Solutions to multivariate smoothing equations

Solutions to multivariate smoothing equations

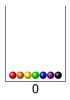
based on joint work with S. Mentemeier

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 1

13rd Bath-Paris meeting

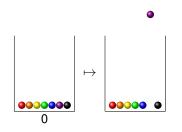
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



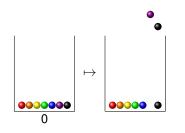
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



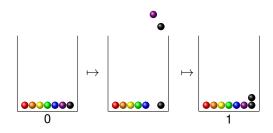
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



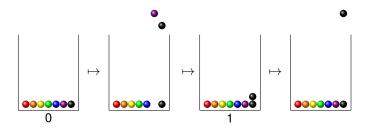
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



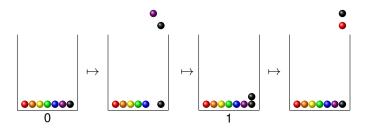
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



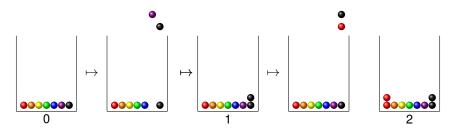
Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



Example (Cyclic Pólya urns)

Consider an urn with balls of *m* types (colors) together with the rule that if a ball of type *k* is drawn, then it is placed back into the urn together with a ball of type k+1 (mod *m*). Then the urn is called cyclic Pólya urn.



Considering the number $R_n^{(k)}$ of balls of type 1 in the urn after *n* steps when starting with one ball of type *k*, an explicit formula for $\mathbf{E}[R_n^{(k)}] = \frac{n}{m} + O(1)$ has been derived by Janson (2004).

Now let $m \ge 7$, $\zeta = \exp(2\pi i/m)$ be a primitive *m*th root of unity with real part $\xi = \cos(2\pi/m)$.

Knape and Neininger (2013) showed that

$$n^{-\xi}(R_n^{(k)}-n/m) \stackrel{\text{law}}{\approx} \operatorname{Re}\left(e^{i(\sin(\frac{2\pi}{m})\log(n)+2\pi\frac{k-1}{m})}X\right)$$

where X is the unique solution with finite second moment of the equation:

$$X \stackrel{\text{law}}{=} U^{\zeta} X_1 + \zeta (1 - U)^{\zeta} X_2 \tag{1}$$

where X_1 , X_2 are i.i.d. copies of X that are independent of U which has the uniform distribution on [0, 1].

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 3

Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁, ..., V_b).

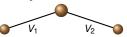
Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

$$N(\epsilon) := \#\{\text{brown rocks}\} = 8.$$

Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

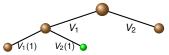


$$N(\epsilon) := \#\{\text{brown rocks}\} = 8.$$

Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

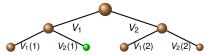
The fragmentation tree of all objects that have mass strictly $\geq \epsilon$



Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

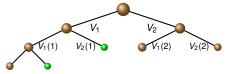
The fragmentation tree of all objects that have mass strictly $\geq \epsilon$



Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

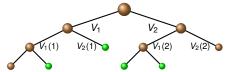
The fragmentation tree of all objects that have mass strictly $\geq \epsilon$



Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

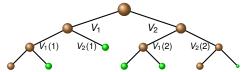
The fragmentation tree of all objects that have mass strictly $\geq \epsilon$



Example (Asymptotic size of fragmentation trees)

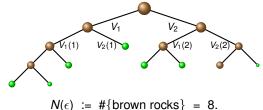
- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$



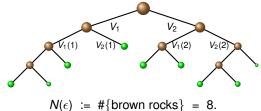
Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).



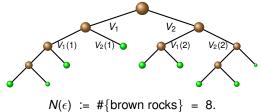
Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).



Example (Asymptotic size of fragmentation trees)

- An object of mass x = 1, say, is split into b parts with respective masses 0 ≤ V₁,..., V_b < 1 where b ≥ 2 is a fixed integer and V₁,..., V_b are random variables with V₁ + ... + V_b = 1 a.s.
- ► The splitting procedure is repeated with the splittings determined by independent copies of the random vector (V₁,..., V_b).



- Let $\psi : \mathbb{C} \to \mathbb{C}, z \mapsto \mathbf{E}[\sum_{j=1}^{b} V_{j}^{z}];$
- b denote by 1 = λ₁, λ₂, λ₃, ... the roots of the equation ψ(z) = 1; with the convention that 1 = Re(λ₁) > Re(λ₂) ≥ Re(λ₃) ≥

Janson and Neininger (2008) showed that, when $\text{Re}(\lambda_2) \leq 1/2$, $N(\epsilon)$ suitably shifted and scaled, converges in distribution to a centered normal.

On the other hand, when $\text{Re}(\lambda_2) > 1/2$, $N(\epsilon)$ does not converge in distribution. Instead, $\epsilon^{\text{Re}(\lambda_2)}(N(\epsilon) - c\epsilon^{-1})$ has an asymptotic periodic behavior involving the real part of rotations of a complex-valued random variable X with finite second moment and

$$X \stackrel{\text{law}}{=} \sum_{j=1}^{b} V_j^{\lambda_2} X_j$$
 (2)

where X_1, \ldots, X_b are i.i.d. copies of X independent of (V_1, \ldots, V_b) .

Example (*m*-ary search trees)

Let T_n be an *m*-ary search tree with *n* keys inserted. When m > 26, an important role in the asymptotics of T_n is played by a complex-valued solutions *W* to

$$W \stackrel{\text{law}}{=} e^{-\lambda_2 T} (W_1 + \dots + W_m) \tag{3}$$

and

$$W \stackrel{\text{law}}{=} \sum_{j=1}^{m} V_j^{\lambda_2} W_j$$
 (4)

where $W_1, W_2, ...$ are i.i.d. copies of W independent of T and $(V_1, ..., V_m)$, resp., and $T \sim \tau_1 + ... + \tau_{m-1}$ with independent $\tau_1, ..., \tau_{m-1}$ and τ_j having exponential distribution with parameter j and the V_j are the spacings of m - 1 independent uniform (0, 1) variables (for details, see Fill and Kapur (2004), Janson (2004), Chauvin, Liu and Pouyanne (2011)).

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 6

Example (Kac caricature)

Bassetti and Matthes (2014) considered a generalization of the Kac caricature of the Boltzmann equation which describes the particle velocities V as a vector in \mathbb{R}^3 . The stationary solution of this equation satisfies

$$V \stackrel{\text{law}}{=} LV_1 + RV_2, \tag{5}$$

where *V*, *V*₁, *V*₂ are i.i.d. and independent of the random pair (*L*, *R*) of similarities, which satisfies $\mathbf{E}[||L||^2 + ||R||^2] = 1$.

General framework: Multivariate smoothing equations

Fix $d \in \mathbb{N}$. Let

- ▶ (**C**, *T*₁, *T*₂, ...) be a given sequence of random variables where
 - $\mathbf{C} = (C_1, \dots, C_d)$ is a *d*-dimensional random vector,
 - ► $T_1, T_2, ...$ are similarities (*i.e.*, $T_j = ||T_j||O_j$ for an orthogonal $d \times d$ matrix O_j),
 - and $N := \#\{j \in \mathbb{N} : T_j \neq 0\} < \infty$ a.s.;
- ► (X⁽¹⁾, X⁽²⁾, ...) be a sequence of i.i.d. R^d-valued random vectors independent of (C, T₁, T₂, ...).

We consider multivariate smoothing equations of the form

$$\mathbf{X} \stackrel{\text{law}}{=} \sum_{j\geq 1} T_j \mathbf{X}^{(j)} + \mathbf{C}.$$
 (6)

General framework: Multivariate smoothing equations

Fix $d \in \mathbb{N}$. Let

- ▶ (**C**, *T*₁, *T*₂, ...) be a given sequence of random variables where
 - $\mathbf{C} = (C_1, \dots, C_d)$ is a *d*-dimensional random vector,
 - ► $T_1, T_2, ...$ are similarities (*i.e.*, $T_j = ||T_j||O_j$ for an orthogonal $d \times d$ matrix O_j),
 - and $N := \#\{j \in \mathbb{N} : T_j \neq 0\} < \infty$ a.s.;
- ► (X⁽¹⁾, X⁽²⁾, ...) be a sequence of i.i.d. R^d-valued random vectors independent of (C, T₁, T₂, ...).

We consider multivariate smoothing equations of the form

$$\mathbf{X} \stackrel{\text{law}}{=} \sum_{j \ge 1} T_j \mathbf{X}^{(j)} + \mathbf{C}.$$
 (6)

Consider (**C**, T_1 , T_2 , ...) as given and (the distribution of) **X** as unknown. For which distributions of **X** does (6) hold?

Assumptions

In order to avoid trivial and simple cases as well as case distinctions, we assume throughout that

$$\mathbf{P}\big(\|\mathit{T}_j\| \in r^{\mathbb{Z}} \cup \{\mathbf{0}\} \text{ for all } j \ge 1\big) < 1 \text{ for all } r > 1.$$
(A1)

$$\mathbf{E}[N] = \mathbf{E}\left[\sum_{j\geq 1} \mathbb{1}_{\{\|T_j\|>0\}}\right] > 1.$$
 (A2)

The function m

Let

$$m: [0,\infty) \to [0,\infty], \quad s \mapsto \mathsf{E}\bigg[\sum_{j=1}^N \|T_j\|^s\bigg].$$

We make the following assumptions:

There is an
$$\alpha > 0$$
 such that $m(\alpha) = 1$. (A3)

The function m

Let

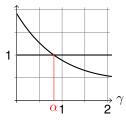
$$m: [0,\infty) \to [0,\infty], \quad s \mapsto \mathsf{E}\bigg[\sum_{j=1}^N \|T_j\|^s\bigg].$$

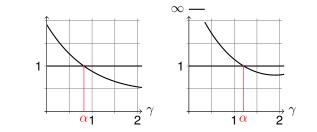
We make the following assumptions:

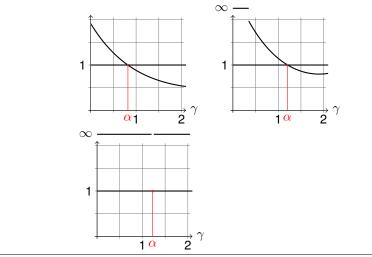
There is an
$$\alpha > 0$$
 such that $m(\alpha) = 1$. (A3)

$$\mathbf{E}\left[\sum_{j\geq 1} \|T_j\|^{\alpha}(-\log \|T_j\|)\right] \in (0,\infty) \quad \text{and} \quad \mathbf{E}[W_1\log^+ W_1] < \infty.$$
 (A4)

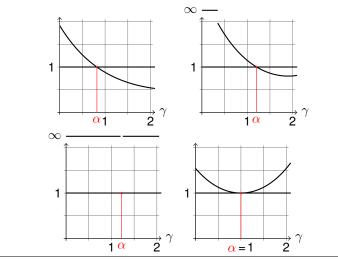
I3rd Bath-Paris meeting





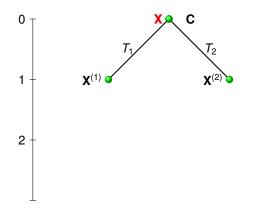


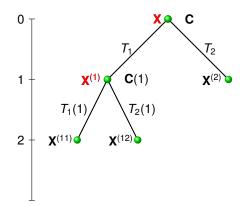
13rd Bath-Paris meeting



June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 11

I3rd Bath-Paris meeting

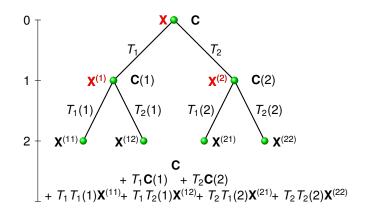






Solving (6): Construction of solutions

Iteration of T_{Σ}



The weighted branching process

- Let $\mathbb{V} := \bigcup_{n \ge 0} \mathbb{N}^n$ denote the infinite Ulam-Harris tree.
- ► Let $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$ be a family of independent copies of $(\mathbf{C}, T_1, T_2, ...)$,

$$(\mathbf{C}(v), T(v)) = (C_1(v), \dots, C_d(v), T_1(v), \dots) \\ \stackrel{\text{law}}{=} (C_1, \dots, C_d, T_1, T_2, \dots).$$

Let

$$L(\emptyset) := 1$$
 and $L(vj) := L(v)T_j(v), \quad v \in \mathbb{V}, \ j \in \mathbb{N}.$

Let (X^(ν))_{v∈V} be a sequence of i.i.d. copies of X independent of (C(ν), T(ν))_{v∈V}.

Constructing a solution to (6)

$$\mathbf{W}_n^* := \sum_{|v| < n} L(v) \mathbf{C}(v), \quad n \ge 0.$$
(7)

By construction, $\mathbf{W}_n^* \stackrel{\text{law}}{=} T_{\Sigma}^n(\delta_0)$. Let

$$\mathbf{W}^* := \lim_{n \to \infty} \mathbf{W}_n^* = \sum_{n \ge 0} \sum_{|v|=n} L(v) \mathbf{C}(v)$$
(8)

whenever the limit exists in the sense of convergence in probability. If it does, then \mathbf{W}^* defines a solution to (6).

Constructing homogeneous solutions, II

By (A3)

$$W_n := \sum_{|v|=n} \|L(v)\|^{\alpha}, \quad n \in \mathbb{N}_0$$
(9)

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. It is well known that P(W > 0) > 0 iff E[W] = 1 and that a sufficient condition for the latter is (A4).

Assume that $T_j \ge 0, j \in \mathbb{N}$. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, ...$ denote a sequence of i.i.d. strictly α -stable random vectors independent of $(\mathbf{C}(\nu), T(\nu))_{\nu \in \mathbb{V}}$.

Define $\mathbf{X} := W^{1/\alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)} := [W]_j^{1/\alpha} \mathbf{Y}^{(j)}, j \ge 1$ where $[\cdot]_v$ is the shift by vertex v.

Constructing homogeneous solutions, II

By (A3)

$$W_n := \sum_{|v|=n} \|L(v)\|^{\alpha}, \quad n \in \mathbb{N}_0$$
(9)

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. It is well known that P(W > 0) > 0 iff E[W] = 1 and that a sufficient condition for the latter is (A4).

Assume that $T_j \ge 0, j \in \mathbb{N}$. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, ...$ denote a sequence of i.i.d. strictly α -stable random vectors independent of $(\mathbf{C}(\nu), T(\nu))_{\nu \in \mathbb{V}}$.

Define $\mathbf{X} := W^{1/\alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)} := [W]_j^{1/\alpha} \mathbf{Y}^{(j)}, j \ge 1$ where $[\cdot]_v$ is the shift by vertex v. Then

$$\sum_{j=1}^{N} T_{j} \mathbf{X}^{(j)} = \sum_{j=1}^{N} T_{j} ([W]_{j}^{1/\alpha} \mathbf{Y}^{(j)}) \stackrel{\text{law}}{=} \left(\sum_{j=1}^{N} T_{j}^{\alpha} [W]_{j} \right)^{1/\alpha} \mathbf{Y}$$
$$= W^{1/\alpha} \mathbf{Y} = \mathbf{X}.$$

The set of solutions in the case of nonnegative weights

Theorem (Nonnegative weights, Alsmeyer and M. '13)

Suppose that (A1)-(A3) hold (and some technical condition) and that $T_j \ge 0$ a.s. for all $j \in \mathbb{N}$. A distribution P on \mathbb{R}^d is a solution to (6) if and only if it is the law of a random variable of the form

$$\mathbf{W}^* + \mathbf{W}^{1/\alpha} \mathbf{Y}_{\alpha} \tag{10}$$

where

- ▶ **W**^{*} is the special (endogenous) solution to (6);
- W is the unique (endogenous) solution to $W \stackrel{\text{law}}{=} \sum_{j>1} |T_j|^{\alpha} W_j;$
- \mathbf{Y}_{α} is strictly α -stable and independent of (\mathbf{W}^*, W).

$$\mathbf{X} \stackrel{\text{law}}{=} \sum_{j \ge 1} T_j \mathbf{X}^{(j)} + \mathbf{C}.$$
(6)

Constructing homogeneous solutions, III

Assume that T_j are similarities. Let **Y**, **Y**⁽¹⁾, **Y**⁽²⁾, ... denote a sequence of i.i.d. $\mathbb{G}(O)$ -invariant α -stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.

Define $\mathbf{X} := W^{1/\alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)} := [W]_j^{1/\alpha} \mathbf{Y}^{(j)}, j \ge 1$.

Constructing homogeneous solutions, III

Assume that T_j are similarities. Let **Y**, **Y**⁽¹⁾, **Y**⁽²⁾, ... denote a sequence of i.i.d. $\mathbb{G}(O)$ -invariant α -stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.

Define **X** :=
$$W^{1/\alpha}$$
Y and **X**^(j) := $[W]_{j}^{1/\alpha}$ **Y**^(j), $j \ge 1$.

Then

$$\sum_{j=1}^{N} T_j \mathbf{X}^{(j)} = \sum_{j=1}^{N} ||T_j|| (W_j^{1/\alpha} \mathbf{Y}^{(j)}) \stackrel{\text{law}}{=} \left(\sum_{j=1}^{N} ||T_j||^{\alpha} W_j \right)^{1/\alpha} \mathbf{Y}$$
$$= W^{1/\alpha} \mathbf{Y} = \mathbf{X}.$$

Determining the set of all solutions

Is it reasonable to conjecture that in the general case, all solutions are of the form

$$\mathbf{W}^* + W^{1/\alpha} \mathbf{Y}_{\alpha} \tag{10}$$

for $\mathbb{G}(\mathcal{O})$ -invariant α -stable random variables \mathbf{Y}_{α} ?

Determining the set of all solutions

Is it reasonable to conjecture that in the general case, all solutions are of the form

$$\mathbf{W}^* + W^{1/\alpha} \mathbf{Y}_{\alpha} \tag{10}$$

for $\mathbb{G}(\mathcal{O})$ -invariant α -stable random variables \mathbf{Y}_{α} ?

Assume $\alpha > 1$ and $\sum_{j \ge 1} T_j = 1$ a.s. Then $a = \sum_{j \ge 1} T_j a$ a.s., hence adding a constant to (10) gives an additional solution.

Another martingale

In general, we have to take care when $\alpha > 1$ and $\mathbf{E}\left[\sum_{j \ge 1} T_j\right]$ has eigenvalue 1:

- Let $Z_n := \sum_{|v|=n} L(v)w$ where w is an eigenvector to the eigenvalue 1.
- $(Z_n)_{n\geq 0}$ is a martingale.

Another martingale

In general, we have to take care when $\alpha > 1$ and $\mathbf{E}\left[\sum_{j\geq 1} T_j\right]$ has eigenvalue 1:

- Let $Z_n := \sum_{|v|=n} L(v)w$ where w is an eigenvector to the eigenvalue 1.
- $(Z_n)_{n\geq 0}$ is a martingale.
- ▶ If $(Z_n)_n$ does not converge a.s. or if $Z_n \rightarrow 0$ a.s., no further solutions appear.

Another martingale

In general, we have to take care when $\alpha > 1$ and $E\left[\sum_{j\geq 1} T_j\right]$ has eigenvalue 1:

- Let $Z_n := \sum_{|v|=n} L(v)w$ where w is an eigenvector to the eigenvalue 1.
- $(Z_n)_{n\geq 0}$ is a martingale.
- ▶ If $(Z_n)_n$ does not converge a.s. or if $Z_n \rightarrow 0$ a.s., no further solutions appear.
- ▶ If $Z_n \rightarrow Z$ a.s. with $\mathbf{P}(Z = 0) < 1$, then aZ, $a \in \mathbb{R}$ are further solutions.

When does $(Z_n)_{n\geq 0}$ converge a.s.?

Martingale convergence

Lemma

Assume (A1)-(A3), $\mathbf{E}[Z_1] = 1$ and a technical assumption. Then the following assertions are equivalent:

(i) $Z_n \rightarrow Z$ a.s.

(ii) $(Z_n)_{n\geq 0}$ is bounded in \mathcal{L}^{β} for some $1 < \beta < \alpha$.

 \mathcal{L}^eta -boundedness is easier to check.

For instance, if $\alpha \ge 2$ (plus an additional technical condition when $\alpha = 2$), $Z_n \rightarrow Z$ iff $Z_1 = 1$ a.s.

The set of solutions in the general case

Conjecture (General case, M. and Mentemeier '14)

Suppose that (A1)-(A3) hold (and some technical condition). A distribution P on \mathbb{R}^d is a solution to (6) if and only if it is the law of a random variable of the form

$$\mathbf{W}^* + \mathbf{a}Z + W^{1/\alpha}\mathbf{Y}_{\alpha} \tag{11}$$

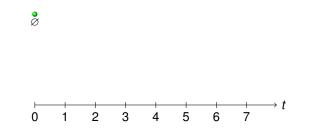
where

- ▶ **W**^{*} and *W* are above;
- ► $Z = \lim \sum_{|v|=n} L(v)w$ where *w* is an eigenvector to the eigenvalue 1 of $\mathbf{E}[\sum_{j\geq 1} T_j]$.
- Y_α is strictly α-stable and independent of (W*, W, Z) and invariant mod G(O) where G(O) is the smallest closed multiplicative subgroup of the group of orthogonal matrices generated by the O_j = T_j/||T_j||, j ≥ 1.

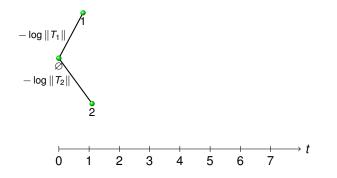
$$\mathbf{X} \stackrel{\text{law}}{=} \sum_{j \ge 1} T_j \mathbf{X}_j + \mathbf{C}.$$
 (6)

13rd Bath-Paris meeting

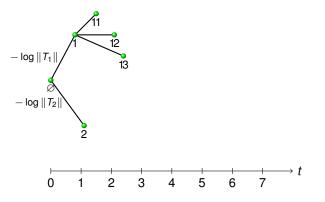
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(\mathcal{O}) \subseteq \mathcal{O}(d)$.



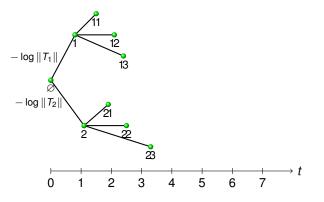
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(\mathcal{O}) \subseteq \mathcal{O}(d)$.



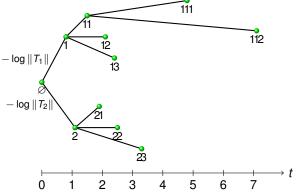
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(\mathcal{O}) \subseteq \mathcal{O}(d)$.



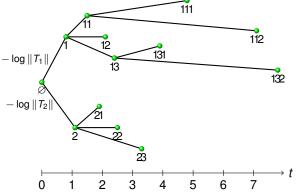
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(\mathcal{O}) \subseteq \mathcal{O}(d)$.



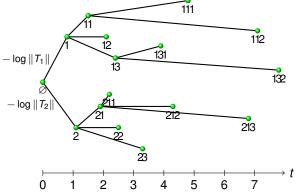
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(\mathcal{O}) \subseteq \mathcal{O}(d)$.



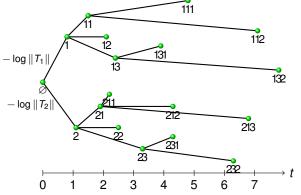
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.



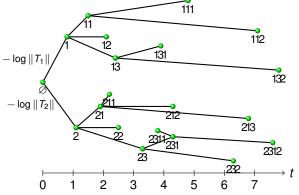
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.



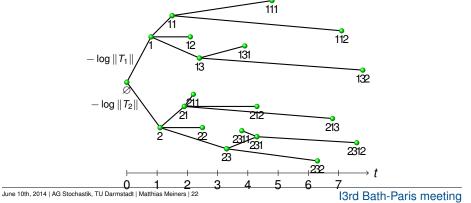
The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.



The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.



The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v) := -\log ||L(v)||$ and types $O(v) := ||L(v)||^{-1}L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.



Last slide

The conjecture is proved

• when $\alpha \neq 1$;

Last slide

The conjecture is proved

- when $\alpha \neq 1$;
- when $\mathbb{G}(O)$ is a finite group (for instance, when the T_j are real-valued).

Literature

```
G. Alsmeyer and M.
```

Fixed points of the smoothing transform: Two-sided solutions. *Probab. Theory Relat. Fields*, 155:165–199, 2013.

A. Iksanov and M.

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes. *Submitted*, arXiv:1401.1368.

A. Iksanov and M.

Fixed points of multivariate smoothing transforms with scalar weights. *Submitted*, arXiv:1402.4147.

S. Mentemeier and M.

Work in progress.

Last slide

The conjecture is proved

- when $\alpha \neq 1$;
- when $\mathbb{G}(O)$ is a finite group (for instance, when the T_j are real-valued).

Literature

```
G. Alsmeyer and M.
```

Fixed points of the smoothing transform: Two-sided solutions. *Probab. Theory Relat. Fields*, 155:165–199, 2013.

A. Iksanov and M.

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes. *Submitted*, arXiv:1401.1368.

A. Iksanov and M.

Fixed points of multivariate smoothing transforms with scalar weights. *Submitted*, arXiv:1402.4147.

S. Mentemeier and M.

Work in progress.

Thank you for your attention!