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Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→ 7→

1

7→7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→

7→

1

7→7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→

7→

1

7→7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→ 7→

1

7→7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→ 7→

1

7→

7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→ 7→

1

7→

7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Example (Cyclic Pólya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of
type k is drawn, then it is placed back into the urn together with a ball of type k +1
(mod m). Then the urn is called cyclic Pólya urn.

Cyclic Pólya urn

0

7→ 7→

1

7→7→

2

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 2 I3rd Bath-Paris meeting



Introduction

Considering the number R(k )
n of balls of type 1 in the urn after n steps when starting

with one ball of type k , an explicit formula for E[R(k )
n ] = n

m + O(1) has been derived
by Janson (2004).
Now let m ≥ 7, ζ = exp(2πi/m) be a primitive mth root of unity with real part
ξ = cos(2π/m).
Knape and Neininger (2013) showed that

n−ξ(R(k )
n − n/m)

law
≈ Re

(
ei(sin( 2π

m ) log(n)+2π k−1
m )X

)
where X is the unique solution with finite second moment of the equation:

X law= UζX1 + ζ(1− U)ζX2 (1)

where X1, X2 are i.i.d. copies of X that are independent of U which has the uniform
distribution on [0, 1].
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Introduction

Example (Asymptotic size of fragmentation trees)

I An object of mass x = 1, say, is split into b parts with respective masses
0 ≤ V1, ... , Vb < 1 where b ≥ 2 is a fixed integer and V1, ... , Vb are random
variables with V1 + ... + Vb = 1 a.s.

I The splitting procedure is repeated with the splittings determined by
independent copies of the random vector (V1, ... , Vb).

The fragmentation tree of all objects that have mass strictly ≥ ε

V1 V2

V1(1) V2(1) V1(2) V2(2)

N(ε) := #{brown rocks} = 8.
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Introduction

I Let ψ : C→ C, z 7→ E[
∑b

j=1 V z
j ];

I denote by 1 = λ1,λ2,λ3, ... the roots of the equation ψ(z) = 1; with the
convention that 1 = Re(λ1) > Re(λ2) ≥ Re(λ3) ≥ ....

Janson and Neininger (2008) showed that, when Re(λ2) ≤ 1/2, N(ε) suitably
shifted and scaled, converges in distribution to a centered normal.

On the other hand, when Re(λ2) > 1/2, N(ε) does not converge in distribution.
Instead, εRe(λ2)(N(ε)− cε−1) has an asymptotic periodic behavior involving the real
part of rotations of a complex-valued random variable X with finite second moment
and

X law=
b∑

j=1

Vλ2
j Xj (2)

where X1, ... , Xb are i.i.d. copies of X independent of (V1, ... , Vb).
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Introduction

Example (m-ary search trees)
Let Tn be an m-ary search tree with n keys inserted.
When m > 26, an important role in the asymptotics of Tn is played by a
complex-valued solutions W to

W law= e−λ2T (W1 + ... + Wm) (3)

and

W law=
m∑

j=1

Vλ2
j Wj (4)

where W1, W2, ... are i.i.d. copies of W independent of T and (V1, ... , Vm), resp.,
and T ∼ τ1 + ... + τm−1 with independent τ1, ... , τm−1 and τj having exponential
distribution with parameter j and the Vj are the spacings of m − 1 independent
uniform (0, 1) variables (for details, see Fill and Kapur (2004), Janson (2004),
Chauvin, Liu and Pouyanne (2011)).
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Introduction

Example (Kac caricature)
Bassetti and Matthes (2014) considered a generalization of the Kac caricature of
the Boltzmann equation which describes the particle velocities V as a vector in R3.
The stationary solution of this equation satisfies

V law= LV1 + RV2, (5)

where V , V1, V2 are i.i.d. and independent of the random pair (L, R) of similarities,
which satisfies E

[
‖L‖2 + ‖R‖2

]
= 1.
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General framework:
Multivariate smoothing equations

Fix d ∈ N. Let
I (C, T1, T2, ...) be a given sequence of random variables where

I C = (C1, ... , Cd ) is a d-dimensional random vector,
I T1, T2, ... are similarities (i.e., Tj = ‖Tj‖Oj for an orthogonal d × d matrix Oj ),
I and N := #{j ∈ N : Tj 6= 0} <∞ a.s.;

I (X(1), X(2), ...) be a sequence of i.i.d. Rd -valued random vectors independent of
(C, T1, T2, ...).

We consider multivariate smoothing equations of the form

X law=
∑
j≥1

TjX(j) + C. (6)

Consider (C, T1, T2, ...) as given and (the distribution of) X as unknown.
For which distributions of X does (6) hold?
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Assumptions

In order to avoid trivial and simple cases as well as case distinctions, we assume
throughout that

P
(
‖Tj‖ ∈ rZ ∪ {0} for all j ≥ 1

)
< 1 for all r > 1. (A1)

E[N] = E
[∑

j≥1

1{‖Tj‖>0}

]
> 1. (A2)
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The function m

Let

m : [0,∞)→ [0,∞], s 7→ E
[ N∑

j=1

‖Tj‖s
]

.

We make the following assumptions:

There is an α > 0 such that m(α) = 1. (A3)

E
[∑

j≥1

‖Tj‖α(− log ‖Tj‖)
]
∈ (0,∞) and E[W1 log+ W1] <∞. (A4)
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m and the characteristic exponent

γ
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Solving (6):
Construction of solutions

Iteration of TΣ

2

1

0 X

X C

T1

X(1)

T2

X(2)X(1) C(1)

T1(1)

X(11)

T2(1)

X(12)

X(2) C(2)

T1(2)

X(21)

T2(2)

X(22)

C
+ T1C(1) + T2C(2)

+ T1T1(1)X(11)+ T1T2(1)X(12)+ T2T1(2)X(21)+ T2T2(2)X(22)

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 12 I3rd Bath-Paris meeting



Solving (6):
Construction of solutions

Iteration of TΣ

2

1

0 XX C

T1

X(1)

T2

X(2)

X(1) C(1)

T1(1)

X(11)

T2(1)

X(12)

X(2) C(2)

T1(2)

X(21)

T2(2)

X(22)

C
+ T1C(1) + T2C(2)

+ T1T1(1)X(11)+ T1T2(1)X(12)+ T2T1(2)X(21)+ T2T2(2)X(22)

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 12 I3rd Bath-Paris meeting



Solving (6):
Construction of solutions

Iteration of TΣ

2

1

0 XX C

T1

X(1)

T2

X(2)X(1) C(1)

T1(1)

X(11)

T2(1)

X(12)

X(2) C(2)

T1(2)

X(21)

T2(2)

X(22)

C
+ T1C(1) + T2C(2)

+ T1T1(1)X(11)+ T1T2(1)X(12)+ T2T1(2)X(21)+ T2T2(2)X(22)

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 12 I3rd Bath-Paris meeting



Solving (6):
Construction of solutions

Iteration of TΣ

2

1

0 XX C

T1

X(1)

T2

X(2)X(1) C(1)

T1(1)

X(11)

T2(1)

X(12)

X(2) C(2)

T1(2)

X(21)

T2(2)

X(22)

C
+ T1C(1) + T2C(2)

+ T1T1(1)X(11)+ T1T2(1)X(12)+ T2T1(2)X(21)+ T2T2(2)X(22)

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 12 I3rd Bath-Paris meeting



Solving (6):
Construction of solutions

Iteration of TΣ

2

1

0 XX C

T1

X(1)

T2

X(2)X(1) C(1)

T1(1)

X(11)

T2(1)

X(12)

X(2) C(2)

T1(2)

X(21)

T2(2)

X(22)

C
+ T1C(1) + T2C(2)

+ T1T1(1)X(11)+ T1T2(1)X(12)+ T2T1(2)X(21)+ T2T2(2)X(22)

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 12 I3rd Bath-Paris meeting



The weighted branching process

I Let V :=
⋃

n≥0 Nn denote the infinite Ulam-Harris tree.
I Let (C(v ), T (v ))v∈V be a family of independent copies of (C, T1, T2, ...),

(C(v ), T (v )) = (C1(v ), ... , Cd (v ), T1(v ), ...)
law= (C1, ... , Cd , T1, T2, ...).

I Let
L(∅) := 1 and L(vj) := L(v )Tj (v ), v ∈ V, j ∈ N.

I Let (X(v ))v∈V be a sequence of i.i.d. copies of X
independent of (C(v ), T (v ))v∈V.
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Constructing a solution to (6)

W∗n :=
∑
|v|<n

L(v )C(v ), n ≥ 0. (7)

By construction, W∗n
law= T n

Σ(δ0). Let

W∗ := lim
n→∞

W∗n =
∑
n≥0

∑
|v|=n

L(v )C(v ) (8)

whenever the limit exists in the sense of convergence in probability.
If it does, then W∗ defines a solution to (6).

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 14 I3rd Bath-Paris meeting



Constructing homogeneous solutions, II

By (A3)
Wn :=

∑
|v|=n

‖L(v )‖α, n ∈ N0 (9)

defines a nonnegative mean-one martingale. We denote its a.s. limit by W . It is
well known that P(W > 0) > 0 iff E[W ] = 1 and that a sufficient condition for the
latter is (A4).
Assume that Tj ≥ 0, j ∈ N. Let Y, Y(1), Y(2), ... denote a sequence of i.i.d. strictly
α-stable random vectors independent of (C(v ), T (v ))v∈V.
Define X := W 1/αY and X(j) := [W ]1/αj Y(j), j ≥ 1 where [·]v is the shift by vertex v .

Then
N∑

j=1

TjX(j) =
N∑

j=1

Tj ([W ]1/αj Y(j)) law=
( N∑

j=1

Tαj [W ]j

)1/α

Y

= W 1/αY = X.
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The set of solutions in the case of nonnegative
weights

Theorem (Nonnegative weights, Alsmeyer and M. ’13)
Suppose that (A1)-(A3) hold (and some technical condition) and that Tj ≥ 0 a.s. for
all j ∈ N. A distribution P on Rd is a solution to (6) if and only if it is the law of a
random variable of the form

W∗ + W 1/αYα (10)

where
I W∗ is the special (endogenous) solution to (6);

I W is the unique (endogenous) solution to W law=
∑

j≥1 |Tj |αWj ;
I Yα is strictly α-stable and independent of (W∗, W ).

X law=
∑
j≥1

TjX(j) + C. (6)
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Constructing homogeneous solutions, III

Assume that Tj are similarities. Let Y, Y(1), Y(2), ... denote a sequence of i.i.d.
G(O)-invariant α-stable random vectors independent of (C(v ), T (v ))v∈V.

Define X := W 1/αY and X(j) := [W ]1/αj Y(j), j ≥ 1.

Then

N∑
j=1

TjX(j) =
N∑

j=1

‖Tj‖(W 1/α
j Y(j)) law=

( N∑
j=1

‖Tj‖αWj

)1/α

Y

= W 1/αY = X.

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 17 I3rd Bath-Paris meeting



Constructing homogeneous solutions, III

Assume that Tj are similarities. Let Y, Y(1), Y(2), ... denote a sequence of i.i.d.
G(O)-invariant α-stable random vectors independent of (C(v ), T (v ))v∈V.

Define X := W 1/αY and X(j) := [W ]1/αj Y(j), j ≥ 1.

Then

N∑
j=1

TjX(j) =
N∑

j=1

‖Tj‖(W 1/α
j Y(j)) law=

( N∑
j=1

‖Tj‖αWj

)1/α

Y

= W 1/αY = X.

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 17 I3rd Bath-Paris meeting



Determining the set of all solutions

Is it reasonable to conjecture that in the general case, all solutions are of the form

W∗ + W 1/αYα (10)

for G(O)-invariant α-stable random variables Yα?

Assume α > 1 and
∑

j≥1 Tj = 1 a.s.
Then a =

∑
j≥1 Tja a.s., hence adding a constant to (10) gives an additional

solution.
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Another martingale

In general, we have to take care when α > 1 and E
[∑

j≥1 Tj
]

has eigenvalue 1:
I Let Zn :=

∑
|v|=n L(v )w where w is an eigenvector to the eigenvalue 1.

I (Zn)n≥0 is a martingale.

I If (Zn)n does not converge a.s. or if Zn → 0 a.s., no further solutions appear.
I If Zn → Z a.s. with P(Z = 0) < 1, then aZ , a ∈ R are further solutions.

When does (Zn)n≥0 converge a.s.?
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Martingale convergence

Lemma
Assume (A1)-(A3), E[Z1] = 1 and a technical assumption. Then the following
assertions are equivalent:

(i) Zn → Z a.s.

(ii) (Zn)n≥0 is bounded in Lβ for some 1 < β < α.

Lβ-boundedness is easier to check.
For instance, if α ≥ 2 (plus an additional technical condition when α = 2), Zn → Z
iff Z1 = 1 a.s.
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The set of solutions in the general case

Conjecture (General case, M. and Mentemeier ’14)
Suppose that (A1)-(A3) hold (and some technical condition). A distribution P on Rd

is a solution to (6) if and only if it is the law of a random variable of the form

W∗ + aZ + W 1/αYα (11)

where
I W∗ and W are above;
I Z = lim

∑
|v|=n L(v )w where w is an eigenvector to the eigenvalue 1 of

E[
∑

j≥1 Tj ].
I Yα is strictly α-stable and independent of (W∗, W , Z ) and invariant mod G(O)

where G(O) is the smallest closed multiplicative subgroup of the group of
orthogonal matrices generated by the Oj = Tj/‖Tj‖, j ≥ 1.

X law=
∑
j≥1

TjXj + C. (6)
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Branching processes

The family (L(v ))v∈V can be considered as a multi-type branching process with
birth times S(v ) := − log ‖L(v )‖ and types O(v ) := ‖L(v )‖−1L(v ) ∈ O(d). The type
space is G(O) ⊆ O(d).

Multitype general branching process

t
0 1 2 3 4 5 6 7

∅

− log ‖T1‖
1

− log ‖T2‖

2

11

12

13

21

22

23

111

112
131

132

211
212

213

231

232

2311
2312
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Last slide

The conjecture is proved
I when α 6= 1;

I when G(O) is a finite group (for instance, when the Tj are real-valued).

Literature
G. Alsmeyer and M.
Fixed points of the smoothing transform: Two-sided solutions.
Probab. Theory Relat. Fields, 155:165–199, 2013.

A. Iksanov and M.
Rate of convergence in the law of large numbers for supercritical general multi-type branching processes.
Submitted, arXiv:1401.1368.

A. Iksanov and M.
Fixed points of multivariate smoothing transforms with scalar weights.
Submitted, arXiv:1402.4147.

S. Mentemeier and M.

Work in progress.

Thank you for your attention!
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