^x , it is a positive martingale $\Rightarrow \mathbb{P}^X$ almost sure convergence towards a limit $F_\gamma(t)$
- $\gamma < 2 \Rightarrow$ uniformly integrable and strictly increasing w.r.t t
- Ref: See also N.Berestycki 13'

Question

Show that \mathbb{P}^X almost surely, the change of times F can be defined **for all starting points**.

- One has to show that, when the environment X is fixed, the law under \mathbb{P}^{B^x} of the change of times F is continuous with respect to x .

Theorem (Garban, R., Vargas 13')

\mathbb{P}^X almost surely,

- one can define the change of times F under \mathbb{P}^{B^x} for all points $x \in \mathbb{T}$.
- under \mathbb{P}^{B^x} , F is strictly increasing and continuous.
- the process $\mathcal{B}_t^x = B_{F_\gamma^{-1}(t)}^x$ defines a Feller Markov process with continuous sample paths.

General result of Dellacherie-Meyer for time changes:

$$\begin{aligned} \mathbb{P}^B \left(\sup_{s \leq T} \left| \int_0^s e^{\gamma X(x+B_r) - \frac{\gamma^2}{2} \mathbb{E}[X^2]} dr - \int_0^s e^{\gamma X(y+B_r) - \frac{\gamma^2}{2} \mathbb{E}[X^2]} dr \right| \geq \eta \right) \\ \leq C \exp \left(- \frac{\eta}{c \sqrt{g(x, y)}} \right). \end{aligned}$$

with

$$\begin{aligned} g(x, y) &= \sup_{z \in \mathbb{T}} \left| \int_{\mathbb{T}} G_T(z + y, w) M_{\gamma}(dw) - \int_{\mathbb{T}} G_T(z + x, w) M_{\gamma}(dw) \right|. \\ G_T(z, z') &= \int_0^T p(r, z, z') dr \sim c \ln \frac{1}{|z - z'|}. \end{aligned}$$

Multifractal analysis:

there exists C random and $\alpha > 0$ such that for all $z \in \mathbb{T}$ and $r < 1$

$$M_{\gamma}(B(z, r)) \leq C r^{\alpha}.$$

Theorem (Garban, R., Vargas 13')

For $\gamma < 2$, a.s. in X ,

- the Liouville Brownian motion \mathcal{B} admits the Liouville measure M_γ as unique invariant measure.
- the Liouville semigroup $(P_t^\gamma)_{t \geq 0}$ admits a heat kernel with respect to M_γ

$$P_t^\gamma f(x) = \mathbb{E}^{B^x} [f(\mathcal{B}_t^x)] = \int_{\mathbb{T}} \mathbf{p}_\gamma(t, x, y) f(y) M_\gamma(dy)$$

Consequence: almost surely in X , for all x and t ,

$$\mathbb{P}^{B^x} \left(\mathcal{B}_t \in \{\gamma\text{-thick points}\} \right) = 1.$$

Theorem (Maillard, R., Vargas, Zeitouni 14')

The heat kernel $\mathbf{p}_\gamma(t, x, y)$ is a continuous function of (t, x, y) .

- ① the Green function of the LBM is the standard Green function

$$\int_{\mathbb{T}} f \, dM_\gamma = 0 \Rightarrow \int_0^\infty P_t^\gamma f(x) \, dt = \int_{\mathbb{T}} G(x, y) f(y) M_\gamma(dy)$$

- ② Consider the eigenfunctions $(e_n)_n$ and eigenvalues $(\lambda_n)_n$ of the Hilbert-Schmidt operator

$$T : f \quad (\text{with } \int_{\mathbb{T}} f \, dM_\gamma = 0) \mapsto \int_{\mathbb{T}} G(x, y) f(y) M_\gamma(dy)$$

- ③ Write

$$\mathbf{p}_\gamma(t, x, y) = \frac{1}{M_\gamma(\mathbb{T})} + \sum_n e^{-\lambda_n t} e_n(x) e_n(y)$$

Main purposes

The heat kernel usually encodes the geometry of the metric tensor. So investigate

- the spectral dimension of LFT (R., Vargas 13')

$$\lim_{t \rightarrow 0} -2 \frac{\ln \mathbf{p}_\gamma(t, x, x)}{\ln t} = 2$$

- the shape of the heat kernel
- Connection with the Hausdorff dimension of LFT
- an "intrinsic" KPZ formula

- 1 Gaussian Free Field
- 2 Liouville Brownian motion
- 3 Small times asymptotics of the heat kernel

What is the shape of the Liouville heat kernel?

If one believes in the existence of the Liouville distance \mathbf{d}_γ , one should have

$$M_\gamma(B_\gamma(x, r)) \sim cr^\beta$$

where $B_\gamma(x, r)$ stands for the \mathbf{d}_γ -balls and β is the Hausdorff dimension of LFT.

Conjecture for short time asymptotics: For x, y fixed and $t \rightarrow 0$

$$\mathbf{p}_\gamma(t, x, y) \asymp C\left(\frac{1}{t} + 1\right) \exp\left(-c\left(\frac{\mathbf{d}_\gamma(x, y)^\beta}{t}\right)^{\frac{1}{\beta-1}}\right)$$

Remark:

-Well posed problem for studying the Hausdorff dimension β : study the short time asymptotics of the heat kernel

Theorem (Maillard, R., Vargas, Zeitouni 2014)

- **An upper bound:** for some β_{up} "large" and all $x, y, t, \delta > 0$

$$\mathbf{p}_\gamma(t, x, y) \leq C \left(\frac{1}{t^{1+\delta}} + 1 \right) \exp \left(-c \left(\frac{\mathbf{d}_{\mathbb{T}}(x, y)^{\beta_{up}}}{t} \right)^{\frac{1}{\beta_{up}-1}} \right).$$

- **A lower bound:** for all x, y fixed and $\eta > 0$ there exists c random s.t for $t \leq T_0$

$$\mathbf{p}_\gamma(t, x, y) \geq \exp \left(-t^{-\frac{1}{\beta_{low}-1}} \right), \quad \beta_{low} = 2 + \frac{\gamma^2}{4}$$

- Work with the resolvent density instead and use the bridge formula

$$\mathbf{r}_\lambda(x, y) = \int_0^\infty e^{-\lambda t} \mathbf{p}_\gamma(t, x, y) dt = \int_0^\infty \mathbb{E}^{\text{Brid}_t^{x,y}} [e^{-\lambda F(t)}] p(t, x, y) dt.$$

- Force the bridge to do atypical things. Trade-off cost/gain on the functional F

$$\mathbb{E}^{\text{Brid}_t^{x,y}} [e^{-\lambda F(t)}] \geq \mathbb{E}^{\text{Brid}_t^{x,y}} [e^{-\lambda F(t)} | A_t] P^{\text{Brid}_t^{x,y}}(A_t)$$

- Force the bridge to stay within a thin tube around $[x, y]$ and speed up the bridge according to the local behaviour of the measure M_γ

- Get the lower bound $\beta_{low} = 2 + \frac{\gamma^2}{4}$.

General framework (Grigor'yan, Hu, Lau 2010)

Let p_t be the heat kernel of a conservative, local, regular Dirichlet form. Assume for some $\alpha, \beta > 0$

$$p_t(x, y) \leq C\left(\frac{1}{t^\alpha} + 1\right), \quad \limsup_{r \rightarrow 0} \sup_{y \in \mathbb{T}} \mathbb{P}^y(\tau_{B(y, r)} \leq r^\beta) = 0.$$

Then

$$p_t(x, y) \leq c\left(\frac{1}{t^\alpha} + 1\right) \exp\left(-c'\left(\frac{d_{\mathbb{T}}(x, y)^\beta}{t}\right)^{\frac{1}{\beta-1}}\right).$$

Remark: for the Liouville BM, the spectral dimension tells us $\alpha = 1$.

Estimates of the exit times of balls

- By time change

$$\mathbb{P}^y(\tau_{B(y,r)} \leq r^\beta) = \mathbb{P}^y(F(T_{B(y,r)}) \leq r^\beta)$$

where $T_{B(y,r)}$ is the exit time of the standard BM.

- use the negative moments estimates of F to get

$$\mathbb{E}^X \mathbb{P}^y(\tau_{B(y,r)} \leq r^\beta) \leq r^{\beta q} \mathbb{E}^X \mathbb{E}^y[F(T_{B(y,r)})^{-q}] = Cr^{\beta q - f(q)}$$

- Use the modulus of continuity of F to extend this estimate over small balls

$$\mathbb{E}^X \left[\sup_{z \in B(y, r^\alpha)} \mathbb{P}^z(\tau_{B(z,r)} \leq r^\beta) \right] \leq Cr^{\beta q - f(q)}$$

- Tile the torus with balls of radius r^α to get

$$\mathbb{E}^X \left[\sup_{z \in \mathbb{T}} \mathbb{P}^z(\tau_{B(z,r)} \leq r^\beta) \right] \leq Cr^{-2\alpha + \beta q - f(q)}$$

- Optimize in q and apply Borel-Cantelli to find the best possible β

Thanks!

- 4 Heat kernel based KPZ formula

Consider a set $K \subset \mathbb{T}$ and compute

- its Hausdorff dimension $\dim_{\gamma}^X(K)$ with the random metric $e^{\gamma X(z)} dz^2$.
- its Hausdorff dimension $\dim_e(K)$ with the Euclidian metric dz^2 .

What KPZ is all about...

Find a relation between

$$\dim_X(K) \quad \text{and} \quad \dim_e(K).$$

- **Problem:** the construction of the distance associated to $e^{\gamma X(z)} dz^2$ remains an open question...

How to measure the dimension of sets?

- if one has a distance \mathbf{d} , one defines the **s-dimensional \mathbf{d} -Hausdorff measure**:

$$H_{\mathbf{d}}^s(K) = \liminf_{\delta \rightarrow 0} \left\{ \sum_k \text{diam}_{\mathbf{d}}(\mathcal{O}_k)^s; K \subset \bigcup_k \mathcal{O}_k, \text{diam}_{\mathbf{d}}(\mathcal{O}_k) \leq \delta \right\},$$

where the \mathcal{O}_k are open sets.

μ Hausdorff dimension

$$\dim_{\mu}(K) = \inf\{s \geq 0; H_{\mathbf{d}}^s(K) = 0\}.$$

How to measure the dimension of sets?

- if one has a distance \mathbf{d} , one defines the s -dimensional \mathbf{d} -Hausdorff measure:

$$H_{\mathbf{d}}^s(K) = \liminf_{\delta \rightarrow 0} \left\{ \sum_k \text{diam}_{\mathbf{d}}(\mathcal{O}_k)^s; K \subset \bigcup_k \mathcal{O}_k, \text{diam}_{\mathbf{d}}(\mathcal{O}_k) \leq \delta \right\},$$

where the \mathcal{O}_k are open sets.

- if one has only a measure μ , one defines the s -dimensional μ -Hausdorff measure:

$$H_{\mu}^s(K) = \liminf_{\delta \rightarrow 0} \left\{ \sum_k \mu(B_k)^s; K \subset \bigcup_k B_k, \text{radius}(B_k) \leq \delta \right\},$$

where the B_k are closed Euclidean balls.

μ Hausdorff dimension

$$\dim_{\mu}(K) = \inf\{s \geq 0; H_{\mu}^s(K) = 0\}.$$

KPZ formula

Fix a compact set K . Consider the Hausdorff dimensions:

- $\dim_{Leb}(K)$ defined with the Lebesgue measure
- $\dim_{M_\gamma}(K)$ defined with the Liouville measure M_γ

Almost surely in X , we have

$$\dim_{Leb}(K) = \left(1 + \frac{\gamma^2}{4}\right) \dim_{M_\gamma}(K) - \frac{\gamma^2}{4} \dim_{M_\gamma}(K)^2$$

- **I.Benjamini, O.Schramm:** KPZ in one dimensional geometry of multiplicative cascades (2008)
- **B. Duplantier, S. Sheffield:** Liouville Quantum Gravity and KPZ (2008)
- **R.Rhodes, V.Vargas:** KPZ formula for log-infinitely divisible multifractal random measures (2008)

Bauer-David 2009

They object that the latter notion of quantum Hausdorff dimension involves **Euclidean** balls (not intrinsic to the metric $e^{\gamma X(z)} dz^2$) and suggest a heat kernel formulation of KPZ.

Euclidean capacity dimension:

Fix a set compact set K and define the Euclidean s -capacity of K for $s \in]0, 1[$:

$$C_s(K) = \sup \left\{ \left(\int_{K \times K} \frac{1}{|x-y|^{2s}} \mu(dx) \mu(dy) \right)^{-1} ; \mu \text{ Borel}, \mu(K) = 1 \right\}$$

and its Euclidean capacity dimension by $\dim_e(K) = \inf\{s \geq 0; C_s(K) = 0\}$

Bauer-David 2009

They object that the latter notion of quantum Hausdorff dimension involves Euclidean balls (not intrinsic to the metric $e^{\gamma X(z)} dz^2$) and suggest a heat kernel formulation of KPZ.

Euclidean capacity dimension:

Fix a set compact set K and define the Euclidean s -capacity of K for $s \in]0, 1[$:

$$C_s(K) = \sup \left\{ \left(\int_{K \times K} \frac{1}{|x-y|^{2s}} \mu(dx)\mu(dy) \right)^{-1} ; \mu \text{ Borel}, \mu(K) = 1 \right\}$$

and its Euclidean capacity dimension by $\dim_e(K) = \inf\{s \geq 0; C_s(K) = 0\}$

Bauer-David 2009

They object that the latter notion of quantum Hausdorff dimension involves **Euclidean** balls (not intrinsic to the metric $e^{\gamma X(z)} dz^2$) and suggest a heat kernel formulation of KPZ.

Euclidean capacity dimension:

Fix a set compact set K and define the **Euclidean s -capacity** of K for $s \in]0, 1[$:

$$C_s(K) = \sup \left\{ \left(\int_{K \times K} \frac{1}{|x-y|^{2s}} \mu(dx) \mu(dy) \right)^{-1}; \mu \text{ Borel}, \mu(K) = 1 \right\}$$

and its **Euclidean capacity dimension** by $\dim_e(K) = \inf\{s \geq 0; C_s(K) = 0\}$

Mellin-Barnes transform of the standard heat kernel:

$$MB(x, y) \stackrel{\text{def}}{=} \int_0^\infty \frac{1}{t^s} \frac{e^{-\frac{|x-y|^2}{2t}}}{2\pi t} dt = \frac{c_s}{|x-y|^{2s}}$$

Euclidean capacity dimension:

Fix a set compact set K and define the **Euclidean s -capacity** of K for $s \in]0, 1[$:

$$C_s(K) = \sup \left\{ \left(\int_{K \times K} MB(x, y) \mu(dx) \mu(dy) \right)^{-1}; \mu \text{ Borel}, \mu(K) = 1 \right\}$$

and its **Euclidean capacity dimension** by $\dim_e(K) = \inf\{s \geq 0; C_s(K) = 0\}$

Mellin-Barnes transform of the standard heat kernel:

$$MB(x, y) \stackrel{\text{def}}{=} \int_0^\infty \frac{1}{t^s} \frac{e^{-\frac{|x-y|^2}{2t}}}{2\pi t} dt = \frac{c_s}{|x-y|^{2s}}$$

Euclidean capacity dimension:

Fix a set compact set K and define the **Euclidean s -capacity** of K for $s \in]0, 1[$:

$$C_s(K) = \sup \left\{ \left(\int_{K \times K} MB(x, y) \mu(dx) \mu(dy) \right)^{-1}; \mu \text{ Borel}, \mu(K) = 1 \right\}$$

and its **Euclidean capacity dimension** by $\dim_e(K) = \inf\{s \geq 0; C_s(K) = 0\}$

Mellin-Barnes transform of the standard heat kernel:

$$MB(x, y) \stackrel{\text{def}}{=} \int_0^\infty \frac{1}{t^s} \frac{e^{-\frac{|x-y|^2}{2t}}}{2\pi t} dt = \frac{c_s}{|x-y|^{2s}}$$

Quantum capacity dimension:

Define in the same way $\dim_\gamma(K)$ by taking the Melling Barnes transform of the Liouville heat kernel $\mathbf{p}_\gamma(t, x, y)$

Heat kernel based KPZ formula (N.Berestycki, Garban, R. Vargas 14')

Fix a compact set K . Consider the capacity dimensions:

- $\dim_e(K)$ defined with the Mellin Barnes of the **Lebesgue** heat kernel
- $\dim_\gamma(K)$ defined with the Mellin Barnes of the **Lebesgue** heat kernel \mathbf{p}_γ

Almost surely in X , we have

$$\dim_e(K) = \left(1 + \frac{\gamma^2}{4}\right) \dim_\gamma(K) - \frac{\gamma^2}{4} \dim_\gamma(K)^2$$