Solutions to multivariate smoothing equations

Solutions to multivariate smoothing equations

based on joint work with S. Mentemeier

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Example (Cyclic Pólya urns)

Consider an urn with balls of m types (colors) together with the rule that if a ball of type k is drawn, then it is placed back into the urn together with a ball of type $k+1$ $(\bmod m)$. Then the urn is called cyclic Pólya urn.
Cyclic Pólya urn

Introduction

Considering the number $R_{n}^{(k)}$ of balls of type 1 in the urn after n steps when starting with one ball of type k, an explicit formula for $\mathrm{E}\left[R_{n}^{(k)}\right]=\frac{n}{m}+O(1)$ has been derived by Janson (2004).
Now let $m \geq 7, \zeta=\exp (2 \pi \mathrm{i} / m)$ be a primitive m th root of unity with real part $\xi=\cos (2 \pi / m)$.
Knape and Neininger (2013) showed that

$$
n^{-\xi}\left(R_{n}^{(k)}-n / m\right) \stackrel{\operatorname{law}}{\approx} \operatorname{Re}\left(e^{i\left(\sin \left(\frac{2 \pi}{m}\right) \log (n)+2 \pi \frac{k-1}{m}\right)} X\right)
$$

where X is the unique solution with finite second moment of the equation:

$$
\begin{equation*}
X \stackrel{\text { law }}{=} U^{\zeta} X_{1}+\zeta(1-U)^{\zeta} X_{2} \tag{1}
\end{equation*}
$$

where X_{1}, X_{2} are i.i.d. copies of X that are independent of U which has the uniform distribution on $[0,1]$.

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

$$
N(\epsilon):=\#\{\text { brown rocks }\}=8 .
$$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

Introduction

Example (Asymptotic size of fragmentation trees)

- An object of mass $x=1$, say, is split into b parts with respective masses $0 \leq V_{1}, \ldots, V_{b}<1$ where $b \geq 2$ is a fixed integer and V_{1}, \ldots, V_{b} are random variables with $V_{1}+\ldots+V_{b}=1$ a.s.
- The splitting procedure is repeated with the splittings determined by independent copies of the random vector $\left(V_{1}, \ldots, V_{b}\right)$.

The fragmentation tree of all objects that have mass strictly $\geq \epsilon$

Introduction

- Let $\psi: \mathbb{C} \rightarrow \mathbb{C}, z \mapsto \mathbf{E}\left[\sum_{j=1}^{b} V_{j}^{z}\right]$;
- denote by $1=\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ the roots of the equation $\psi(z)=1$; with the convention that $1=\operatorname{Re}\left(\lambda_{1}\right)>\operatorname{Re}\left(\lambda_{2}\right) \geq \operatorname{Re}\left(\lambda_{3}\right) \geq \ldots$.
Janson and Neininger (2008) showed that, when $\operatorname{Re}\left(\lambda_{2}\right) \leq 1 / 2, N(\epsilon)$ suitably shifted and scaled, converges in distribution to a centered normal.
On the other hand, when $\operatorname{Re}\left(\lambda_{2}\right)>1 / 2, N(\epsilon)$ does not converge in distribution. Instead, $\epsilon^{\mathrm{Re}\left(\lambda_{2}\right)}\left(N(\epsilon)-c \epsilon^{-1}\right)$ has an asymptotic periodic behavior involving the real part of rotations of a complex-valued random variable X with finite second moment and

$$
\begin{equation*}
X \stackrel{\operatorname{law}}{=} \sum_{j=1}^{b} V_{j}^{\lambda_{2}} X_{j} \tag{2}
\end{equation*}
$$

where X_{1}, \ldots, X_{b} are i.i.d. copies of X independent of $\left(V_{1}, \ldots, V_{b}\right)$.

Introduction

Example (m-ary search trees)

Let T_{n} be an m-ary search tree with n keys inserted.
When $m>26$, an important role in the asymptotics of T_{n} is played by a complex-valued solutions W to

$$
\begin{equation*}
W \stackrel{\text { law }}{=} e^{-\lambda_{2} T}\left(W_{1}+\ldots+W_{m}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
W \stackrel{\text { law }}{=} \sum_{j=1}^{m} V_{j}^{\lambda_{2}} W_{j} \tag{4}
\end{equation*}
$$

where W_{1}, W_{2}, \ldots are i.i.d. copies of W independent of T and $\left(V_{1}, \ldots, V_{m}\right)$, resp., and $T \sim \tau_{1}+\ldots+\tau_{m-1}$ with independent $\tau_{1}, \ldots, \tau_{m-1}$ and τ_{j} having exponential distribution with parameter j and the V_{j} are the spacings of $m-1$ independent uniform $(0,1)$ variables (for details, see Fill and Kapur (2004), Janson (2004), Chauvin, Liu and Pouyanne (2011)).

Introduction

Example (Kac caricature)

Bassetti and Matthes (2014) considered a generalization of the Kac caricature of the Boltzmann equation which describes the particle velocities V as a vector in \mathbb{R}^{3}. The stationary solution of this equation satisfies

$$
\begin{equation*}
V \stackrel{\text { law }}{=} L V_{1}+R V_{2}, \tag{5}
\end{equation*}
$$

where V, V_{1}, V_{2} are i.i.d. and independent of the random pair (L, R) of similarities, which satisfies $\mathbf{E}\left[\|L\|^{2}+\|R\|^{2}\right]=1$.

General framework:
 Multivariate smoothing equations

Fix $d \in \mathbb{N}$. Let

- (C, T_{1}, T_{2}, \ldots) be a given sequence of random variables where
- $\mathbf{C}=\left(C_{1}, \ldots, C_{d}\right)$ is a d-dimensional random vector,
- T_{1}, T_{2}, \ldots are similarities (i.e., $T_{j}=\left\|T_{j}\right\| O_{j}$ for an orthogonal $d \times d$ matrix O_{j}),
- and $N:=\#\left\{j \in \mathbb{N}: T_{j} \neq 0\right\}<\infty$ a.s.;
- $\left(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \ldots\right)$ be a sequence of i.i.d. \mathbb{R}^{d}-valued random vectors independent of (C, T_{1}, T_{2}, \ldots).
We consider multivariate smoothing equations of the form

$$
\begin{equation*}
\mathbf{x} \stackrel{\operatorname{law}}{=} \sum_{j \geq 1} T_{j} \mathbf{X}^{(j)}+\mathbf{C} . \tag{6}
\end{equation*}
$$

General framework:
 Multivariate smoothing equations

Fix $d \in \mathbb{N}$. Let

- (C, T_{1}, T_{2}, \ldots) be a given sequence of random variables where
- $\mathbf{C}=\left(C_{1}, \ldots, C_{d}\right)$ is a d-dimensional random vector,
- T_{1}, T_{2}, \ldots are similarities (i.e., $T_{j}=\left\|T_{j}\right\| O_{j}$ for an orthogonal $d \times d$ matrix O_{j}),
- and $N:=\#\left\{j \in \mathbb{N}: T_{j} \neq 0\right\}<\infty$ a.s.;
- $\left(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \ldots\right)$ be a sequence of i.i.d. \mathbb{R}^{d}-valued random vectors independent of (C, T_{1}, T_{2}, \ldots).
We consider multivariate smoothing equations of the form

$$
\begin{equation*}
\mathbf{X} \stackrel{\operatorname{law}}{=} \sum_{j \geq 1} T_{j} \mathbf{X}^{(j)}+\mathbf{C} . \tag{6}
\end{equation*}
$$

Consider ($\mathbf{C}, T_{1}, T_{2}, \ldots$) as given and (the distribution of) \mathbf{X} as unknown. For which distributions of \mathbf{X} does (6) hold?

Assumptions

In order to avoid trivial and simple cases as well as case distinctions, we assume throughout that

$$
\begin{gather*}
\mathbf{P}\left(\left\|T_{j}\right\| \in r^{\mathbb{Z}} \cup\{0\} \text { for all } j \geq 1\right)<1 \text { for all } r>1 . \tag{A1}\\
\mathbf{E}[N]=\mathbf{E}\left[\sum_{j \geq 1} \mathbb{1}_{\left\{\left\|T_{j}\right\|>0\right\}}\right]>1 . \tag{A2}
\end{gather*}
$$

The function m

Let

$$
m:[0, \infty) \rightarrow[0, \infty], \quad s \mapsto \mathbf{E}\left[\sum_{j=1}^{N}\left\|T_{j}\right\|^{s}\right] .
$$

We make the following assumptions:
There is an $\alpha>0$ such that $m(\alpha)=1$.

The function m

Let

$$
m:[0, \infty) \rightarrow[0, \infty], \quad s \mapsto \mathbf{E}\left[\sum_{j=1}^{N}\left\|T_{j}\right\|^{s}\right] .
$$

We make the following assumptions:
There is an $\alpha>0$ such that $m(\alpha)=1$.

$$
\begin{equation*}
\mathbf{E}\left[\sum_{j \geq 1}\left\|T_{j}\right\|^{\alpha}\left(-\log \left\|T_{j}\right\|\right)\right] \in(0, \infty) \quad \text { and } \quad \mathbf{E}\left[W_{1} \log ^{+} W_{1}\right]<\infty \tag{A4}
\end{equation*}
$$

m and the characteristic exponent

m and the characteristic exponent

m and the characteristic exponent

m and the characteristic exponent

Solving (6):
 Construction of solutions

Iteration of T_{Σ}

Solving (6):

Construction of solutions
TECHNISCHE UNIVERSITÄT DARMSTADT

Iteration of T_{Σ}
0
1
$2-$

Solving (6):

Construction of solutions

TECHNISCHE
UNIVERSITÄT DARMSTADT

Iteration of T_{Σ}

Solving (6):

Construction of solutions
TECHNISCHE
UNIVERSITATT
DARMSTADT
Iteration of T_{Σ}

Solving (6):

Construction of solutions

Iteration of T_{Σ}

The weighted branching process

- Let $\mathbb{V}:=\bigcup_{n \geq 0} \mathbb{N}^{n}$ denote the infinite Ulam-Harris tree.
- Let $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$ be a family of independent copies of ($\left.\mathbf{C}, T_{1}, T_{2}, \ldots\right)$,

$$
\begin{aligned}
(\mathbf{C}(v), T(v)) & =\left(C_{1}(v), \ldots, C_{d}(v), T_{1}(v), \ldots\right) \\
& \stackrel{\operatorname{law}}{=}\left(C_{1}, \ldots, C_{d}, T_{1}, T_{2}, \ldots\right) .
\end{aligned}
$$

- Let

$$
L(\varnothing):=1 \quad \text { and } \quad L(v j):=L(v) T_{j}(v), \quad v \in \mathbb{V}, j \in \mathbb{N} .
$$

- Let $\left(\mathbf{X}^{(v)}\right)_{v \in \mathbb{V}}$ be a sequence of i.i.d. copies of \mathbf{X} independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.

Constructing a solution to (6)

$$
\begin{equation*}
\mathbf{W}_{n}^{*}:=\sum_{|v|<n} L(v) \mathbf{C}(v), \quad n \geq 0 \tag{7}
\end{equation*}
$$

By construction, $\mathbf{W}_{n}^{*} \stackrel{\text { law }}{=} T_{\Sigma}^{n}\left(\delta_{0}\right)$. Let

$$
\begin{equation*}
\mathbf{W}^{*}:=\lim _{n \rightarrow \infty} \mathbf{W}_{n}^{*}=\sum_{n \geq 0} \sum_{|v|=n} L(v) \mathbf{C}(v) \tag{8}
\end{equation*}
$$

whenever the limit exists in the sense of convergence in probability. If it does, then \mathbf{W}^{*} defines a solution to (6).

Constructing homogeneous solutions, II

By (A3)

$$
\begin{equation*}
W_{n}:=\sum_{|v|=n}\|L(v)\|^{\alpha}, \quad n \in \mathbb{N}_{0} \tag{9}
\end{equation*}
$$

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. It is well known that $\mathbf{P}(W>0)>0$ iff $\mathrm{E}[W]=1$ and that a sufficient condition for the latter is (A4).
Assume that $T_{j} \geq 0, j \in \mathbb{N}$. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \ldots$ denote a sequence of i.i.d. strictly α-stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.
Define $\mathbf{X}:=W^{1 / \alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)}:=[W]_{j}^{1 / \alpha} \mathbf{Y}^{(j)}, j \geq 1$ where $[\cdot]_{v}$ is the shift by vertex v.

Constructing homogeneous solutions, II

By (A3)

$$
\begin{equation*}
W_{n}:=\sum_{|v|=n}\|L(v)\|^{\alpha}, \quad n \in \mathbb{N}_{0} \tag{9}
\end{equation*}
$$

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. It is well known that $\mathbf{P}(W>0)>0$ iff $\mathrm{E}[W]=1$ and that a sufficient condition for the latter is (A4).
Assume that $T_{j} \geq 0, j \in \mathbb{N}$. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \ldots$ denote a sequence of i.i.d. strictly α-stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.
Define $\mathbf{X}:=W^{1 / \alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)}:=[W]_{j}^{1 / \alpha} \mathbf{Y}^{(j)}, j \geq 1$ where $[\cdot]_{v}$ is the shift by vertex v. Then

$$
\begin{aligned}
\sum_{j=1}^{N} T_{j} \mathbf{X}^{(j)} & =\sum_{j=1}^{N} T_{j}\left([W]_{j}^{1 / \alpha} \mathbf{Y}^{(j)}\right) \stackrel{\operatorname{law}}{=}\left(\sum_{j=1}^{N} T_{j}^{\alpha}[W]_{j}\right)^{1 / \alpha} \mathbf{Y} \\
& =W^{1 / \alpha} \mathbf{Y}=\mathbf{X}
\end{aligned}
$$

The set of solutions in the case of nonnegative weights

Theorem (Nonnegative weights, Alsmeyer and M. '13)

Suppose that (A1)-(A3) hold (and some technical condition) and that $T_{j} \geq 0$ a.s. for all $j \in \mathbb{N}$. A distribution P on \mathbb{R}^{d} is a solution to (6) if and only if it is the law of a random variable of the form

$$
\begin{equation*}
\mathbf{W}^{*}+W^{1 / \alpha} \mathbf{Y}_{\alpha} \tag{10}
\end{equation*}
$$

where

- \mathbf{W}^{*} is the special (endogenous) solution to (6);
- W is the unique (endogenous) solution to $W \stackrel{\text { law }}{=} \sum_{j \geq 1}\left|T_{j}\right|^{\alpha} W_{j}$;
- \mathbf{Y}_{α} is strictly α-stable and independent of $\left(\mathbf{W}^{*}, W\right)$.

$$
\begin{equation*}
\mathbf{X} \stackrel{\text { law }}{=} \sum_{j \geq 1} T_{j} \mathbf{X}^{(j)}+\mathbf{C} \tag{6}
\end{equation*}
$$

Constructing homogeneous solutions, III

Assume that T_{j} are similarities. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \ldots$ denote a sequence of i.i.d. $\mathbb{G}(O)$-invariant α-stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.

Define $\mathbf{X}:=W^{1 / \alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)}:=[W]_{j}^{1 / \alpha} \mathbf{Y}^{()}, j \geq 1$.

Constructing homogeneous solutions, III

Assume that T_{j} are similarities. Let $\mathbf{Y}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \ldots$ denote a sequence of i.i.d. $\mathbb{G}(O)$-invariant α-stable random vectors independent of $(\mathbf{C}(v), T(v))_{v \in \mathbb{V}}$.

Define $\mathbf{X}:=W^{1 / \alpha} \mathbf{Y}$ and $\mathbf{X}^{(j)}:=[W]_{j}^{1 / \alpha} \mathbf{Y}^{(j)}, j \geq 1$.

Then

$$
\begin{aligned}
\sum_{j=1}^{N} T_{j} \mathbf{X}^{(j)} & =\sum_{j=1}^{N}\left\|T_{j}\right\|\left(W_{j}^{1 / \alpha} \mathbf{Y}^{(j)}\right) \stackrel{\operatorname{law}}{=}\left(\sum_{j=1}^{N}\left\|T_{j}\right\|^{\alpha} W_{j}\right)^{1 / \alpha} \mathbf{Y} \\
& =W^{1 / \alpha} \mathbf{Y}=\mathbf{X} .
\end{aligned}
$$

Determining the set of all solutions

Is it reasonable to conjecture that in the general case, all solutions are of the form

$$
\begin{equation*}
\mathbf{W}^{*}+W^{1 / \alpha} \mathbf{Y}_{\alpha} \tag{10}
\end{equation*}
$$

for $\mathbb{G}(O)$-invariant α-stable random variables \mathbf{Y}_{α} ?

Determining the set of all solutions

Is it reasonable to conjecture that in the general case, all solutions are of the form

$$
\begin{equation*}
\mathbf{W}^{*}+W^{1 / \alpha} \mathbf{Y}_{\alpha} \tag{10}
\end{equation*}
$$

for $\mathbb{G}(O)$-invariant α-stable random variables \mathbf{Y}_{α} ?

Assume $\alpha>1$ and $\sum_{j \geq 1} T_{j}=1$ a.s. Then $a=\sum_{j \geq 1} T_{j}$ a a.s., hence adding a constant to (10) gives an additional solution.

Another martingale

In general, we have to take care when $\alpha>1$ and $\mathbf{E}\left[\sum_{j \geq 1} T_{j}\right]$ has eigenvalue 1:

- Let $Z_{n}:=\sum_{|v|=n} L(v) w$ where w is an eigenvector to the eigenvalue 1 .
- $\left(Z_{n}\right)_{n \geq 0}$ is a martingale.

Another martingale

In general, we have to take care when $\alpha>1$ and $\mathbf{E}\left[\sum_{j \geq 1} T_{j}\right]$ has eigenvalue 1:

- Let $Z_{n}:=\sum_{|v|=n} L(v) w$ where w is an eigenvector to the eigenvalue 1 .
- $\left(Z_{n}\right)_{n \geq 0}$ is a martingale.
- If $\left(Z_{n}\right)_{n}$ does not converge a.s. or if $Z_{n} \rightarrow 0$ a.s., no further solutions appear.

Another martingale

In general, we have to take care when $\alpha>1$ and $\mathbf{E}\left[\sum_{j \geq 1} T_{j}\right]$ has eigenvalue 1:

- Let $Z_{n}:=\sum_{|v|=n} L(v) w$ where w is an eigenvector to the eigenvalue 1 .
- $\left(Z_{n}\right)_{n \geq 0}$ is a martingale.
- If $\left(Z_{n}\right)_{n}$ does not converge a.s. or if $Z_{n} \rightarrow 0$ a.s., no further solutions appear.
- If $Z_{n} \rightarrow Z$ a.s. with $\mathbf{P}(Z=0)<1$, then $a Z, a \in \mathbb{R}$ are further solutions.

When does $\left(Z_{n}\right)_{n \geq 0}$ converge a.s.?

Martingale convergence

Lemma

Assume (A1)-(A3), $\mathrm{E}\left[Z_{1}\right]=1$ and a technical assumption. Then the following assertions are equivalent:
(i) $Z_{n} \rightarrow Z$ a.s.
(ii) $\left(Z_{n}\right)_{n \geq 0}$ is bounded in \mathcal{L}^{β} for some $1<\beta<\alpha$.
\mathcal{L}^{β}-boundedness is easier to check.
For instance, if $\alpha \geq 2$ (plus an additional technical condition when $\alpha=2$), $Z_{n} \rightarrow Z$ iff $Z_{1}=1$ a.s.

The set of solutions in the general case

Conjecture (General case, M. and Mentemeier '14)
Suppose that (A1)-(A3) hold (and some technical condition). A distribution P on \mathbb{R}^{d} is a solution to (6) if and only if it is the law of a random variable of the form

$$
\begin{equation*}
\mathbf{W}^{*}+\mathbf{a} Z+W^{1 / \alpha} \mathbf{Y}_{\alpha} \tag{11}
\end{equation*}
$$

where

- \mathbf{W}^{*} and W are above;
- $Z=\lim \sum_{|v|=n} L(v) w$ where w is an eigenvector to the eigenvalue 1 of $\mathbf{E}\left[\sum_{j \geq 1} T_{j}\right]$.
- \mathbf{Y}_{α} is strictly α-stable and independent of $\left(\mathbf{W}^{*}, W, Z\right)$ and invariant $\bmod \mathbb{G}(O)$ where $\mathbb{G}(O)$ is the smallest closed multiplicative subgroup of the group of orthogonal matrices generated by the $O_{j}=T_{j} /\left\|T_{j}\right\|, j \geq 1$.

$$
\begin{equation*}
\mathbf{X} \stackrel{\text { law }}{=} \sum_{j \geq 1} T_{j} \mathbf{X}_{j}+\mathbf{C} \tag{6}
\end{equation*}
$$

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

$$
\stackrel{\circ}{\varnothing}
$$

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Branching processes

The family $(L(v))_{v \in \mathbb{V}}$ can be considered as a multi-type branching process with birth times $S(v):=-\log \|L(v)\|$ and types $O(v):=\|L(v)\|^{-1} L(v) \in \mathcal{O}(d)$. The type space is $\mathbb{G}(O) \subseteq \mathcal{O}(d)$.
Multitype general branching process

Last slide

The conjecture is proved

- when $\alpha \neq 1$;

Last slide

TECHNISCHE UNIVERSITÄT DARMSTADT

The conjecture is proved

- when $\alpha \neq 1$;
- when $\mathbb{G}(O)$ is a finite group (for instance, when the T_{j} are real-valued).

Literature

G. Alsmeyer and M.

Fixed points of the smoothing transform: Two-sided solutions.
Probab. Theory Relat. Fields, 155:165-199, 2013.
A. Iksanov and M.

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes.
Submitted, arXiv:1401.1368.
A. Iksanov and M.

Fixed points of multivariate smoothing transforms with scalar weights.
Submitted, arXiv:1402.4147.
S. Mentemeier and M.

Work in progress.

Last slide

The conjecture is proved

- when $\alpha \neq 1$;
- when $\mathbb{G}(O)$ is a finite group (for instance, when the T_{j} are real-valued).

Literature

G. Alsmeyer and M.

Fixed points of the smoothing transform: Two-sided solutions.
Probab. Theory Relat. Fields, 155:165-199, 2013.
A. Iksanov and M.

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes.
Submitted, arXiv:1401.1368.

A. Iksanov and M.

Fixed points of multivariate smoothing transforms with scalar weights.
Submitted, arXiv:1402.4147.S. Mentemeier and M.

Work in progress.

Thank you for your attention!

