Random infinite squarings of rectangles

Bath/Paris III, June , 2014

Random curves

Random curves

"Unif. random discrete curve": Symmetric simple random walk.

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous curve":

Brownian Motion

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous curve":

Brownian Motion

Random surfaces

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous curve":

Brownian Motion

Random surfaces

Unif. random discrete surface: Random triangulation (map)

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous curve":

Brownian Motion

Random surfaces

Unif. random discrete surface: Random triangulation (map) "Unif. random continuous surface:" Brownian Map

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous function": Brownian Motion

Brownian motion: a function $B: [0,1] \to \mathbb{R}.$

Random curves

"Unif. random discrete curve": Symmetric simple random walk. "Unif. random continuous function": Brownian Motion

Brownian motion: a function $B: [0,1] \rightarrow \mathbb{R}.$

Random surfaces

Unif. random discrete surface: Random triangulation (map) "Unif. random continuous surface:" Brownian Map

Brownian Map: an equivalence class of functions $d: \mathbb{S}^2 \times \mathbb{S}^2 \to [0, \infty)$ d(a, b) =distance from a to b.

 $d \equiv d'$ if d and d' differ by a homeomorphism.

We would like to have a "canonical" construction of a random metric Δ on the sphere \mathbb{S}^2 in such a way that [the Brownian map has the law of] (\mathbb{S}^2, Δ). Furthermore, we expect Δ to behave well under the conformal transformations of the sphere." – Jean-Francois Le Gall, Proc. ICM 2014.

Circle packings

Vertices: circles; edges: touching pairs.

Circle packings

Vertices: circles; edges: touching pairs. Embedding canonical up to conformal automorphisms.

J.-F. Le Gall, Proc. ICM 2014

"Suppose that, for ... $n \ge 2$, we have constructed a circle-packing embedding C_n of a uniformly distributed simple triangulation with n faces. Write $V(C_n)$ for the vertex set of C_n and d_{gr}^n for graph distance on $V(C_n)$

J.-F. Le Gall, Proc. ICM 2014

"Suppose that, for ... $n \ge 2$, we have constructed a circle-packing embedding C_n of a uniformly distributed simple triangulation with n faces. Write $V(C_n)$ for the vertex set of C_n and d_{gr}^n for graph distance on $V(C_n)$ **Conjecture.** One can construct the circle packing embeddings C_n in such a way that

$$\sup_{x\in\mathbb{S}^2}\left(\min_{y\in V(\mathcal{C}_n)}|x-y|\right)\underset{n\to\infty}{\longrightarrow}0$$

in probability,

J.-F. Le Gall, Proc. ICM 2014

"Suppose that, for ... $n \ge 2$, we have constructed a circle-packing embedding C_n of a uniformly distributed simple triangulation with n faces. Write $V(C_n)$ for the vertex set of C_n and d_{gr}^n for graph distance on $V(C_n)$ **Conjecture.** One can construct the circle packing embeddings C_n in such a way that

$$\sup_{x\in\mathbb{S}^2}\left(\min_{y\in V(\mathcal{C}_n)}|x-y|\right)\xrightarrow[n\to\infty]{}0$$

in probability, and there exists a continuous random process $(\Delta(x, y))_{x,y \in \mathbb{S}^2}$... such that

$$\sup_{x,y\in V(\mathcal{C}_n)} \left| \Delta(x,y) - \left(\frac{3}{2}\right)^{1/4} n^{-1/4} d_{\mathrm{gr}}^n(x,y) \right| \underset{n \to \infty}{\longrightarrow} 0$$

in probability.

Brooks, Smith, Stone, Tutte (1940): Planar map $G = (G, st); st \in e(G)$ defines a squaring of a rectangle S(G). Algorithm.

1. Put potential 1 at *s*, ground at *t*.

- 1. Put potential 1 at *s*, ground at *t*.
- Current flows; write p(v) for potential at v, c(e) for current through e.

- 1. Put potential 1 at *s*, ground at *t*.
- Current flows; write p(v) for potential at v, c(e) for current through e.
- For each edge e = {u, v}, make a square with side c(e).

- 1. Put potential 1 at *s*, ground at *t*.
- Current flows; write p(v) for potential at v, c(e) for current through e.
- For each edge e = {u, v}, make a square with side c(e).
- 4. Square borders at y = p(u), y = p(v) and $x = p(u^*), y = p(v^*).$

Squaring examples

Squaring examples

Theorem Can "explicitly" construct a stochastic process $(S_n, 1 \le n \le \infty) = (S(G_n), 1 \le n \le \infty)$ with $G_n = (G_n, st)$ such that

1. G_n a random planar map, n edges.

Theorem

- 1. G_n a random planar map, n edges.
- 2. $G_n \to G_\infty$ almost surely, i.e., for all r, $B_{G_n}(r, st)$ is eventually constant.

Theorem

- 1. G_n a random planar map, n edges.
- 2. $G_n \to G_\infty$ almost surely, i.e., for all r, $B_{G_n}(r, st)$ is eventually constant.
- 3. G_{∞} is "the uniformly random infinite 3-connected planar map".*

Theorem

- 1. G_n a random planar map, n edges.
- 2. $G_n \to G_\infty$ almost surely, i.e., for all r, $B_{G_n}(r, st)$ is eventually constant.
- G_∞ is "the uniformly random infinite 3-connected planar map".*
- 4. $S_n \rightarrow S_\infty$ almost surely, for the Hausdorff distance.**

Theorem

- 1. G_n a random planar map, n edges.
- 2. $G_n \to G_\infty$ almost surely, i.e., for all r, $B_{G_n}(r, st)$ is eventually constant.
- G_∞ is "the uniformly random infinite 3-connected planar map".*
- 4. $S_n \rightarrow S_\infty$ almost surely, for the Hausdorff distance.**
- 5. S_{∞} a.s. has exactly one point of accumulation.***

 To grow squarings, grow maps (BSST '40).

92		64		53	
		44	31		42
76	60		73		

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees
 (Fug: Daulalhan Schooffer '09)

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees
 (5 - - - Do billion Coloridation (200)

(Fusy-Poulalhon-Schaeffer '08).

arxiv: 1402.2632 and 1405.2870

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees (Fusy-Poulalhon-Schaeffer '08).
- To grow uniform binary trees, use a recursive strategy (Luczak-Winkler '04).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees (Fusy-Poulalhon-Schaeffer '08).
- To grow uniform binary trees, use a recursive strategy (Luczak-Winkler '04).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees (Fusy-Poulalhon-Schaeffer '08).
- To grow uniform binary trees, use a recursive strategy (Luczak-Winkler '04).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees (Fusy-Poulalhon-Schaeffer '08).
- To grow uniform binary trees, use a recursive strategy (Luczak-Winkler '04).

- To grow squarings, grow maps (BSST '40).
- To grow maps, grow quadrangulations (Tutte '63).
- To grow quads, grow uniform binary trees (Fusy-Poulalhon-Schaeffer '08).
- To grow uniform binary trees, use a recursive strategy (Luczak-Winkler '04).

So growing binary trees leads to a growth rule for squarings.

Proof idea Growing binary trees

yields growth rule for squarings

Then prove:

 Growth rule is *local*: only affects squares incident to a single line segment.

Then prove:

- Growth rule is *local*: only affects squares incident to a single line segment.
- Growth rule is vanishing: only affects a fixed square finitely often.

Then prove:

- Growth rule is *local*: only affects squares incident to a single line segment.
- Growth rule is vanishing: only affects a fixed square finitely often.
- Squares stabilize: position of each square converges (use convergence of harmonic functions).

Then prove:

- Growth rule is *local*: only affects squares incident to a single line segment.
- Growth rule is vanishing: only affects a fixed square finitely often.
- Squares stabilize: position of each square converges (use convergence of harmonic functions).
- He and Schramm (1995): if the squaring is "parabolic" then it has only one accum. point.

Then prove:

- Growth rule is *local*: only affects squares incident to a single line segment.
- Growth rule is vanishing: only affects a fixed square finitely often.
- Squares stabilize: position of each square converges (use convergence of harmonic functions).
- He and Schramm (1995): if the squaring is "parabolic" then it has only one accum. point.
- ▶ Parabolicity can be proved using recurrence of G_∞.

Open questions

* There is a unique translation and scaling under which the image S'_n of S_n is centred at 0 and such that when S'_n is stereographically projected to the Riemann sphere $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$, the image of the unbounded region of $\mathbb{R}^2 \setminus S_n$ has area 1/n. Apply this transformation, and let μ_n be the measure on \mathbb{C}^* obtained by letting each connected component of $\mathbb{C}^* \setminus S'_n$ have measure 1/n.¹ Then μ_n should converge weakly to a measure μ on \mathbb{C}^* which is some version of the Liouville quantum gravity measure (possibly the " γ -unit area quantum sphere measure with $\gamma = \sqrt{8/3}$ ", introduced by Sheffield (2010). In particular, μ should satisfy a version of the KPZ dimensional scaling relation.

* We expect that the box-counting dimension of S_{∞} is a.s. well-defined and constant. More precisely, write n_{ϵ} for the number of balls of radius ϵ required to cover S_{∞} . We expect that $\log n_{\epsilon} / \log(1/\epsilon) \rightarrow c$ almost surely, where c is non-random. Is this true? If so, what is c? Is c > 1? (Note that for the Hausdorff dimension, if $(C_n, n \in \mathbb{N})$ are measurable sets in \mathbb{R}^2 then $\dim Haus(\bigcup_{n \in \mathbb{N}} C_n) = \sup_{n \in \mathbb{N}} \dim Haus(C_n)$. Since S_{∞} is a countable union of line segments, it follows that

 $\dim_{\text{Haus}}(S_{\infty}) = 1$ almost surely.)

* Let Z be the a.s. unique accumulation point of S_{∞} . Can the law of Z be explicitly described?

* Write $G_{\infty}(\epsilon)$ for the graph induced by those vertices for which all incident squares are disjoint from $B(Z, \epsilon)$. How quickly does $G_{\infty}(\epsilon)$ grow as ϵ decreases? Relatedly, how does the diameter of $G_{\infty}(\epsilon)$ grow? Existing results about random maps suggest that if the diameter grows as $\epsilon^{-\alpha}$ then the volume should grow as $\epsilon^{-4\alpha}$.

* The structure of S_{∞} near Z should be independent of its structure near the root; here is one question along these lines. Reroot G_{∞} by taking one step along a random walk path from the root, write \hat{S}_{∞} for the resulting squaring and \hat{Z} for its point of accumulation. Then recenter S_{∞} and \hat{S}_{∞} so that Z and \hat{Z} sit at the origin. Does $e^{-1}d_H(S_{\infty} \cap B(0, \epsilon), \hat{S}_{\infty} \cap B(0, \epsilon)) \to 0$ almost surely, as $\epsilon \to 0$? Here d_{μ} denotes Hausdorff distance.

* Let $e_n(1), \dots, e_n(k)$ be independent, uniformly random oriented edges of the contacts graph $R(S_n)$, and for $1 \le i \le k$ let $r_n(i)$ be the ratio of the side length of the "tail square" of $e_n(i)$ to that of its "head square". The vector $(r_n(i), 1 \le i \le k)$ should converge in distribution to a limit $(r(i), 1 \le i \le k)$, whose entries are iid. This would be a very small first step towards establishing that the random squaring in some sense "looks like the exponential of a Gaussian free field".

* Let A_n be the adjacency matrix of G_n . The areas of squares may be calculated as determinants of minors of A_n . However, these determinants grow very quickly, and even finding logarithmic asymptotics seems challenging. A simpler, still challenging project is to study the determinant of any principal minor of A_n or, equivalently, to study the number of spanning trees of G_n .

* The height of S_{∞} is 1 but its width W_{∞} is random, and by considering the graph structure near the root of G_{∞} it is not hard to see that W_{∞} is an honest random variable (rather than a.s. constant) On the other hand, duality implies that W_{∞} and $1/W_{\infty}$ have the same law. Can anything explicit be said about this law? In particular, is $\mathbb{F}(W_{\infty} = 1) > 0$?

* Simulations suggest that for *n* large, *S_n* is unlikely to contain four squares with common intersection. Does this probability indeed tend to zero as *n* becomes large? This question looks innocent. However, recall that such intersections are the reason the function sending a rooted planar graph to its squaring is non-invertible. A positive answer would constitute substantial progress towards proving an asymptotic formula, conjectured by Tutte (1963), for the number of perfect squarings with *n* squares.

* Let \hat{S}_n be uniformly distributed over squarings of a rectangle with *n* squares. Does \hat{S}_n converge in distribution to S_∞ for the Hausdorff distance? This follows if the laws of S_n and \hat{S}_n are close, which would itself follow from a positive answer to the previous question.

* The behaviour of the simple random walk on G_{∞} is also of interest. How do quantities such as $\mathbb{P}(X_t = X_0)$, $d_{G_{\infty}}(X_0, X_t)$, and $\#\{X_{s_0}, 0 \le s \le t\}$ scale in t?

[.] It come likely that P(C) is recurrent; is it? Have is one tomating argument for recurrence; its incorrectness was pointed out to us by

Thank you

Figure : A partial cubing of a cube.