
The minimum of a branching random walk outside the
Cramer zone

T. Madaule, LAGA

joint work with Julien Barral and Yueyun Hu

June 9, 2014



1 Framework

2 Result

3 Elements of the proof

T. Madaule, LAGA (joint work with Julien Barral and Yueyun Hu)The minimum of a branching random walk outside the Cramer zoneJune 9, 2014 2 / 13



Generation 0

 

 

 

 

 

 

 

 

 

 

x 

t 

T. Madaule, LAGA (joint work with Julien Barral and Yueyun Hu)The minimum of a branching random walk outside the Cramer zoneJune 9, 2014 3 / 13



Generation 1

 

 

 

 

 

x 

t 

T. Madaule, LAGA (joint work with Julien Barral and Yueyun Hu)The minimum of a branching random walk outside the Cramer zoneJune 9, 2014 3 / 13



Generation 2

 

 

 

 

x 

t 

T. Madaule, LAGA (joint work with Julien Barral and Yueyun Hu)The minimum of a branching random walk outside the Cramer zoneJune 9, 2014 3 / 13



Generation 3

 

 

 

 

 

 

 

 

 

 

x 

t 

T. Madaule, LAGA (joint work with Julien Barral and Yueyun Hu)The minimum of a branching random walk outside the Cramer zoneJune 9, 2014 3 / 13



Where is Mn := min|z|=n V (z), the minimum of the branching
random walk at time n?

The critical BRW:

E
( ∑
|z|=1

e−V (z)
)

= 1, E
( ∑
|z|=1

V (z)e−V (z)
)

= 0 (1.1)

Theorem (Äıdékon, 2011)

There exists a constant C∗ > 0 such that for any x ∈ R

lim
n→∞

P(Mn ≥
3

2
log n + x) = E(exp(−C∗exD∞)), (1.2)

where D∞ := limn→∞
∑
|z|=n V (z)e−V (z) is the limit of the derivative

martingale.
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What is the Cramer zone?

Let Φ be the log-generating function of the BRW

Φ(t) := logE
( ∑
|z|=1

e−tV (z)
)
, t ≥ 0. (1.3)

Remark: Critical BRW means Φ(1) = 0 and Φ′(1) = 0.

The Cramer zone contains all the branching random walks which can
be reduced to the critical case.

What happens outside the Cramer zone?
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A BRW under a first order phase transition

Let us define

E(f [S1]) := E
( ∑
|z|=1

f [V (z)]e−V (z)
)

and m := E(S1) = −Φ′(1−) > 0.

Let α > 1. We assume that

P(S1 ≤ x) =

∫ x

−∞
|y |−α−1l(y)dy , ∀x ≤ x0 < 0, (1.4)

with l is a slowly varying function.

Exemple: Let X , a random variable satisfying (1.4). Let V1,V2 two
independent random variables with the law of 1

2e
xPX (dx). Then the

BRW built with L :=
∑

i∈{1,2} δ{Vi} satisfy (1.4).
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The main result

For any n ∈ N let αn := (α + 1) log n − log l(n).

Theorem (Barral, Hu, M.)

Assume (1.4) and (???). For any x ∈ R,

lim
n→∞

P(Mn ≥ αn + x) = E(exp(−c∗exW∞)), (2.1)

with W∞ := limn→∞
∑
|z|=n e

−V (z) > 0, the limit of the additive
martingale at the critical point.

To establish (2.1) it suffices to know the tail distribution of the
minimum Mn.
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Proposition (Barral, Hu, M.)

Assume (1.4) and (???). There exists c∗ > 0 such that:

lim
x→∞

lim
n→∞

exP
(
Mn ≤ αn − x

)
= c∗. (3.1)

Remark: for a critical BRW, Äıdékon proved that

lim
x→∞

lim
n→∞

ex

x
P
(
Mn ≤

3

2
log n − x

)
= C∗.

It explains why the critical additive martingale appears in (2.1)
instead of the derivative martingale.
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An upper bound for the tail of distribution of Mn

Lemma (Barral, Hu, M.)

Assume (1.4). There exists some positive consant K such that for all
n ≥ 2 and x ≥ 0,

P
(
Mn ≤ αn − x) ≤ Ke−x . (3.2)

We have not assumed the condition (???).

We will sharpen the inequality

P
(
Mn ≤ αn − x) ≤ E

( ∑
|z|=n

1{V (z)≤αn−x}
)

= E
(
eSn1{Sn≤αn−x}

)
≤ e−xeαnP

(
Sn ≤ αn − x

)
.
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Lemma

Assume (1.4). There exists K > 0 such that for all n large enough

P(0 ≤ Sn ≤ 1, min
j≤n

Sj ≥ 0) ≤ Ke−αn (3.3)

With an overwhelming probability the random walk (Sn)n≥0 achieves
a big negative jump of size −mn.
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The assumption (???)

A renewal theorem is necessary to obtain the exact tail distribution.

Let Q the probability measure defined by Q(wn = u|Fn) = e−V (u)

Wn
.

For any f : R→ R+ measurable with compact support

lim
z→−∞

EQ[e
−

∑
|v|=1,v 6=w1

f (V (w1)−V (v))∣∣V (w1) = z ]

=

∫
Ξ(dθ)e−

∫
R f (x)θ(x)dx .

where Ξ is the distribution of some point process on R ∩ {−∞}.
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