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@ Gaussian Free Field
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Free Field

Gaussian Free Field on the 2d-torus T

Gaussian random distribution (Schwartz) (X, )yct on D s.t.
@ a.s. X lives in the Sobolev H~!(D)

@ Xis centered and formally E[X.X,| = G(x,y)
where G = Green function of Laplacian with vanishing mean

—Au=2rf, /u:O.
T

@ short scale divergent behaviour:

G(x,y) ~In as dr(x,y) — 0.

1
dT ()C7 y) ’

@ cannot be defined as a pointwise function
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e Let (\,), be the (positive) eigenvalues of A and (e,,),, the eigenfunctions

- 5o

k>1

where (a,), are i.i.d. with law A/(0, 1).

e n-th level approximation X, (x)




o

© Liouville Brownian motion

o



(critical) Liouville Field Theory (LFT)

Study the "metric tensor" on the torus

7X@ 472

where X is a Gaussian Free Field and v > 0 a parameter.

@ Motivations coming from 2d Liouville quantum gravity
Refs: Polyakov 81, David 88, Distler-Kawai 88, Duplantier-Sheffield 08,...

o Mathematically not straightforward: ¢?X(?) is not pointwise defined.
= renormalization procedure required
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Liouville measure (volume form)

How to give sense to the random measure on T?

VACT, M,(A)= /e“’xm dx.
A

Gaussian multiplicative chaos (Kahane 85):

o Cut off the singularity of the field X: use the "smooth" approximations (X,), and
define the approximate measures for v > 0

M) = [ Eee g

o Positive martingale = almost sure convergence towards a limit M., (A)

o Uniform integrability < v < 2

e for v < 2, M, is diffuse and is carried by the ~y-thick points, which have
Hausdorff dimension 2 — 772
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Construct the Brownian motion B of the metric tensor

X g2

Formally
1
— _ X(B!
Bl =B i FA,(t)_/O " XED) gy,

with B standard Brownian motion on T.

@ Once again, not straightforward because ¢?X() is not pointwise defined.
= renormalization procedure required



Starting from one fixed point

Fix x € T. How to give sense to the change of times?

t
Fy(t) = / X B dr.
0

Gaussian multiplicative chaos (again):

o Cut off the singularity of the field X: use the "smooth" approximations (X, ), and
define the approximation

12
F1 (1) = / BT ER B g,
JO

@ For each sampling of B, it is a positive martingale => PX almost sure
convergence towards a limit F., (1)

@ v < 2 = uniformly integrable and strictly increasing w.r.t ¢

@ Ref: See also N.Berestycki 13’
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Question

Show that PX almost surely, the change of times F can be defined for all starting
points.

@ One has to show that, when the environment X is fixed, the law under P8* of the
change of times F is continuous with respect to x.

Theorem (Garban, R., Vargas 13”)

PX almost surely,
o one can define the change of times F under P?" for all points x € T.
o under P?', F is strictly increasing and continuous.

o the process By = B defines a Feller Markov process with continuous

0!

sample paths.
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General result of Dellacherie-Meyer for time changes:

P# ( sup| | XHB) B gy / OB~ T B gy > )

s<T JO 0
7
< Cexp ( - .
c g(x,y)>
with
g(x sup’/GT Z+y,w)M, (dw) — /GT(z+x,w)M7(dw)’.
zeT
T
GT(Z7Z/):/ p(r,z,z’)drrvcln| =
o —

Multifractal analysis:
there exists C random and «v > O such that forallz € T and r < 1

M, (B(z,r)) < Cre.



Invariant measure and semigroup

Theorem (Garban, R., Vargas 13”)
For v < 2, as. in X,

o the Liouville Brownian motion B admits the Liouville measure M., as unique
invariant measure.

o the Liouville semigroup (P;),>0 admits a heat kernel with respect to M.,

PIf(x) = B¥ [f(BY)] = /T B (6,2, Y)f ()M, (dy)

Consequence: almost surely in X, for all x and ¢,

PE (B, € {~-thick points}) = 1.
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The heat kernel p, (7, x, y) is a continuous function of (z,x,y).

@ the Green function of the LBM is the standard Green function

[ram, =0 [ Erreoa= [ Gt a)

@ Consider the eigenfunctions (e,), and eigenvalues (),), of the Hilbert-Schmidt
operator

T:f (with /T fdM, =0) — /T G(x,y)f ()M (dy)

p Y(l7x7y = E e A e"l X en(y



Heat kernel and fractal properties of Liouville field theory

Main purposes
The heat kernel usually encodes the geometry of the metric tensor. So investigate

o the spectral dimension of LFT (R., Vargas 13”)

o the shape of the heat kernel

@ Connection with the Hausdorff dimension of LET

@ an "intrinsic" KPZ formula
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o

© Small times asymptotics of the heat kernel



What is the shape of the Liouville heat kernel?

If one believes in the existence of the Liouville distance d, one should have
M, (B, (x,)) ~ cr”
where B (x, r) stands for the d,-balls and 3 is the Hausdorff dimension of LFT.

Conjecture for short time asymptotics: For x,y fixed and t — 0

P (1.1.3) = O+ Dyexp (o 2L20) ™)

Remark:
-Well posed problem for studying the Hausdorff dimension (3: study the short time
asymptotics of the heat kernel
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Theorem (Maillard, R., Vargas, Zeitouni 2014)
e An upper bound: for some /3,, "large" and all x, y,#, 6 > 0

Py (7,x,y) < C(ﬂ% + 1) exp ( — c(M)ﬁ)

e A lower bound: for all x, y fixed and 7 > 0 there exists ¢ random s.t for t < T

2
_ 1
P, (t,x%,y) > exp (=1 7)), Biow=2+ VZ

° Upper bound
1 Watabiki
‘ Lower bound
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The lower bound

e Work with the resolvent density instead and use the bridge formula

B) = [ e by di= BN e Oy
JO 0

e Force the bridge to do atypical things. Trade-off cost/gain on the functional F

EBridf"" [e—)\F(t)] > EBridf"" [e—AF(t) |AI]PBridf"' (At)

e Force the bridge to stay within a thin tube around [x, y] and speed up the bridge
according to the local behaviour of the measure M.,

R e

e Get the lower bound 3, = 2 + A’Tz.
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Let p; be the heat kernel of a conservative, local, regular Dirichlet form. Assume for
some «, 3 > 0

1
pi(x,y) < C(t: +1), hmsupsup]P’y(TB(y n < ) =0.
r—0 yeT

Then N
e e (242 )

t

Remark: for the Liouville BM, the spectral dimension tells us o = 1.



Estimates of the exit times of balls

e By time change
]P)y(TB(y’r) § Vﬁ) = P}’(F(TB(),_’,)) S rﬁ)

where Tp(,, - is the exit time of the standard BM.
¢ use the negative moments estimates of F to get

EXPY(TB()',r) < rﬁ) < rﬂqEXEy [F(TB(}',r))_q] = Crﬁq_f(q)

e Use the modulus of continuity of F' to extend this estimate over small balls

EX[ sup IP’Z(TB(Z,,) < rﬁ)} < crPa1(a)
ZEB(y,re)

o Tile the torus with balls of radius r* to get

EX[sup P*(7p(.,y < 7)) < Cr—20+84—1()
z€T

e Optimize in ¢ and apply Borel-Cantelli to find the best possible 3
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Thanks!



© Heat kernel based KPZ formula



Consider a set K C T and compute

o its Hausdorff dimension dimf(K ) with the random metric ¢7X() dz2.

e its Hausdorff dimension dim,(K) with the Euclidian metric dz>.

Find a relation between

dimy(K) and dim,(K).

@ Problem: the construction of the distance associated to ¢7*) dz? remains an
open question...



o if one has a distance d, one defines the s-dimensional d-Hausdorff measure:

Hy(K) = lim inf { > diama(Op)'; K C | Oy, diama(Oy) < 6},
k k

where the Oy are open sets.
H,,(K)

+0o0

dim, (K) = inf{s > 0; H}(K) = 0}.




o if one has a distance d, one defines the s-dimensional d-Hausdorff measure:

H)(K) = ;i_rginf{ > diama(Oy)'; K C | J Oy, diama(Oy) < 6},
k k

where the Oy, are open sets.

o if one has only a measure p, one defines the s-dimensional pi-Hausdorff measure:
H,(K) = lim inf { Xk:u(Bk)s; KcC LkJBk,radius(Bk) <5},

where the By, are closed Euclidean balls.

dim,, (K) = inf{s > 0; H',(K) = 0}.




KPZ formula

Fix a compact set K. Consider the Hausdorff dimensions:
o dim.;(K) defined with the Lebesgue measure
o dimy, (K) defined with the Liouville measure /.,

Almost surely in X, we have

72 ,}/2

~

ﬁ I.Benjamini, O.Schramm: KPZ in one dimensional geometry of multiplicative
cascades (2008)

ﬁ B. Duplantier, S. Sheffield: Liouville Quantum Gravity and KPZ (2008)

ﬁ R.Rhodes, V.Vargas: KPZ formula for log-infinitely divisible multifractal
random measures (2008)
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They object that the latter notion of quantum Hausdorff dimension involves Euclidean
balls (not intrinsic to the metric ¢?X()dz?) and suggest a heat kernel formulation of
KPZ.




They object that the latter notion of quantum Hausdorff dimension involves Euclidean
balls (not intrinsic to the metric ¢?X()dz?) and suggest a heat kernel formulation of
KPZ.

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s €]0, 1[:

Cs(K) =Sup{(/KxKh_;ylmu(dx)u(dy))_l;uBorel,u(K) = 1}

and its Euclidean capacity dimension by  dim,(K) = inf{s > 0; C,(K) = 0}



Heat kernel based KPZ formula

Bauer-David 2009

They object that the latter notion of quantum Hausdorff dimension involves Euclidean
balls (not intrinsic to the metric ¢?*(*)dz?) and suggest a heat kernel formulation of
KPZ.

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s €]0, 1[:

Cs(K) = sup {(/M ﬁ u(dX)u(dy))_];u Borel, ju(K) = 1}

and its Euclidean capacity dimension by ~ dim,(K) = inf{s > 0; C;(K) = 0}

Mellin-Barnes transform of the standard heat kernel:

_ly?

R % ‘
MB(xJ)déf/ < dt = —< -
S Ea A R EE
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Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s €]0, 1[:

Cs(K) = sup { ( KxKMB(x, y) u(dX)u(dy)) _1; p Borel, i(K) = 1}

and its Euclidean capacity dimension by ~ dim,(K) = inf{s > 0; C,(K) = 0}

Mellin-Barnes transform of the standard heat kernel:

00 _Jﬂlf
def le = Cs
MB = — dt =
(x,) /0 27t |x — y|?



Heat kernel based KPZ formula

Eulidean capacity dimension:
Fix a set compact set K and define the Euclidean s-capacity of K for s €]0, 1[:

) =sup{ ([ MBlx.y) pldu(ay)) s Borel, u(K) = 1}

KxK
and its Euclidean capacity dimension by ~ dim,(K) = inf{s > 0; C;(K) = 0}

Mellin-Barnes transform of the standard heat kernel:

_?

[ e ‘
MB(x,y) < / L T ——
o P 2mt |x —y|*>

Quantum capacity dimension:

Define in the same way dim, (K) by taking the Melling Barnes transform of the
Liouville heat kernel p (z, x,)
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Heat kernel based KPZ formula (N.Berestycki, Garban, R. Vargas 14”)

Fix a compact set K. Consider the capacity dimensions:
o dim,(K) defined with the Mellin Barnes of the Lebesgue heat kernel
o dim. (K) defined with the Mellin Barnes of the Lebesgue heat kernel p
Almost surely in X, we have
2 2

dim,(K) = (1 + Z)dlmv(K) = Zdlmv(K)z
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