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Free Field

Gaussian Free Field on the 2d-torus T
Gaussian random distribution (Schwartz) (Xx)x∈T on D s.t.:

a.s. X lives in the Sobolev H−1(D)

X is centered and formally E[XxXy] = G(x, y)
where G = Green function of Laplacian with vanishing mean

−4u = 2π f ,
∫

T
u = 0.

short scale divergent behaviour:

G(x, y) ∼ ln
1

dT(x, y)
, as dT(x, y)→ 0.

cannot be defined as a pointwise function
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Construction

• Let (λn)n be the (positive) eigenvalues of4 and (en)n the eigenfunctions

X(x) =
∑
k≥1

αk ek(x)√
λk

where (αn)n are i.i.d. with law N (0, 1).

• n-th level approximation Xn(x) =
n∑

k=1

αk ek(x)√
λk
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(critical) Liouville Field Theory (LFT)
Study the "metric tensor" on the torus

eγX(z) dz2

where X is a Gaussian Free Field and γ ≥ 0 a parameter.

Motivations coming from 2d Liouville quantum gravity
Refs: Polyakov 81, David 88, Distler-Kawai 88, Duplantier-Sheffield 08,...

Mathematically not straightforward: eγX(z) is not pointwise defined.
⇒ renormalization procedure required
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Liouville measure (volume form)

How to give sense to the random measure on T?

∀A ⊂ T, Mγ(A) =
∫

A
eγX(x) dx.

Gaussian multiplicative chaos (Kahane 85):
Cut off the singularity of the field X: use the "smooth" approximations (Xn)n and
define the approximate measures for γ > 0

Mn
γ(A) =

∫
A

eγXn(x)− γ
2

2 E[Xn(x)2] dx.

Positive martingale⇒ almost sure convergence towards a limit Mγ(A)
Uniform integrability⇔ γ < 2
for γ < 2, Mγ is diffuse and is carried by the γ-thick points, which have
Hausdorff dimension 2− γ2

2 .
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Influence of γ

(Loading...)
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Liouville Brownian motion

Main goal
Construct the Brownian motion B of the metric tensor

eγX(x) dx2.

Formally

Bx
t = Bx

F−1
γ (t)

, Fγ(t) =
∫ t

0
eγX(Bx

r) dr.

with B standard Brownian motion on T.

Once again, not straightforward because eγX(z) is not pointwise defined.
⇒ renormalization procedure required
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Starting from one fixed point

Fix x ∈ T. How to give sense to the change of times?

Fγ(t) =
∫ t

0
eγX(Bx

r) dr.

Gaussian multiplicative chaos (again):
Cut off the singularity of the field X: use the "smooth" approximations (Xn)n and
define the approximation

Fn
γ(t) =

∫ t

0
eγXn(Bx

r)−
γ2

2 E[Xn(Bx
r)

2] dr.

For each sampling of Bx, it is a positive martingale⇒ PX almost sure
convergence towards a limit Fγ(t)
γ < 2⇒ uniformly integrable and strictly increasing w.r.t t

Ref: See also N.Berestycki 13’
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Question
Show that PX almost surely, the change of times F can be defined for all starting
points.

One has to show that, when the environment X is fixed, the law under PBx
of the

change of times F is continuous with respect to x.

Theorem (Garban, R., Vargas 13’)
PX almost surely,

one can define the change of times F under PBx
for all points x ∈ T.

under PBx
, F is strictly increasing and continuous.

the process Bx
t = Bx

F−1
γ (t)

defines a Feller Markov process with continuous
sample paths.
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Proof of continuity

General result of Dellacherie-Meyer for time changes:

PB
(

sup
s≤T
|
∫ s

0
eγX(x+Br)− γ

2

2 E[X2] dr −
∫ s

0
eγX(y+Br)− γ

2

2 E[X2] dr| ≥ η
)

≤ C exp
(
− η

c
√

g(x, y)

)
.

with

g(x, y) = sup
z∈T

∣∣∣ ∫
T

GT(z + y,w)Mγ(dw)−
∫

T
GT(z + x,w)Mγ(dw)

∣∣∣.
GT(z, z′) =

∫ T

0
p(r, z, z′) dr ∼ c ln

1
|z− z′|

.

Multifractal analysis:
there exists C random and α > 0 such that for all z ∈ T and r < 1

Mγ

(
B(z, r)

)
≤ Crα.
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Invariant measure and semigroup

Theorem (Garban, R., Vargas 13’)
For γ < 2, a.s. in X,

the Liouville Brownian motion B admits the Liouville measure Mγ as unique
invariant measure.
the Liouville semigroup (Pγt )t≥0 admits a heat kernel with respect to Mγ

Pγt f (x) = EBx
[f (Bx

t )] =
∫

T
pγ(t, x, y)f (y)Mγ(dy)

Consequence: almost surely in X, for all x and t,

PBx
(
Bt ∈ {γ-thick points}

)
= 1.
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Continuity of the heat kernel

Theorem (Maillard, R., Vargas, Zeitouni 14’)
The heat kernel pγ(t, x, y) is a continuous function of (t, x, y).

1 the Green function of the LBM is the standard Green function∫
T

f dMγ = 0⇒
∫ ∞

0
Pγt f (x) dt =

∫
T

G(x, y)f (y)Mγ(dy)

2 Consider the eigenfunctions (en)n and eigenvalues (λn)n of the Hilbert-Schmidt
operator

T : f
(

with
∫

T
f dMγ = 0

)
7→
∫

T
G(x, y)f (y)Mγ(dy)

3 Write
pγ(t, x, y) =

1
Mγ(T)

+
∑

n

e−λnten(x)en(y)
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Heat kernel and fractal properties of Liouville field theory

Main purposes
The heat kernel usually encodes the geometry of the metric tensor. So investigate

the spectral dimension of LFT (R., Vargas 13’)

lim
t→0
−2

ln pγ(t, x, x)
ln t

= 2

the shape of the heat kernel

Connection with the Hausdorff dimension of LFT

an "intrinsic" KPZ formula

R.Rhodes () LBM 16 / 29



Plan of the talk

1 Gaussian Free Field

2 Liouville Brownian motion

3 Small times asymptotics of the heat kernel

R.Rhodes () LBM 17 / 29



What is the shape of the Liouville heat kernel?

If one believes in the existence of the Liouville distance dγ , one should have

Mγ(Bγ(x, r)) ∼ crβ

where Bγ(x, r) stands for the dγ-balls and β is the Hausdorff dimension of LFT.

Conjecture for short time asymptotics: For x, y fixed and t→ 0

pγ(t, x, y) � C(
1
t

+ 1) exp
(
− c
(dγ(x, y)β

t

) 1
β−1
)

Remark:
-Well posed problem for studying the Hausdorff dimension β: study the short time
asymptotics of the heat kernel
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Theorem (Maillard, R., Vargas, Zeitouni 2014)
• An upper bound: for some βup "large" and all x, y, t, δ > 0

pγ(t, x, y) ≤ C
( 1

t1+δ + 1
)

exp
(
− c
(dT(x, y)βup

t

) 1
βup−1

)
.

• A lower bound: for all x, y fixed and η > 0 there exists c random s.t for t ≤ T0

pγ(t, x, y) ≥ exp
(
− t−

1
βlow−1

)
, βlow = 2 +

γ2

4

Legend:

Upper bound

Watabiki

Lower bound
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The lower bound

•Work with the resolvent density instead and use the bridge formula

rλ(x, y) =
∫ ∞

0
e−λtpγ(t, x, y) dt =

∫ ∞
0

EBridx,y
t [e−λF(t)]p(t, x, y) dt.

• Force the bridge to do atypical things. Trade-off cost/gain on the functional F

EBridx,y
t [e−λF(t)] ≥ EBridx,y

t [e−λF(t)|At]PBridx,y
t (At)

• Force the bridge to stay within a thin tube around [x, y] and speed up the bridge
according to the local behaviour of the measure Mγ

• Get the lower bound βlow = 2 + γ2

4 .

R.Rhodes () LBM 20 / 29



The upper bound

General framework (Grigor’yan, Hu, Lau 2010)
Let pt be the heat kernel of a conservative, local, regular Dirichlet form. Assume for
some α, β > 0

pt(x, y) ≤ C(
1
tα

+ 1), lim sup
r→0

sup
y∈T

Py(τB(y,r) ≤ rβ) = 0.

Then

pt(x, y) ≤ c(
1
tα

+ 1) exp
(
− c′

(dT(x, y)β

t

) 1
β−1
)
.

Remark: for the Liouville BM, the spectral dimension tells us α = 1.
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Estimates of the exit times of balls

• By time change
Py(τB(y,r) ≤ rβ) = Py(F(TB(y,r)) ≤ rβ)

where TB(y,r) is the exit time of the standard BM.
• use the negative moments estimates of F to get

EXPy(τB(y,r) ≤ rβ) ≤ rβqEXEy[F(TB(y,r))−q] = Crβq−f (q)

• Use the modulus of continuity of F to extend this estimate over small balls

EX[ sup
z∈B(y,rα)

Pz(τB(z,r) ≤ rβ)
]
≤ Crβq−f (q)

• Tile the torus with balls of radius rα to get

EX[sup
z∈T

Pz(τB(z,r) ≤ rβ)] ≤ Cr−2α+βq−f (q)

• Optimize in q and apply Borel-Cantelli to find the best possible β
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Thanks!
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KPZ formula...briefly

Consider a set K ⊂ T and compute

its Hausdorff dimension dimX
γ(K) with the random metric eγX(z) dz2.

its Hausdorff dimension dime(K) with the Euclidian metric dz2.

What KPZ is all about...
Find a relation between

dimX(K) and dime(K).

Problem: the construction of the distance associated to eγX(z) dz2 remains an
open question...
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How to measure the dimension of sets?

if one has a distance d, one defines the s-dimensional d-Hausdorff measure:

Hs
d(K) = lim

δ→0
inf
{∑

k

diamd(Ok)s; K ⊂
⋃

k

Ok, diamd(Ok) ≤ δ
}
,

where the Ok are open sets.

s

+∞

Hs
µ(K)

dimµ(K)

µ Hausdorff dimension

dimµ(K) = inf{s ≥ 0; Hs
d(K) = 0}.
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How to measure the dimension of sets?

if one has a distance d, one defines the s-dimensional d-Hausdorff measure:

Hs
d(K) = lim

δ→0
inf
{∑

k

diamd(Ok)s; K ⊂
⋃

k

Ok, diamd(Ok) ≤ δ
}
,

where the Ok are open sets.
if one has only a measure µ, one defines the s-dimensional µ-Hausdorff measure:

Hs
µ(K) = lim

δ→0
inf
{∑

k

µ(Bk)s; K ⊂
⋃

k

Bk, radius(Bk) ≤ δ
}
,

where the Bk are closed Euclidean balls.

µ Hausdorff dimension

dimµ(K) = inf{s ≥ 0; Hs
µ(K) = 0}.
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KPZ formula
Fix a compact set K. Consider the Hausdorff dimensions:

dimLeb(K) defined with the Lebesgue measure
dimMγ (K) defined with the Liouville measure Mγ

Almost surely in X, we have

dimLeb(K) = (1 +
γ2

4
)dimMγ (K)− γ2

4
dimMγ (K)2

I.Benjamini, O.Schramm: KPZ in one dimensional geometry of multiplicative
cascades (2008)

B. Duplantier, S. Sheffield: Liouville Quantum Gravity and KPZ (2008)

R.Rhodes, V.Vargas: KPZ formula for log-infinitely divisible multifractal
random measures (2008)
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Heat kernel based KPZ formula

Bauer-David 2009
They object that the latter notion of quantum Hausdorff dimension involves Euclidean
balls (not intrinsic to the metric eγX(z)dz2) and suggest a heat kernel formulation of
KPZ.

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s ∈]0, 1[:

Cs(K) = sup
{(∫

K×K

1
|x− y|2s µ(dx)µ(dy)

)−1
;µ Borel, µ(K) = 1

}
and its Euclidean capacity dimension by dime(K) = inf{s ≥ 0; Cs(K) = 0}
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Bauer-David 2009
They object that the latter notion of quantum Hausdorff dimension involves Euclidean
balls (not intrinsic to the metric eγX(z)dz2) and suggest a heat kernel formulation of
KPZ.

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s ∈]0, 1[:

Cs(K) = sup
{(∫

K×K

1
|x− y|2s µ(dx)µ(dy)

)−1
;µ Borel, µ(K) = 1

}
and its Euclidean capacity dimension by dime(K) = inf{s ≥ 0; Cs(K) = 0}

Mellin-Barnes transform of the standard heat kernel:

MB(x, y)
def
=
∫ ∞

0

1
ts

e−
|x−y|2

2t

2πt
dt =

cs

|x− y|2s
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Heat kernel based KPZ formula

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s ∈]0, 1[:

Cs(K) = sup
{(∫

K×K
MB(x, y)µ(dx)µ(dy)

)−1
;µ Borel, µ(K) = 1

}
and its Euclidean capacity dimension by dime(K) = inf{s ≥ 0; Cs(K) = 0}

Mellin-Barnes transform of the standard heat kernel:

MB(x, y)
def
=
∫ ∞

0

1
ts

e−
|x−y|2

2t

2πt
dt =

cs

|x− y|2s

Quantum capacity dimension:
Define in the same way dimγ(K) by taking the Melling Barnes transform of the
Liouville heat kernel pγ(t, x, y)
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Heat kernel based KPZ formula (N.Berestycki, Garban, R. Vargas 14’)
Fix a compact set K. Consider the capacity dimensions:

dime(K) defined with the Mellin Barnes of the Lebesgue heat kernel
dimγ(K) defined with the Mellin Barnes of the Lebesgue heat kernel pγ

Almost surely in X, we have

dime(K) = (1 +
γ2

4
)dimγ(K)− γ2

4
dimγ(K)2
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