Solutions to multivariate smoothing equations TECHNISCHE

UNIVERSITAT
DARMSTADT

Solutions to multivariate smoothing
equations

based on joint work with S. Mentemeier

I3rd Bath-Paris meeting

June 10th, 2014 | AG Stochastik, TU Darmstadt | Matthias Meiners | 1



Introduction

TECHNISCHE
UNIVERSITAT
DARMSTADT

Example (Cyclic Pélya urns)
Consider an urn with balls of m types (colors) together with the rule that if a ball of

type k is drawn, then it is placed back into the urn together with a ball of type k+1
(mod m). Then the urn is called cyclic Pdlya urn.
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Considering the number RY) of balls of type 1 in the urn after n steps when starting
with one ball of type k, an explicit formula for E[Rﬁ,k)] = 2+ O(1) has been derived
by Janson (2004).

Now let m > 7, ¢ = exp(2xi/m) be a primitive mth root of unity with real part

& = cos(2m/m).

Knape and Neininger (2013) showed that

I 1

n—{(ng) _ n/m Re( i(sin %)Iog( )+27r—)X)
where X is the unique solution with finite second moment of the equation:

Iaw

USXi+C(1 - U)X (1)

where Xi, X, are i.i.d. copies of X that are independent of U which has the uniform
distribution on [0, 1].
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Example (Asymptotic size of fragmentation trees)

» An object of mass x = 1, say, is split into b parts with respective masses
0< Vy,..., Vp < 1where b > 2is afixed integer and V4, ..., V, are random
variables with V; + ...+ V, =1 a.s.

» The splitting procedure is repeated with the splittings determined by
independent copies of the random vector (V4, ..., V).

The fragmentation tree of all objects that have mass strictly > ¢
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> Lety:C — C, z— E[Y7, V7I;

» denote by 1 = Ay, A2, As, ... the roots of the equation (z) = 1; with the
convention that 1 = Re(\1) > Re(\2) > Re(\3) > ....

Janson and Neininger (2008) showed that, when Re(\2) < 1/2, N(e) suitably
shifted and scaled, converges in distribution to a centered normal.

On the other hand, when Re(\2) > 1/2, N(e) does not converge in distribution.
Instead, €7¢*2)(N(e) — ce~ ) has an asymptotic periodic behavior involving the real

part of rotations of a complex-valued random variable X with finite second moment
and

b
XN vex @)

where Xi, ..., Xp are i.i.d. copies of X independent of (V4, ..., Vp).
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Example (m-ary search trees)

Let T, be an m-ary search tree with n keys inserted.

When m > 26, an important role in the asymptotics of T, is played by a
complex-valued solutions W to

W 'Y e T (W + ...+ W) 3)
and
m
Wy vew, )
j=1

where Wy, Wh, ... are i.i.d. copies of W independent of T and (V4, ..., Vi), resp.,
and T ~ 7y + ... + Tm—1 With independent 74, ..., 7»—1 and 7; having exponential
distribution with parameter j and the V; are the spacings of m — 1 independent
uniform (0, 1) variables (for details, see Fill and Kapur (2004), Janson (2004),
Chauvin, Liu and Pouyanne (2011)).
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Example (Kac caricature)

Bassetti and Matthes (2014) considered a generalization of the Kac caricature of
the Boltzmann equation which describes the particle velocities V as a vector in R3.
The stationary solution of this equation satisfies

law

Vv £ LV, + RV, (9)

where V, V4, V, are i.i.d. and independent of the random pair (L, R) of similarities,
which satisfies E[[|L||? + ||R|[?] = 1.
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Fix d € N. Let
» (C, Ty, To, ...) be a given sequence of random variables where

» C=(Cy,..., Cy) is a d-dimensional random vector,
> Ti, Tz, ... are similarities (i.e., T; = || T;|| O; for an orthogonal d x d matrix O}),
»and N:=#{j e N: T; #0} < c0 a.s,;

» (X, X@, ) be a sequence of i.i.d. R%-valued random vectors independent of
(C, Th, To, ...).

We consider multivariate smoothing equations of the form

X' 3 Tx0 e (6)
j=>1
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Fix d € N. Let
» (C, Ty, To, ...) be a given sequence of random variables where

» C=(Cy,..., Cy) is a d-dimensional random vector,
> Ti, Tz, ... are similarities (i.e., T; = || T;|| O; for an orthogonal d x d matrix O}),
»and N:=#{j e N: T; #0} < c0 a.s,;

» (X, X@, ) be a sequence of i.i.d. R%-valued random vectors independent of
(C, Th, To, ...).

We consider multivariate smoothing equations of the form

X' 3 Tx0 e (6)
j=>1

Consider (C, Ty, T», ...) as given and (the distribution of) X as unknown.
For which distributions of X does (6) hold?
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In order to avoid trivial and simple cases as well as case distinctions, we assume
throughout that

P(I|Tjl € U {0} forallj > 1) < 1forallr > 1. (A1)
E[N] = E[Z 11{|T,.”>0}} > 1. (A2)
j21
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Let N
m : [0, c0) — [0, o], SHE[ZHT/HS].
j=1

We make the following assumptions:

Thereis an a > 0 such that m(a) = 1. (A3)
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o 2
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o 2 1a 2

N S

Y Y
1¢ 2 a=1 2
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Iteration of Ts

0 —_
1 4
2 4
C
+ TiC(1) + ToC(2)
1+ i T()XOD4 Ty To(1)XT24 T, T (2)XCV4+ T, T,(2)X2)
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v

Let V := (J,>, N" denote the infinite Ulam-Harris tree.

v

Let (C(v), T(v))vecv be a family of independent copies of (C, Ty, Tz, ...),
(C(v), T(v)) = (Ci(v),..., Cqy(v), T1(v),...)
= (Cy,...,C4, T, To,...).

> Let
L(@):=1 and L(vj) = L(v)Ti(v), veV,jeN.

v

Let (X)), cv be a sequence of i.i.d. copies of X
independent of (C(v), T(v))ycv.
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lvi<n

By construction, W* ‘& T2(6). Let

W= lim W = > > Lwew) (8)

n>0 |v|=n

whenever the limit exists in the sense of convergence in probability.
If it does, then W* defines a solution to (6).
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By (A3)

Wo = D ILWII®, ne Ny ©)

lvl=n

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. Itis
well known that P(W > 0) > 0 iff E[W] = 1 and that a sufficient condition for the
latter is (A4).
Assume that T; > 0, € N. Let Y, YV, Y@, denote a sequence of i.i.d. strictly
a-stable random vectors independent of (C(v), T(V))yev.
Define X := W'Y and X9 := [W];/aY(f),j > 1 where [], is the shift by vertex v.
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Wo = > ILW)® neNp 9)

[v|=n

defines a nonnegative mean-one martingale. We denote its a.s. limit by W. Itis
well known that P(W > 0) > 0 iff E[W] = 1 and that a sufficient condition for the
latter is (A4).
Assume that T; > 0, € N. Let Y, YV, Y@, denote a sequence of i.i.d. strictly
a-stable random vectors independent of (C(v), T(V))yev.
Define X := W'Y and X9 := [W];/aY(f),j > 1 where [], is the shift by vertex v.
Then

N . N 1/
S nuw v = () v
J=1 j=1

wi/ey = X.

N
Z zj(/')
j=1
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Theorem (Nonnegative weights, Alsmeyer and M. ’13)
Suppose that (A1)-(A3) hold (and some technical condition) and that T; > 0 a.s. for
allj € N. A distribution P on R? is a solution to (6) if and only if it is the law of a
random variable of the form
W*+ Wy, (10)

where

» W* js the special (endogenous) solution to (6);

> W is the unique (endogenous) solution to W &' 3™ o T W

» Y, is strictly a-stable and independent of (W*, W).

XT3 Tx0 e 6)
j21
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Assume that T; are similarities. Let Y, Y(), Y& denote a sequence of i.i.d.
G(O)-invariant a-stable random vectors independent of (C(v), T(V))ycv-

Define X := W'/Y and X := [W]/*Y), j > 1.
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Assume that T; are similarities. Let Y, Y(), Y& denote a sequence of i.i.d.
G(O)-invariant a-stable random vectors independent of (C(v), T(V))ycv-

Define X := W'/Y and X := [W]/*Y), j > 1.

Then

N 1/
i «a law a

3 X0 ZHTH Wy 2 (Zﬂ ) Y

j=1

W‘/"‘Y = X.
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Is it reasonable to conjecture that in the general case, all solutions are of the form
W*+ Wy, (10)

for G(O)-invariant a-stable random variables Y, ?
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Is it reasonable to conjecture that in the general case, all solutions are of the form
W*+ Wy, (10)

for G(O)-invariant a-stable random variables Y, ?

Assumea >1and ) ., Tj=1as.
Then a= Z,->1 T;aa.s., hence adding a constant to (10) gives an additional
solution. B
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In general, we have to take care when o > 1 and E[Z/21 T;] has eigenvalue 1:

> LetZ, = Z\vl:n L(v)w where w is an eigenvector to the eigenvalue 1.
> (Zn)n>0 is a martingale.
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In general, we have to take care when o > 1 and E[Z/21 T;] has eigenvalue 1:
> LetZ, = Z\vl:n L(v)w where w is an eigenvector to the eigenvalue 1.
> (Zn)n>0 is a martingale.

» If (Z,), does not converge a.s. or if Z, — 0 a.s., no further solutions appear.
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In general, we have to take care when o > 1 and E[Z/21 T;] has eigenvalue 1:
> LetZ, = Z\vl:n L(v)w where w is an eigenvector to the eigenvalue 1.

(Zn)n>0 is @ martingale.

If (Z,)n does not converge a.s. or if Z, — 0 a.s., no further solutions appear.

If Z, —» Z a.s. with P(Z = 0) < 1, then aZ, a € R are further solutions.

vV v Vv

When does (Z,),>0 converge a.s.?
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Lemma

Assume (A1)-(A3), E[Z1] = 1 and a technical assumption. Then the following
assertions are equivalent:

() Z, — Z as.
(i) (Zn)n>0 is bounded in LP for some 1 < 3 < a.

L£P-boundedness is easier to check.

For instance, if « > 2 (plus an additional technical condition when o = 2), Z, — Z
iff Zy =1 a.s.
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Conjecture (General case, M. and Mentemeier ’14)

Suppose that (A1)-(A3) hold (and some technical condition). A distribution P on R?
is a solution to (6) if and only if it is the law of a random variable of the form

W* +aZ + W'/oy, (11)

where
» W* and W are above;

> Z=lim}_ ., L(v)w where w is an eigenvector to the eigenvalue 1 of
E[Z/Z1 T]
» Y, is strictly a-stable and independent of (W*, W, Z) and invariant mod G(O)

where G(O) is the smallest closed multiplicative subgroup of the group of
orthogonal matrices generated by the O; = Tj/||Tj||,j > 1.

Iaw
> TiX;+C. (6)
j>1
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The family (L(v)),cv can be considered as a multi-type branching process with
birth times S(v) := —log || L(v)|| and types O(v) := ||L(v)||~'L(v) € O(d). The type
space is G(O) C O(d).

Multitype general branching process

Qe

~
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Literature
G. Alsmeyer and M.
Fixed points of the smoothing transform: Two-sided solutions.
Probab. Theory Relat. Fields, 155:165—199, 2013.

@ A. lksanov and M.

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes.
Submitted, arXiv:1401.1368.

[

A. lksanov and M.

Fixed points of multivariate smoothing transforms with scalar weights.
Submitted, arXiv:1402.4147.

[a)

S. Mentemeier and M.

Work in progress.
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Thank you for your attention!
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