Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000

The mass of super-Brownian motion upon exiting balls and Sheu's compact support condition

Marion Hesse¹ and Andreas E. Kyprianou²

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹WIAS, Berlin, Germany. ²Unversity of Bath, UK.

Problem		Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000		000000	0	00000
~	-			

Super-Brownian motion

Consider a finite-measure-valued strong Markov process $\{X_t : t \ge 0\}$ on \mathbb{R}^d whose evolution is characterised via its log-laplace semi-group: For all $f \in C_b^+(\mathbb{R})$, the space of positive, uniformly bounded, continuous functions on \mathbb{R}^d , and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$ (the space of finite measure on \mathbb{R}^d),

$$-\log \mathbf{E}_{\mu}(\mathrm{e}^{-\langle f,X_t
angle}) = \int_{\mathbb{R}} v_f(x,t)\mu(\mathrm{d} x), \ t \geq 0,$$

where $v_f(x, t)$ is the unique positive solution to the evolution equation for $x \in \mathbb{R}$ and t > 0

$$rac{\partial}{\partial t}v_f(x,t)=rac{1}{2}rac{\partial^2}{\partial x^2}v_f(x,t)-\psi(v_f(x,t)),$$

with initial condition $v_f(x,0) = f(x)$. The branching mechanism ψ satisifes:

$$\psi(\lambda) = -\alpha\lambda + \beta\lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x)\nu(dx),$$
(1)

for $\lambda \geq 0$ where $\alpha = -\psi'(0^+) \in (0,\infty)$, $\beta \geq 0$ and ν is a measure concentrated on $(0,\infty)$ which satisfies $\int_{(0,\infty)} (x \wedge x^2) \nu(dx) < \infty$.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Super-Bi	rownian motion		

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f = 1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \ge 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+) = \alpha$ gives us the growth and hence process is (sub/super)-critical. Largely indifferent to criticality in this talk.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Super-Bi	rownian motion		

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f = 1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \ge 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+) = \alpha$ gives us the growth and hence process is (sub/super)-critical. Largely indifferent to criticality in this talk.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Super-Bi	rownian motion		

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f = 1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \ge 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+) = \alpha$ gives us the growth and hence process is (sub/super)-critical. Largely indifferent to criticality in this talk.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Super-Bi	rownian motion		

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f = 1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \ge 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+) = \alpha$ gives us the growth and hence process is (sub/super)-critical. Largely indifferent to criticality in this talk.

	wand Crow's condit		00000
Problem 0000	Exit measure indexed proces	Sheu's condition	Notes on the proofs

Mass decay and Grey's condition

• Following the same property of all (non-monotone) CSBPs:

$$\mathbf{P}_{\mu}(\lim_{t\to\infty}||X_t||=0 \mid ||X_0||=x) = e^{-\lambda^*||\mu||},$$

where $\psi(\lambda^*) = 0$ and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$.

• On the event $\{||X_t|| \rightarrow 0\}$, Grey (1974) gives us a nice dichotomy between the two ways in which this can happen: either

 $\{\exists T(\omega) > 0 \text{ s.t. } ||X_{T+t}|| = 0 \forall t \ge 0\}$ (extinction)

or $\{||X_t|| \rightarrow 0 \text{ and } ||X_t|| > 0 \forall t > 0\}$ (extinguishing)

accordingly as

$$\int^\infty rac{1}{\psi(\lambda)} \mathsf{d}\lambda < \infty \,\, \mathsf{or} \,\, = \infty$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲目 ● ● ●

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000
Mass decay	and Grey's condition		

• Following the same property of all (non-monotone) CSBPs:

$$\mathbf{P}_{\mu}(\lim_{t\to\infty}||X_t||=0 \mid ||X_0||=x) = e^{-\lambda^*||\mu||},$$

where $\psi(\lambda^*) = 0$ and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$.

• On the event $\{||X_t|| \rightarrow 0\}$, Grey (1974) gives us a nice dichotomy between the two ways in which this can happen: either

$$\{\exists T(\omega) > 0 \text{ s.t. } ||X_{T+t}|| = 0 \ \forall t \ge 0\}$$
 (extinction)

or $\{||X_t|| \rightarrow 0 \text{ and } ||X_t|| > 0 \ \forall t > 0\}$ (extinguishing)

accordingly as

$$\int^\infty rac{1}{\psi(\lambda)} \mathsf{d}\lambda < \infty \, \, \mathsf{or} \,\, = \infty$$

(日) (日) (日) (日) (日) (日) (日) (日)

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Sheu's c	ondition		

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$S = \bigcup_{t \ge 0} \operatorname{supp} X_t$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_{*}||\mu||}$$

if and only if

$$\int^\infty \frac{1}{\sqrt{\int_{\lambda^*}^\lambda \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0.$

- What is the relation between this condition and Grey's condition? Sheu's condition comes out of PDE analysis and it is unclear.
- What is the relation between {S is compact} and { $||X_t|| \rightarrow 0$ }?

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Sheu's c	ondition		

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$S = \bigcup_{t \ge 0} \operatorname{supp} X_t$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_{*}||\mu||}$$

if and only if

$$\int^\infty \frac{1}{\sqrt{\int_{\lambda^*}^\lambda \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0.$

- What is the relation between this condition and Grey's condition? Sheu's condition comes out of PDE analysis and it is unclear.
- What is the relation between {S is compact} and { $||X_t|| \rightarrow 0$ }?

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Sheu's c	ondition		

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$S = \bigcup_{t \ge 0} \operatorname{supp} X_t$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_{*}||\mu||}$$

if and only if

$$\int^\infty \frac{1}{\sqrt{\int_{\lambda^*}^\lambda \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0.$

- What is the relation between this condition and Grey's condition? Sheu's condition comes out of PDE analysis and it is unclear.
- What is the relation between {S is compact} and { $||X_t|| \rightarrow 0$ }?

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000

- Fix an initial radius r > 0 and let D_s := {x ∈ ℝ^d : ||x|| < s} be the open ball of radius s ≥ r around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \ge r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à la Chauvin-Neveu.
- For s ≥ r, let Z_s := ||X_{Ds}|| denote the mass that is 'frozen' when it first hits the boundary of the ball D_s. We can then define the mass process (Z_s, s ≥ r) which uses the radius s as its time-parameter.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000
F 1	1 1 1		

- Fix an initial radius r > 0 and let D_s := {x ∈ ℝ^d : ||x|| < s} be the open ball of radius s ≥ r around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \ge r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à la Chauvin-Neveu.
- For s ≥ r, let Z_s := ||X_{Ds}|| denote the mass that is 'frozen' when it first hits the boundary of the ball D_s. We can then define the mass process (Z_s, s ≥ r) which uses the radius s as its time-parameter.

	huanahing nyaaaa		
0000	•000000	0	00000
Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs

- Fix an initial radius r > 0 and let D_s := {x ∈ ℝ^d : ||x|| < s} be the open ball of radius s ≥ r around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \ge r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à la Chauvin-Neveu.
- For s ≥ r, let Z_s := ||X_{Ds}|| denote the mass that is 'frozen' when it first hits the boundary of the ball D_s. We can then define the mass process (Z_s, s ≥ r) which uses the radius s as its time-parameter.

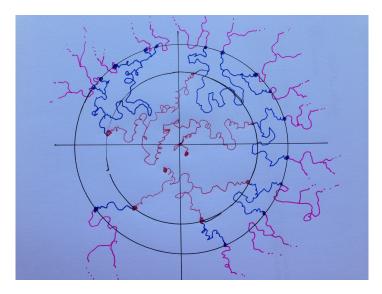
	hunn als in a success		
0000	•000000	0	00000
Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs

- Fix an initial radius r > 0 and let D_s := {x ∈ ℝ^d : ||x|| < s} be the open ball of radius s ≥ r around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \ge r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à la Chauvin-Neveu.
- For s ≥ r, let Z_s := ||X_{Ds}|| denote the mass that is 'frozen' when it first hits the boundary of the ball D_s. We can then define the mass process (Z_s, s ≥ r) which uses the radius s as its time-parameter.

Problem 0000 Exit measure indexed proces 000000 Sheu's condition

Notes on the proofs 00000

Z is a time-inhomogenous CSBP



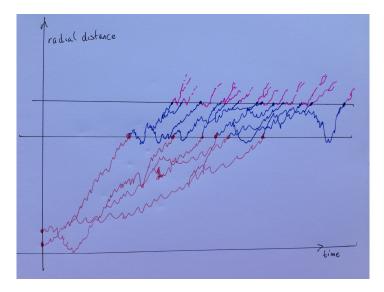
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Problem	
0000	

Sheu's condition

Notes on the proofs 00000

Z is a time-inhomogenous CSBP



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Problem
0000

Sheu's condition

Notes on the proofs

Z is a time-inhomogenous CSBP

Theorem

Let r > 0. The process $Z = (Z_s, s \ge r)$ is a time-inhomogeneous continuous-state branching process. Let r > 0 and $\mu \in \mathcal{M}_F(\partial D_r)$ with $||\mu|| = a$. Then, for $s \ge r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \ \ \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

for a family of branching mechanisms $(\Psi(r, \cdot), r > 0)$ satisfying the PDE

$$rac{\partial}{\partial r}\Psi(r, heta)+rac{1}{2}rac{\partial}{\partial heta}\Psi^2(r, heta)+rac{d-1}{r}\Psi(r, heta)=2\psi(heta)$$

 $\Psi(r,\lambda^*)=0,$

for r > 0, $\theta \in (0, \infty)$.

Problem	
0000	

Sheu's condition

Notes on the proofs 00000

Asymptotic behaviour of Z

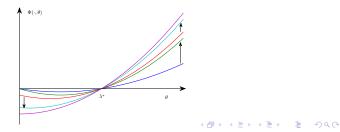
Proposition

(i) For (sub)critical ψ , we have, for $0 < r \leq s$,

 $\Psi(r, \theta) \leq \Psi(s, \theta)$ for all $\theta \geq 0$.

(ii) For supercritical ψ , we have, for $0 < r \leq s$,

 $\Psi(r, \theta) \ge \Psi(s, \theta)$ for all $\theta \le \lambda^*$ $\Psi(r, \theta) \le \Psi(s, \theta)$ for all $\theta \ge \lambda^*$.



Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Asympto	otic behaviour of Z		

Lemma

For each $\theta \ge 0$, the limit $\lim_{r\uparrow\infty} \Psi(r,\theta) = \Psi_{\infty}(\theta)$ is finite and the convergence holds uniformly in θ on any bounded, closed subset of \mathbb{R}_+ . For any $\theta \ge 0$, we have

$$\Psi_\infty(heta) = 2 \operatorname{sgn}(\psi(heta)) \ \sqrt{\int_{\lambda^*}^ heta} \psi(\lambda) \ \mathsf{d}\lambda,$$

with $\lambda^* = 0$ in the (sub)critical case.

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for r > 0, $\theta \in (0, \infty)$.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Asympto	tic behaviour of Z		

Lemma

For each $\theta \ge 0$, the limit $\lim_{r\uparrow\infty} \Psi(r,\theta) = \Psi_{\infty}(\theta)$ is finite and the convergence holds uniformly in θ on any bounded, closed subset of \mathbb{R}_+ . For any $\theta \ge 0$, we have

$$\Psi_\infty(heta) = 2 \operatorname{sgn}(\psi(heta)) \ \sqrt{\int_{\lambda^*}^ heta} \psi(\lambda) \ \mathsf{d}\lambda,$$

with $\lambda^* = 0$ in the (sub)critical case.

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

for r > 0, $\theta \in (0, \infty)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Problem	
0000	

Sheu's condition

Notes on the proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Asymptotic behaviour of Z

Lemma

Denote by $((Z_s^{\infty}, s \ge 0), P^{\infty})$ the standard CSBP associated with the limiting branching mechanism Ψ_{∞} , with unit initial mass at time 0. Then, for any s > 0, $\theta \ge 0$,

$$\lim_{r\to\infty} E_{r,1}[\mathrm{e}^{-\theta Z_{r+s}}] = E^{\infty}[\mathrm{e}^{-\theta Z_s^{\infty}}].$$

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	•	00000
Shou's c	ondition is Grev's cou	odition	

Sheu's condition is Grey's condition

• Sheu's condition is Grey's condition for Z^{∞} .

$$\int^\infty rac{1}{\sqrt{\int_{\lambda^*}^\lambda \psi(heta) \; \mathsf{d} heta}} \; \mathsf{d}\lambda = \int^\infty rac{1}{\Psi^\infty(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy between $\{||X_t|| \rightarrow 0\}$ and $\{S \text{ is compact}\}$.
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda + 2)^{\alpha} + 2^{\alpha}$ for $\alpha \in (0, 1)$. This branching mechanism respects $\int_{-\infty}^{\infty} 1/\psi(\lambda) d\lambda = \infty$ (extinguishing) but $\int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ d\theta)^{1/2} d\lambda = \infty$ (no compact support).
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	•	00000
Sheu's condit	tion is Grey's conditio	on	

• Sheu's condition is Grey's condition for Z^{∞} .

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy between $\{||X_t|| \rightarrow 0\}$ and $\{S \text{ is compact}\}$.
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda + 2)^{\alpha} + 2^{\alpha}$ for $\alpha \in (0, 1)$. This branching mechanism respects $\int_{-\infty}^{\infty} 1/\psi(\lambda) d\lambda = \infty$ (extinguishing) but $\int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ d\theta)^{1/2} d\lambda = \infty$ (no compact support).
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	•	00000
Sheu's condit	tion is Grey's conditio	on	

• Sheu's condition is Grey's condition for Z^{∞} .

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy between $\{||X_t|| \rightarrow 0\}$ and $\{S \text{ is compact}\}$.
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda + 2)^{\alpha} + 2^{\alpha}$ for $\alpha \in (0, 1)$. This branching mechanism respects $\int_{-\infty}^{\infty} 1/\psi(\lambda) d\lambda = \infty$ (extinguishing) but $\int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ d\theta)^{1/2} d\lambda = \infty$ (no compact support).
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	•	00000
Sheu's condit	tion is Grey's conditio	on	

• Sheu's condition is Grey's condition for Z^{∞} .

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy between $\{||X_t|| \rightarrow 0\}$ and $\{S \text{ is compact}\}$.
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda + 2)^{\alpha} + 2^{\alpha}$ for $\alpha \in (0, 1)$. This branching mechanism respects $\int_{-\infty}^{\infty} 1/\psi(\lambda) d\lambda = \infty$ (extinguishing) but $\int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ d\theta)^{1/2} d\lambda = \infty$ (no compact support).
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000
Martingales			

• On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} \mathrm{d}v, \ s \ge r,$$

is a martingale.

• On the other hand $\exp\{-\lambda^*||X_t||\}$, $t \ge 0$ is a martingale since

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_{u}|| \to 0\}} \ |\sigma(||X_{s}||, s \le t) = e^{-\lambda^{*}||X_{t}||}, \qquad t \ge 0,$$

and hence so is

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_{u}|| \to 0\}} \mid \sigma(||X_{D_{v}}||, r \le v \le s)] = e^{-\lambda^{*}||X_{D_{s}}||} = e^{-\lambda^{*}Z_{s}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000
Martingales			

• On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} \mathrm{d}v, \ s \ge r,$$

is a martingale.

• On the other hand $\exp\{-\lambda^*||X_t||\}$, $t\geq 0$ is a martingale since

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_u|| \rightarrow 0\}} \ |\sigma(||X_s||, s \le t) = \mathrm{e}^{-\lambda^*||X_t||}, \qquad t \ge 0,$$

and hence so is

$$\mathsf{E}_{\mu}[\mathbf{1}_{\{||X_{u}|| \to 0\}} \mid \sigma(||X_{D_{v}}||, r \le v \le s)] = e^{-\lambda^{*}||X_{D_{s}}||} = e^{-\lambda^{*}Z_{s}},$$

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	000000	0	00000
Martingales			

• On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} \mathrm{d}v, \ s \ge r,$$

is a martingale.

• On the other hand $\exp\{-\lambda^*||X_t||\}$, $t\geq 0$ is a martingale since

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_u|| \rightarrow 0\}} \ |\sigma(||X_s||, s \le t) = \mathrm{e}^{-\lambda^*||X_t||}, \qquad t \ge 0,$$

and hence so is

$$\mathsf{E}_{\mu}[\mathbf{1}_{\{||X_{u}|| \to 0\}} \mid \sigma(||X_{D_{v}}||, r \le v \le s)] = e^{-\lambda^{*}||X_{D_{s}}||} = e^{-\lambda^{*}Z_{s}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

Pro	blem
00	00

Sheu's condition

Notes on the proofs

Branching mechanism PDE

• On the one hand: Let r > 0 and $\mu \in \mathcal{M}_F(\partial D_r)$ with $||\mu|| = a$. Then, for $s \ge r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \quad \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

 On the other hand: Recalling that the radial part of an R^d-Brownian motion is a Bessel process, Dynkin's semigroup theory for branching Markov exit measures gives us

$$u(r,s, heta) = heta - \mathbb{E}_r^{\mathsf{R}} \int_0^{ au_s} \psi(u(R_\ell,s, heta)) \, \mathrm{d}\ell, \,\, 0 < r \leq s, \,\, heta \geq 0,$$

where $(R, \mathbb{P}^{\mathsf{R}})$ is a *d*-dimensional Bessel process and $\tau_s := \inf\{l > 0 : R_l > s\}$ its first passage time above level s

Pro	blem
00	00

Sheu's condition

Notes on the proofs 00000

Branching mechanism PDE

• On the one hand: Let r > 0 and $\mu \in \mathcal{M}_F(\partial D_r)$ with $||\mu|| = a$. Then, for $s \ge r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \ \ \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) \, \mathrm{d}z,$$

 On the other hand: Recalling that the radial part of an R^d-Brownian motion is a Bessel process, Dynkin's semigroup theory for branching Markov exit measures gives us

$$u(r,s, heta) = heta - \mathbb{E}_r^{\mathsf{R}} \int_0^{ au_s} \psi(u(R_\ell,s, heta)) \, \mathrm{d}\ell, \,\, 0 < r \leq s, \,\, heta \geq 0,$$

where (R, \mathbb{P}^{R}) is a *d*-dimensional Bessel process and $\tau_{s} := \inf\{l > 0 : R_{l} > s\}$ its first passage time above level s

Pro	blem	
00	00	

Sheu's condition O Notes on the proofs 00000

Branching mechanism PDE

• Define
$$\varphi(s) = \int_0^{r^2 s} R_\ell^{-2} \mathrm{d}\ell$$
, $s \geq 0$, then

$$B_s = \log(r^{-1}R_{r^2\varphi^{-1}(s)}), \ s \ge 0,$$

is a one-dimensional Brownian motion with drift $\frac{d}{2} - 1$. • the Last semi-group equation can be developed into

$$\begin{aligned} u(r,s,\theta) &= \theta - \mathbb{E}_{\log r} \int_{0}^{T_{\log s}} \psi(u(e^{B_{l}},s,\theta)) e^{2B_{\ell}} \, \mathrm{d}\ell \\ &= \mathbb{E}_{\log r} \sum_{\log r \le u \le \log s} \int_{0}^{\zeta^{(u)}} \psi(u(e^{u-e_{u}(l)},s,\theta)) e^{2(u-e_{u}(\ell))} \, \mathrm{d}\ell \\ &= \theta - 2 \int_{r}^{s} v^{1-d} \int_{0}^{v} \psi(u(z,s,\theta)) \, z^{d-1} \, \mathrm{d}z \, \mathrm{d}v. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Pro	blem	
00	00	

Sheu's condition O Notes on the proofs

Branching mechanism PDE

• Define
$$\varphi(s) = \int_0^{r^2 s} R_\ell^{-2} \mathrm{d}\ell$$
, $s \ge 0$, then

$$B_s = \log(r^{-1}R_{r^2\varphi^{-1}(s)}), \ s \ge 0,$$

is a one-dimensional Brownian motion with drift $\frac{d}{2} - 1$. • the Last semi-group equation can be developed into

$$u(r, s, \theta) = \theta - \mathbb{E}_{\log r} \int_{0}^{T_{\log s}} \psi(u(e^{B_{l}}, s, \theta)) e^{2B_{\ell}} d\ell$$

$$= \mathbb{E}_{\log r} \sum_{\log r \leq u \leq \log s} \int_{0}^{\zeta^{(u)}} \psi(u(e^{u-e_{u}(l)}, s, \theta)) e^{2(u-e_{u}(\ell))} d\ell$$

$$= \theta - 2 \int_{r}^{s} v^{1-d} \int_{0}^{v} \psi(u(z, s, \theta)) z^{d-1} dz dv.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem	Exit measure indexed proc
0000	000000

Sheu's condition

Notes on the proofs

Branching mechanism PDE

• Line up the two representations of the semi-group equation:

$$u(r,s,\theta)=\theta-2 \int_r^s v^{1-d} \int_0^v \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

and

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

• Fiddling with derivatives in s, r and θ , gives the desired PDE

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

for $r > 0, \ \theta \in (0, \infty)$.

Problem	Exit measure indexed proces
0000	0000000

Sheu's condition

Notes on the proofs

Branching mechanism PDE

• Line up the two representations of the semi-group equation:

$$u(r,s,\theta)=\theta-2 \int_r^s v^{1-d} \int_0^v \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

and

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

• Fiddling with derivatives in s, r and θ , gives the desired PDE

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

for $r > 0, \ \theta \in (0,\infty).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Problem	Exit measure indexed proces	Sheu's condition	Notes on the proofs
0000	0000000	0	00000
Thankyou			

