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Motivation

Random curves

“Unif. random discrete curve”:
Symmetric simple random walk.
“Unif. random continuous
curve”:
Brownian Motion

Random surfaces
Unif. random discrete surface:
Random triangulation (map)
“Unif. random continuous
surface:”
Brownian Map
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Motivation

Random curves
“Unif. random discrete curve”:
Symmetric simple random walk.
“Unif. random continuous
function”:
Brownian Motion

Brownian motion: a function
B : [0, 1] → R.

Random surfaces
Unif. random discrete surface:
Random triangulation (map)
“Unif. random continuous
surface:”
Brownian Map

Brownian Map: an equivalence
class of functions
d : S2 × S2 → [0,∞)
d(a, b) =distance from a to b.

d ≡ d ′ if d and d ′ differ by a
homeomorphism.
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Canonical embeddings

We would like to have a “canonical” construction of a
random metric ∆ on the sphere S2 in such a way that
[the Brownian map has the law of] (S2,∆). Furthermore,
we expect ∆ to behave well under the conformal
transformations of the sphere.” – Jean-Francois Le Gall,
Proc. ICM 2014.

Random infinite squarings of rectangles arxiv: 1402.2632 and 1405.2870



Circle packings

Vertices: circles; edges: touching pairs.

Embedding canonical up to conformal automorphisms.
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J.-F. Le Gall, Proc. ICM 2014

“Suppose that, for ... n ≥ 2, we have constructed a
circle-packing embedding Cn of a uniformly distributed
simple triangulation with n faces. Write V (Cn) for the
vertex set of Cn and dn

gr for graph distance on V (Cn)....

Conjecture. One can construct the circle packing
embeddings Cn in such a way that

sup
x∈S2

(
min

y∈V (Cn)
|x − y |

)
−→
n→∞

0

in probability, and there exists a continuous random
process (∆(x , y))x ,y∈S2 ... such that

sup
x ,y∈V (Cn)

∣∣∣∆(x , y)− (
3

2
)1/4n−1/4 dn

gr(x , y)
∣∣∣ −→
n→∞

0

in probability.
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Canonical embeddings via squarings

Brooks, Smith, Stone, Tutte
(1940): Planar map
G = (G , st); st ∈ e(G ) defines a
squaring of a rectangle S(G).

Algorithm.

1. Put potential 1 at s, ground
at t.

2. Current flows; write p(v) for
potential at v , c(e) for
current through e.

3. For each edge e = {u, v},
make a square with side c(e).

4. Square borders at
y = p(u), y = p(v) and
x = p(u∗), y = p(v∗).
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Canonical embeddings via squarings

Brooks, Smith, Stone, Tutte
(1940): Planar map
G = (G , st); st ∈ e(G ) defines a
squaring of a rectangle S(G).
Algorithm.

1. Put potential 1 at s, ground
at t.

2. Current flows; write p(v) for
potential at v , c(e) for
current through e.

3. For each edge e = {u, v},
make a square with side c(e).

4. Square borders at
y = p(u), y = p(v) and
x = p(u∗), y = p(v∗).

s∗ t∗

s

t

(G∗, s∗t∗)

(G, st)
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Squaring examples
s

t

(G, st)

Random infinite squarings of rectangles arxiv: 1402.2632 and 1405.2870



Squaring examples
s

t

(G, st)

Random infinite squarings of rectangles arxiv: 1402.2632 and 1405.2870



Squaring examples
s

t

(G, st)

Random infinite squarings of rectangles arxiv: 1402.2632 and 1405.2870



Our results

Theorem
Can “explicitly” construct a stochastic process
(Sn, 1 ≤ n ≤ ∞) = (S(Gn), 1 ≤ n ≤ ∞) with Gn = (Gn, st) such
that

1. Gn a random planar map, n edges.

2. Gn → G∞ almost surely, i.e., for all r , BGn(r , st) is eventually
constant.

3. G∞ is “the uniformly random infinite 3-connected planar
map”.∗

4. Sn → S∞ almost surely, for the Hausdorff distance.∗∗

5. S∞ a.s. has exactly one point of accumulation.∗∗∗
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Proof idea

▶ To grow squarings, grow
maps (BSST ’40).

▶ To grow maps, grow
quadrangulations (Tutte ’63).

▶ To grow quads, grow uniform
binary trees
(Fusy-Poulalhon-Schaeffer ’08).

▶ To grow uniform binary
trees, use a recursive strategy
(Luczak-Winkler ’04).

So growing binary trees leads to a
growth rule for squarings.

s

t
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Proof idea Growing binary trees

yields growth rule for squarings

s

t

s

t′
s

t′
s

s t’

k

n-1-k

Then prove:

▶ Growth rule is local: only
affects squares incident to
a single line segment.

▶ Growth rule is vanishing:
only affects a fixed square
finitely often.

▶ Squares stabilize: position
of each square converges
(use convergence of
harmonic functions).

▶ He and Schramm (1995):
if the squaring is
“parabolic” then it has
only one accum. point.

▶ Parabolicity can be proved
using recurrence of G∞.
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Open questions
⋆ There is a unique translation and scaling under which the image S′n of Sn is centred at 0 and such that when S′n is stereographically

projected to the Riemann sphere C∗ = C ∪ {∞}, the image of the unbounded region of R2 \ Sn has area 1/n. Apply this

transformation, and let µn be the measure on C∗ obtained by letting each connected component of C∗ \ S′n have measure 1/n.1 Then

µn should converge weakly to a measure µ on C∗ which is some version of the Liouville quantum gravity measure (possibly the ”γ-unit

area quantum sphere measure with γ =
√

8/3”, introduced by Sheffield (2010). In particular, µ should satisfy a version of the KPZ
dimensional scaling relation.
⋆ We expect that the box-counting dimension of S∞ is a.s. well-defined and constant. More precisely, write nϵ for the number of balls
of radius ϵ required to cover S∞ . We expect that log nϵ/ log(1/ϵ) → c almost surely, where c is non-random. Is this true? If so, what

is c? Is c > 1? (Note that for the Hausdorff dimension, if (Cn, n ∈ N) are measurable sets in R2 then
dimHaus(

∪
n∈N Cn) = supn∈N dimHaus(Cn). Since S∞ is a countable union of line segments, it follows that

dimHaus(S∞) = 1 almost surely.)
⋆ Let Z be the a.s. unique accumulation point of S∞ . Can the law of Z be explicitly described?
⋆ Write G∞(ϵ) for the graph induced by those vertices for which all incident squares are disjoint from B(Z, ϵ). How quickly does
G∞(ϵ) grow as ϵ decreases? Relatedly, how does the diameter of G∞(ϵ) grow? Existing results about random maps suggest that if the

diameter grows as ϵ−α then the volume should grow as ϵ−4α .
⋆ The structure of S∞ near Z should be independent of its structure near the root; here is one question along these lines. Reroot G∞
by taking one step along a random walk path from the root, write Ŝ∞ for the resulting squaring and Ẑ for its point of accumulation.

Then recenter S∞ and Ŝ∞ so that Z and Ẑ sit at the origin. Does ϵ−1dH (S∞ ∩ B(0, ϵ), Ŝ∞ ∩ B(0, ϵ)) → 0 almost surely, as
ϵ → 0? Here dH denotes Hausdorff distance.
⋆ Let en(1), . . . , en(k) be independent, uniformly random oriented edges of the contacts graph R(Sn), and for 1 ≤ i ≤ k let rn(i)
be the ratio of the side length of the ”tail square” of en(i) to that of its ”head square”. The vector (rn(i), 1 ≤ i ≤ k) should converge
in distribution to a limit (r(i), 1 ≤ i ≤ k), whose entries are iid. This would be a very small first step towards establishing that the
random squaring in some sense ”looks like the exponential of a Gaussian free field”.
⋆ Let An be the adjacency matrix of Gn . The areas of squares may be calculated as determinants of minors of An . However, these
determinants grow very quickly, and even finding logarithmic asymptotics seems challenging. A simpler, still challenging project is to study
the determinant of any principal minor of An or, equivalently, to study the number of spanning trees of Gn .
⋆ The height of S∞ is 1 but its width W∞ is random, and by considering the graph structure near the root of G∞ it is not hard to
see that W∞ is an honest random variable (rather than a.s. constant) On the other hand, duality implies that W∞ and 1/W∞ have
the same law. Can anything explicit be said about this law? In particular, is P(W∞ = 1) > 0?
⋆ Simulations suggest that for n large, Sn is unlikely to contain four squares with common intersection. Does this probability indeed tend
to zero as n becomes large? This question looks innocent. However, recall that such intersections are the reason the function sending a
rooted planar graph to its squaring is non-invertible. A positive answer would constitute substantial progress towards proving an
asymptotic formula, conjectured by Tutte (1963), for the number of perfect squarings with n squares.
⋆ Let Ŝn be uniformly distributed over squarings of a rectangle with n squares. Does Ŝn converge in distribution to S∞ for the Hausdorff
distance? This follows if the laws of Sn and Ŝn are close, which would itself follow from a positive answer to the previous question.
⋆ The behaviour of the simple random walk on G∞ is also of interest. How do quantities such as P(Xt = X0), dG∞ (X0, Xt ), and

#{Xs , 0 ≤ s ≤ t} scale in t?

⋆ It seems likely that R(S∞) is recurrent; is it? Here is one tempting argument for recurrence; its incorrectness was pointed out to us by

Ori Gurel-Gurevich. By Lemma ??, R(S∞) may be viewed as a subgraph of D2
∞ . Since D∞ is recurrent, so is D2

∞ ; then conclude via

Rayleigh monotonicity. The problem with the argument is that the recurrence of D∞ is not known to imply the recurrence of D2
∞ (this

implication would be true if D∞ had uniformly bounded degrees). Perhaps if G is a recurrent, unimodular random graph whose root

degree has exponential tail, then any finite power of G is also recurrent; this would be an interesting fact in its own right.
1The measure µn is uniquely determined if we also specify that its restriction to any component of C∗ \ S′n is a multiple of the

surface measure of the Riemann sphere.
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Thank you

Figure : A partial cubing of a cube.
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