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Preferential attachment graphs

Preferential attachment was made popular by Barabási and Albert (1999). It is a
principle that aims to explain the emergent features of large complex networks.

The building principle of preferential attachment graphs is that

An increasing family of graphs is constructed by adding vertices
one-by-one.

When a new vertex is introduced, it is linked by edges to a
number of existing vertices with a probability
proportional to an of their degree.

In short: the higher the degree of a vertex, the more likely it is
to attract further links.

We have analysed a mathematically convenient variant of such graphs.
Crucially, the essential features of preferential attachment graphs should not
depend on the choice of variant but only on the strength of the preferential
attachment and the edge density.
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Definition of the model

Take parameters 0 ≤ γ < 1 and 0 < β < 1 and choose the affine function

f : N ∪ {0} → (0,∞) given by f (k) = γk + β.

Model evolution: At time n = 1, we have a single vertex (labeled 1). In each time
step n→ n + 1 we

add a new vertex labeled n + 1, and

for each m ≤ n independently introduce an oriented edge from the new
vertex n + 1 to the old vertex m with probability

f (indegree of m at time n)

n
.
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f (0)/2

f (1)/2
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Example:

2 31
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f (2)/3
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Definition of the model

Take parameters 0 ≤ γ < 1 and 0 < β < 1 and choose the affine function

f : N ∪ {0} → (0,∞) given by f (k) = γk + β.

Model evolution: At time n = 1, we have a single vertex (labeled 1). In each time
step n→ n + 1 we

add a new vertex labeled n + 1, and

for each m ≤ n independently introduce an oriented edge from the new
vertex n + 1 to the old vertex m with probability

f (indegree of m at time n)

n
.

Example:

1 42 3

All edges are ordered from the younger to the older vertex. For the questions of
interest, edges may be considered as unordered. We denote the resulting increasing
sequence of graphs by (Gn).
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Preferential attachment graphs are scale-free

Our first result shows that the preferential attachment graphs with γ > 0 are scale-free
and identify the power law exponent.

Theorem 1 (M, Dereich 2008)

(a) Suppose Xn is the empirical indegree distribution of Gn. Then

lim
n↑∞

Xn(k) = µ(k) for all k, almost surely,

where

µ(k) =
1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
∼ c k−(1+ 1

γ
)
.

(b) The conditional distribution of the outdegree of the (n + 1)st vertex, given the
graph at time n, converges almost surely in the variational topology to the
Poisson distribution with parameter

∑∞
k=0 µ(k)f (k).

⇒ The empirical degree distribution converges to a power law with exponent

τ := 1 +
1

γ
.
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Comparison with other models

In the preferential attachment model we have, for m ≤ n, that

E
[
indegree of m at time n

]
≈
( n

m

)γ
,

and hence

P{m↔ n} ≈ 1

(m ∧ n)γ(m ∨ n)1−γ .

If γ 6= 1
2

this is not the product of a function of n with a function of m and hence
preferential attachment is not a rank one model.

This makes our model much more difficult to study than rank one models such as

the LCD-model of Bollobas and Riordan, which is a preferential attachment
model that necessarily has γ = 1

2
, or, equivalently, τ = 3.

the configuration model which, loosely speaking, is the uniform distribution on
the collection of graphs with a given power law degree distribution.
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I. Robustness of networks

Questions:

(1) For which parameters β, γ is there a giant component?

(2) When is the network robust?

(3) What is the size of the giant component near criticality?

Earlier work:

In the case that γ = 0 so that there is no preferential attachment the model
was first studied by Dubins (1984). The questions were answered by Shepp
(1989) and Riordan (2005).

For the LCD model the questions were answered by Bollobas, Riordan (2003)
and Riordan (2005).
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Coupling the graph to a branching process

The answers to our questions are based on a coupling of the neighbourhood of a
randomly chosen vertex to the genealogy of a killed branching random walk.

Particle positions are on the real line and types are given by the relative position of
their father. Define the pure birth process (Zt : t ≥ 0) by its generator

Lg(k) = f (k)
(
g(k + 1)− g(k)

)
.

A particle which has its parent to its left generates offspring

to its right with relative positions at the jumps of the process (Zt : t ≥ 0);

to its left with relative positions distributed according to the Poisson process Π
on (−∞, 0] with intensity measure et E[f (Z−t)] dt.
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Coupling the graph to a branching process

For τ > 0 we let (Z (τ)
t : t ≥ 0) be the pure birth process (Zt : t ≥ 0) conditioned to

have a birth at time τ with that particle removed.

Miracle: The law of (Z (τ)
t : t ≥ 0) does not depend on τ !

A particle which has its parent to its right generates offspring

to its right with relative positions at the jumps of (Z (τ)
t (t) : t ≥ 0).

to its left in the same manner as before.

We start the branching random walk with one initial particle in location −X , where X
is standard exponential and kill particles and their offspring if their position is to the
right of the origin.
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Application of the branching process

There exists a giant component iff
the killed branching process survives with positive probability.

The size of the giant component equals
the survival probability of the killed branching process.

The network is robust iff
the branching process has infinite mean growth on survival.

For 0 < α < 1 and the unkilled branching process we define the matrix A(α) by where
i , j ∈ {left, right}. Denote by ρ(A(α)) its spectral radius.

The killed branching process dies iff
there exists 0 < α < 1 with ρ(A(α)) ≤ 1.

The killed branching process has infinite mean growth iff
the matrix A(α) is ill-defined for any 0 < α < 1.
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Existence of a giant component

Theorem 2 Dereich, M (2010)

(a) A giant component exists if and only if

γ ≥ 1

2
or β >

( 1
2
− γ)2

1− γ .

(b) The network is robust if and only if γ ≥ 1

2
.

(c) If γ < 1
2

the critical percolation parameter in the network is

pc = ( 1
2γ
− 1) (

√
1 + γ

β
− 1).

Remark: We also have (slightly less explicit) results in the case that the
attachment rule f is concave rather than affine.
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Phase diagram
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Size of the giant component near criticality

Denote by ζ(γ, β) the size of the giant component which is the asymptotic proportion
of vertices in the largest graph component.

Theorem 3 Eckhoff, M (2013)

(a) Let 0 ≤ γ < 1
2

and denote βc(γ) =
( 1

2
−γ)2

1−γ . Then

lim sup
β↓βc (γ)

√
β − βc(γ) log ζ(γ, β) ≤ −π

2

1√
1− γ

.

(b) Let 0 < β < 1
4

and denote γc(β) = 1
2
(1− β −

√
β2 + 2β). Then

lim sup
γ↓γc (β)

√
γ − γc(β) log ζ(γ, β) ≤ −π

2

( 1

β2 + 2β

) 1
4
.

Remark: This is in stark contrast to the behaviour of the configuration model!
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Size of the giant component: Idea of proof

We need to give an upper bound on the survival probability of the killed branching
process. Our arguments adapt a technique from a recent paper by Gantert, Hu and
Shi (2011) to our setup.

0

n

3

1

2

Main ingredients of the proof

the basis is a truncated first moment method,

use a many-to-one lemma,

adapt and use a large deviation theorem for Markov chains.
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II. Vulnerability of the network

Besides their robustness under random attack one of the characteristic features of
many real networks is their vulnerability to targeted attack. Removal of a small
number of key hubs typically changes their behaviour dramatically. We are going to
explore this feature in our model of preferential attachment graphs.

From now on our focus is on the case γ ≥ 1
2

when the network is robust. To simulate
a targeted attack on the graph we remove a small number of the oldest vertices and
investigate how this changes the behaviour of the network.

Questions:

How many old vertices have to be removed to destroy the robustness?

How does the critical percolation probability behave when the number of
removed vertices approaches criticality?

How are other features like

the power law property of the network,
the largest degree in the network,
the typical distance of vertices in the network,

affected by the attack?
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Loss of connectivity

It turns out that in order for an attack to lead to a qualitative change of the network
we have to remove an arbitrarily small proportion ε of the oldest vertices.

We denote by G(ε)
n the graph Gn with vertices 1, 2, . . . , εn and adjacent edges removed.

Theorem 5 Eckhoff, M (2012)

Let pc(ε) be the critical percolation probability of G(ε)
n .

(a) If γ = 1
2
, then as ε ↓ 0 we have

pc(ε) � log(1/ε)−1.

(b) If γ > 1
2
, then as ε ↓ 0 we have

pc(ε) = 2γ−1√
β(γ+β)

εγ−
1
2
(
1 + o(1)

)
.

Remark: A similar result holds for the configuration model but the exponent
in (b) is doubled from γ − 1

2
to 2γ − 1.
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Loss of connectivity: Idea of proof

Removing a proportion ε of the oldest vertices means that for the branching process
a second killing boundary at log ε is introduced.

Steps of the proof:

the process survives if the associated expectation operator A has ρ(A) > 1,

in this case the critical percolation probability is 1/ρ(A),

for upper bounds guess the eigenfunction φ,

for lower bounds write A = A1 + A2 for a left offspring operator A1 and a right
offspring operator A2, and show that main contribution to An comes from
alternating products of A1 and A2.
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Loss of the power law

Theorem 6 Eckhoff, M (2012)

Suppose X (ε)
n is the empirical indegree distribution of G(ε)

n . Then

lim
n↑∞

Xn(k) = µ(ε)(k) for all k, almost surely,

where the limiting measure µ(ε) is deterministic and satisfies

lim
k→∞

1

k
logµ(ε)(k,∞) = log(1− εγ).

Remark: After the attack the network is no longer scale-free. Instead its asymptotic
degree distribution has exponential tails.

Peter Mörters Preferential attachment graphs



Loss of the power law

Theorem 6 Eckhoff, M (2012)

Suppose X (ε)
n is the empirical indegree distribution of G(ε)

n . Then

lim
n↑∞

Xn(k) = µ(ε)(k) for all k, almost surely,

where the limiting measure µ(ε) is deterministic and satisfies

lim
k→∞

1

k
logµ(ε)(k,∞) = log(1− εγ).

Remark: After the attack the network is no longer scale-free. Instead its asymptotic
degree distribution has exponential tails.

Peter Mörters Preferential attachment graphs



Increase of typical distances

Preferential attachment graphs with γ > 1
2

are ultrasmall. More precisely, for vertices
Vn,Wn chosen uniformly from the giant component of Gn we have

dGn (Vn,Wn) ∼ 4log log n

log γ
1−γ

in probability,

see Dereich, Mönch, M (2011) and Dommers, van der Hofstad, Hooghiemstra (2010).

Theorem 7 Eckhoff, M (2012)

Suppose that ε > 0 is sufficiently small so that G(ε)
n has a giant component. and let

Vn,Wn be independent, uniformly chosen vertices in Gn. Then, for all δ > 0,

dG(ε)
n

(Vn,Wn) ≥ 1− δ
log(1/pc(ε))

log n with high probability.

Remarks: After the attack the network is no longer ultrasmall, and typical distances
are now logarithmic, i.e. much larger. The lower bound is conjectured to be sharp.
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Summary

Preferential attachment graphs are built dynamically using a simple and universal
principle. From this principle many properties of complex real world networks
emerge.

In particular preferential attachment graphs are scale free, and if the power-law

exponent is in the range 2 < τ < 3, they are

ultrasmall,
robust to blind attack, but
vulnerable to targeted attack.

A targeted attack drastically changes the topology of the graph, and the network
is no longer scale-free, ultrasmall or robust.

Preferential attachment graphs are mathematically tractable. The main tool for
such an analysis is an approximation of local neighbourhoods by branching
random walks and advanced methods from the theory of branching processes.

Thank you very much for your attention!
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