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Random surfaces

Unif. random discrete surface:
Random triangulation (map)
“Unif. random continuous
surface:”

Brownian Map

Brownian Map: an equivalence
class of functions
d:S?xS?—0,00)

d(a, b) =distance from a to b.

d=d' if d and d’ differ by a
homeomorphism.
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Canonical embeddings

We would like to have a “canonical” construction of a
random metric /A on the sphere S? in such a way that
[the Brownian map has the law of] (S, A). Furthermore,
we expect A to behave well under the conformal
transformations of the sphere.” — Jean-Francois Le Gall,
Proc. ICM 2014.
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Circle packings

Vertices: circles; edges: touching pairs.
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Circle packings

Vertices: circles; edges: touching pairs.
Embedding canonical up to conformal automorphisms.
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J.-F. Le Gall, Proc. ICM 2014

“Suppose that, for ... n > 2, we have constructed a

circle-packing embedding C,, of a uniformly distributed
simple triangulation with n faces. Write V(C,) for the
vertex set of C, and dg, for graph distance on V(C,)....
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in probability, and there exists a continuous random
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Canonical embeddings via squarings

Brooks, Smith, Stone, Tutte
(1940): Planar map

G = (G, st); st € e(G) defines a
squaring of a rectangle S(G).
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Canonical embeddings via squarings

Brooks, Smith, Stone, Tutte
(1940): Planar map

G = (G, st); st € e(G) defines a
squaring of a rectangle S(G).
Algorithm.

1. Put potential 1 at s, ground
at t.

2. Current flows; write p(v) for
potential at v, c(e) for
current through e. -

3. For each edge e = {u, v}, v
make a square with side c(e).

4. Square borders at
y = p(u),y = p(v) and
x = p(u*),y = p(v*). :
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Squaring examples

(G, st)
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Our results

Theorem
Can “explicitly” construct a stochastic process

(50,1 < n<o0)=(5(Gn),1 < n<o0) with G, = (Gp, st) such
that
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Our results

Theorem
Can “explicitly” construct a stochastic process
(50,1 < n<o0)=(5(Gn),1 < n<o0) with G, = (Gp, st) such
that
1. G, a random planar map, n edges.
2. Gp = G almost surely, i.e., for all r, Bg,(r, st) is eventually
constant.

3. G is “the uniformly random infinite 3-connected planar

"ok

map”.
4. S, — So almost surely, for the Hausdorff distance.**

5. S a.s. has exactly one point of accumulation.**
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Proof idea

» To grow squarings, grow
maps (BSST '40).

» To grow maps, grow
quadrangulations (Tutte '63).

» To grow quads, grow uniform
binary trees

(Fusy-Poulalhon-Schaeffer '08).
. . s
» To grow uniform binary
trees, use a recursive strategy
(Luczak-Winkler '04).

must push forward uniform measure

MY n
. Tl = o)
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Proof idea 9 | 64|

» To grow squarings, grow a4 |
maps (BSST '40).

» To grow maps, grow
quadrangulations (Tutte '63).

» To grow quads, grow uniform
binary trees

(Fusy-Poulalhon-Schaeffer '08).
» To grow uniform binary
trees, use a recursive strategy
(Luczak-Winkler '04). Suﬁices to calculate

P,(Grow left| k on left)

must push forward uniform measure

T, Tl = o)
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Proof idea

» To grow squarings, grow
maps (BSST '40).

» To grow maps, grow
quadrangulations (Tutte '63).

» To grow quads, grow uniform

binary trees
(Fusy-Poulalhon-Schaeffer '08).

» To grow uniform binary
trees, use a recursive strategy
(Luczak-Winkler '04).

So growing binary trees leads to a
growth rule for squarings.
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Proof idea Growing binary trees
yields growth rule for squarings
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Proof idea Growing binary trees Then prove:

yields growth rule for squarings » Growth rule is local: only
affects squares incident to
64 | 53 : ;
92 | a single line segment.
44 | M I 2
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Proof idea Growing binary trees Then prove:

yields growth rule for squarings » Growth rule is local: only
1 | 53 affects squares incident to
92 a single line segment.

» Growth rule is vanishing:
only affects a fixed square
finitely often.

» Squares stabilize: position
of each square converges
(use convergence of
harmonic functions).

» He and Schramm (1995):
if the squaring is
“parabolic” then it has
only one accum. point.
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Proof idea Growing binary trees Then prove:

yields growth rule for squarings » Growth rule is local: only
affects squares incident to
64 |33 . :
92 | a single line segment.
L | 42 . .
+4 1 » Growth rule is vanishing:

only affects a fixed square
finitely often.

» Squares stabilize: position
of each square converges
(use convergence of
harmonic functions).

» He and Schramm (1995):
if the squaring is
“parabolic” then it has
only one accum. point.

» Parabolicity can be proved
using recurrence of G.
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* There is a unique translation and scaling under which the image Sr/: of Sp is centred at 0 and such that when S,’, is stereographically
projected to the Riemann sphere C* = C U { oo}, the image of the unbounded region of R2 \ S, has area 1/n. Apply this
transformation, and let 11, be the measure on C* obtained by letting each connected component of C* \ 5,/7 have measure l/n.1 Then
i should converge weakly to a measure p on C* which is some version of the Liouville quantum gravity measure (possibly the " ~-unit
area quantum sphere measure with v = /8/3", introduced by Sheffield (2010). In particular, y1 should satisfy a version of the KPZ
dimensional scaling relation.
* We expect that the box-counting dimension of Soo is a.s. well-defined and constant. More precisely, write ne for the number of balls
of radius € required to cover Soo. We expect that log ne / log(1/€) — c almost surely, where c is non-random. s this true? If so, what
is c? Is ¢ > 17 (Note that for the Hausdorff dimension, if (Cp, n € N) are measurable sets in R2 then
dimpgaus(Unen Cn) = suppen dimpgays(Cn)- Since Soo is a countable union of line segments, it follows that
dimyy,5(Scc) = 1 almost surely.)
* Let Z be the a.s. unique accumulation point of Soo . Can the law of Z be explicitly described?
* Write Goo (€) for the graph induced by those vertices for which all incident squares are disjoint from B(Z, €). How quickly does
Goo (€) grow as € decreases? Relatedly, how does the diameter of G (€) grow? Existing results about random maps suggest that if the
diameter grows as € ~ % then the volume should grow as e 4o
* The structure of Soo, near Z should be independent of its structure near the root; here is one question along these lines. Reroot Goo
by taking one step along a random walk path from the root, write Soo for the resulting squaring and Z for its point of accumulation.
Then recenter Soo and S so that Z and Z sit at the origin. Does 5—1dH(500 N B(0, €), Soo M B(0, €)) — 0 almost surely, as
€ — 07 Here dyy denotes Hausdorff distance.
* Let en(1), . . ., en(k) be independent, uniformly random oriented edges of the contacts graph R(Sp), and for 1 < i < k let rp(i)
be the ratio of the side length of the "tail square” of ep(i) to that of its "head square”. The vector (rp(i), 1 < i < k) should converge
in distribution to a limit (r(i), 1 < i < k), whose entries are iid. This would be a very small first step towards establishing that the
random squaring in some sense "looks like the exponential of a Gaussian free field”.
* Let Ap be the adjacency matrix of Gp. The areas of squares may be calculated as determinants of minors of Ap. However, these
determinants grow very quickly, and even finding logarithmic asymptotics seems challenging. A simpler, still challenging project is to study
the determinant of any principal minor of Ap, or, equivalently, to study the number of spanning trees of Gp,.
* The height of Sog is 1 but its width W is random, and by considering the graph structure near the root of Gog it is not hard to
see that Wg is an honest random variable (rather than a.s. constant) On the other hand, duality implies that Wo and 1/ W have
the same law. Can anything explicit be said about this law? In particular, is P(Woo = 1) > 07
* Simulations suggest that for n large, Sp, is unlikely to contain four squares with common intersection. Does this probability indeed tend
to zero as n becomes large? This question looks innocent. However, recall that such intersections are the reason the function sending a
rooted planar graph to its squaring is non-invertible. A positive answer would constitute substantial progress towards proving an
asymptotic formula, conjectured by Tutte (1963), for the number of perfect squarings ‘with n squares.
* Let Sp be uniformly distributed over squarings of a rectangle with n squares. Does Sy converge in distribution to Soo for the Hausdorff
distance? This follows if the laws of Sp and Sp, are close, which would itself follow from a positive answer to the previous question.
* The behaviour of the simple random walk on Gog, is also of interest. How do quantities such as P(Xr = Xg), dg_ (Xo, X¢), and
#{X- 0 < s < t} scalein 17
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Thank you

Figure : A partial cubing of a cube.
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