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Plan of talk

1. From Random walk in random environment (RWRE) on Z to
biased random walks (or RWRE) on trees ;

2. The asymptotic behaviors of a class of recurrent RWRE on
trees

3. Potential energy and main result.

4. Proof.
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1-d Random walks in random environments (Zn)

Let ω = {ωx , x ∈ Z} be a family of i.i.d. random variables (and no
constant) taking values in (0, 1). The ω plays the role of random
environment.

Given ω, {Zn, n ≥ 0} is a Markov chain taking values in Z starting
from 0 with probability transition :

Pω

(

Zn+1 = y
∣

∣Zn = x
)

=

{

ωx , if y = x + 1 ;
1 − ωx , if y = x − 1.
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Asymptotic behaviors of (Zn)

References

• P. Révész : Random walk in random and non-random

environments (1st edition : 1990, 2nd edition : 2005)

• O. Zeitouni : Lecture notes Saint Flour 2001.

• A.S. Sznitman, M.Zerner ... (multi-dimensional case).

Recurrence/transience criteria : Solomon (1975)

• (Zn) is recurrent if and only if E(log 1−ωx

ωx
) = 0 ;

• Zn → ∞ if and only if E(log 1−ωx

ωx
) < 0.
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How big is (Zn) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when Zn → ∞, Zn ≈ nρ. The exponent ρ is explicitly determined
by the law of ωx and can vary in (0, 1].

Recurrent case : Sinai (1982)’s localization

when (Zn) is recurrent, Zn

log2 n
converges in law (to some

non-degenerated law, explicitly computed by Kesten (1986) and
Golosov (1986)).

Question : What happens on trees ?

We may find both (sub)diffusive (n̺ with 0 < ̺ ≤ 1
2
) and slow

movement behaviors in a class of recurrent RWREs on trees.
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RWRE on trees

Random environments
Let T be a supercritical Galton-Watson tree rooted at ∅ and
ω = {(ω(x , y), y ∈ T)x∈T} be a family of random variables such
that

∑

y∈T :y∼x ω(x , y) = 1, ω(x , y) > 0 if x ∼ y (x ∼ y means x

and y are adjacent).

Random walk in random environment (Xn) on a tree :

Conditioned on ω, (Xn) is a Markov chain taking values in T with
probability transition :

Pω

(

Xn+1 = y
∣

∣Xn = x
)

= ω(x , y).
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Notations

For each vertex x ∈ T\{∅}, we denote its parent by
←
x , and its

children by (x (1), · · · , x (bx )). Write |x | for the generation of x .
Instead of looking at ω(x , y) (for y ∼ x and x ∈ T), it is more
convenient to use the notation

A(x) :=
ω(
←
x , x)

ω(
←
x ,

←
←
x )

, |x | ≥ 2.
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Recurrence/transience criteria

Hypothesis :

We assume that for all |x | ≥ 2, {A(x (1)), ..., A(x (bx ))} has the
same law as the vector {A1, ..., Ab}, where bx denotes the number
of children of x and b may be random. Define

φ(t) := logE
(

b
∑

i=1

At
i

)

, ∀t ∈ R.
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Lyons and Pemantle (1992)’s theorem :

1. if inf0≤t≤1 φ(t) > 0, then RWRE (Xn) is a.s. transient.

2. If inf0≤t≤1 φ(t) = 0, then RWRE (Xn) is a.s. recurrent.

3. If inf0≤t≤1 φ(t) < 0, then (Xn) is a.s. positive recurrent.
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Case inf0≤t≤1 φ(t) = 0

0 0

t t t

φ′(1) < 0 φ′(1) = 0 φ′(1) > 0

1 1 θ 1

κ

0

Figure: Three different shapes of φ : We call "subdiffusive case" the
first shape and "slow movement case" the two other shapes.
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Subdiffusive case

Theorem (H. and Shi 2007)

If inf0≤t≤1 φ(t) = 0 and φ′(1) < 0, then almost surely,

max
0≤i≤n

|Xi | = nν+o(1),

where

ν := 1 − max(
1

2
,

1

κ
) ∈ (0,

1

2
],

and
κ := inf{t > 1 : φ(t) = 0} ∈ (1, ∞].
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Slow movement case

Theorem (Faraud, H. and Shi 2012)

If inf0≤t≤1 φ(t) = 0 and φ′(1) ≥ 0, then almost surely,

lim
n→∞

1

log3 n
max

0≤i≤n
|Xi | = c ,

where

c :=

{

8
3π2φ′′(1) , if φ′(1) = 0 ;

2θ
3π2φ′′(θ)

, if φ′(1) > 0,
,

where θ ∈ (0, 1] denotes the unique zero :φ′(θ) = 0.
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References
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• If the ω are non random and T is a Galton-Watson tree, the
model corresponds to the so-called biased random walk on
(Galton-Watson) trees (see Peres and Zeitouni (2008) for a
CLT in the recurrent case, Aïdékon (2013) for a formula on
the speed in the transient case).
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Boundary case : φ(1) = φ′(1) = 0

Call "boundary case"

When φ(1) = φ′(1) = 0, the associated potential process V is a
branching random walk in the "boundary case", where

V (x) := −
∑

y∈ ]]∅, x ]]

log
ω(
←
y , y)

ω(
←
y ,
⇐
y )

= −
∑

y∈ ]]∅, x ]]

log A(y).
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Boundary case : φ(1) = φ′(1) = 0

Fact :
Recalling that

max0≤i≤n |Xi |
(log n)3 → c , a.s.

Open Problem :

What is the typical behavior of |Xn| ? Can we localize Xn à la
Sinai ?

Conjecture :
|Xn|

(log n)2 converges in law to a positive and finite random variable.
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Potential energy

Definition
According to Le Doussal - Monthus (2002), V (Xn) is called
potential energy for the RWRE.

Motivation
The potential energy V (Xn) is closely related

• to the localization of Xn,

• and to the Metropolis algorithm (Aldous (1998)), the Einstein
relation on trees (Maillard and Zeitouni (2013+)).
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Main result

Our main result on the maximal potential energy reads as follows :

Theorem 1 (H. and Shi’14+)

Assume φ(1) = φ′(1) = 0. Conditioned on {T = ∞},

lim
n→∞

1

(log n)2
max

0≤k≤n
V (Xk) =

1

2
, P(dω) ⊗ Pω-a.s.

Conjecture

Conditioned on {T = ∞}, 1
log n

V (Xn) converges in law to a
non-degenerated limit.
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The one-dimensional case : (RWRE (Zn) on Z)

1. By reversibility,

lim sup
n→∞

1

log n
max

0≤k≤n
V (Zk) ≤ 1, a.s.

In fact, for any x , P0,ω(Tx < n) ≤ ne−V (x) where
Tx := inf{j > 0 : Zj = x}. Choose x as the first such that
V (x) > (1 + ε) log n, then
Pω(max0≤k≤n V (Zk) > (1 + ε) log n) ≤ n−ε. Borel-Cantelli’
lemma and the monotonicity yield the upper bound.

2. The vector

(
V (Zn)

log n
,

max0≤k≤n V (Zk)

log n
)

converges in law to a non-degenerated limit ;



Introduction Limits of a recurrent RWRE (Xn) on trees Potential energy for RWRE on trees Proof of Theorem

Proof of Theorem 1

• We can prove that a.s. on the survival set {T = ∞},

L∅

n = n1+o(1),

where L∅
n denotes the local time at ∅.

• By the standard extreme value theory, it is enough to prove
the following statement : Almost surely on {T = ∞},

Pω

(

max
0≤k≤T∅

V (Xk) ≥ r
)

= e−(1+o(1))
√

2r , r → ∞,

where T∅ := inf{n ≥ 1 : Xn = ∅}.
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First attempt to e
−

√
2r

• Notice that

Pω

(

max
0≤k≤T∅

V (Xk) ≥ r
)

= Pω

(

THr < T∅

)

,

where Hr :=
{

x : V (x) ≥ r , max∅≤y<x V (y) < r
}

and

THr := inf{n ≥ 1 : Xn ∈ Hr}.

• Since THr = minx∈Hr Tx , we get that

Pω

(

THr < T∅

)

≤
∑

x∈Hr

Pω

(

Tx < T∅

)

≤
∑

x∈Hr

e−V (x).

• Since V (x) → ∞ a.s., we can add an additional condition
that V (x) ≥ −α with some large constant α and
V (x) := min∅≤y≤x V (y).



Introduction Limits of a recurrent RWRE (Xn) on trees Potential energy for RWRE on trees Proof of Theorem

First attempt to e
−

√
2r

By the many-to-one formule (Chauvin, Rouault and Wakolbinger
(1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou
(2004)) at the stopping line Hr , we obtain that

E

[

∑

x∈Hr

e−V (x)1{V (x)≥−α}
]

= P

(

Tr < T−α

)

≈ 1

r
,

where Tr := inf{n ≥ 1 : Sn ≥ r}, T−α := inf{n ≥ 1 : Sn ≤ −α},
and S is a centered real-valued random walk with finite variance.
The bound 1

r
is too big with respect to e−

√
2r !
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Second attempt to e
−

√
2r

• Define V #(x) := max∅≤y≤x(V (y) − V (y)) with
V (y) := max∅≤z≤y V (z).

• For λ > 0, we define another stopping line :

L
#
λ :=

{

x : V #(x) > λ, max
∅≤y<x

V #(y) ≤ λ
}

.

• On the event {THr < T∅}, the walk (Xn) hits some x ∈ Hr

before return to the root, there are two cases : either
V #(x) > λ, the walk (Xn) must have hit L#

λ before T∅ ; or
V #(x) ≤ λ.
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Second attempt to e
−

√
2r

• Then

Pω

(

THr < T∅

)

≤ Pω

(

T
L
#
λ

< T∅

)

+
∑

x∈Hr ,V #(x)≤λ

Pω(Tx < T∅).

• In the same way as before,

Pω

(

T
L
#
λ

< T∅

)

≤
∑

x∈L#
λ

Pω(Tx < T∅) ≤
∑

x∈L#
λ

e−V (x) ≤ O(e−λ),

because for x ∈ L
#
λ , V (x) − V (x) > λ.
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Second attempt to e
−

√
2r

• Since Pω(Tx < T∅) ≤ e−V (x), we have by the many-to-one
formula that

E

[

∑

x∈Hr ,V #(x)≤λ

Pω(Tx < T∅)
]

≤ P

(

S
#
Tr

≤ λ
)

.

• An a priori estimate for the random walk S :

P

(

S
#
Tr

≤ λ
)

≈ e−r/λ.

• Hence

E

[

Pω

(

THr < T∅

)]

≤ O(e−λ) + e−r/λ = O(e−
√

r ),

if we take λ =
√

r .
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Third (and last) attempt : from e
−√

r to e
−

√
2r

• Let k = r1−χ with some 1
2

< χ < 1. Cut the interval [0, r ] to
k intervals [hm, hm+1] for hm := r m

k
.

• Let λm :=
√

rg(1 − m
k
) for 0 ≤ m ≤ k, with some positive

function g to be optimized.

• Define V
#
m in the same way as V #(x) but with those x

between Hhm
and Hhm+1

.
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A refined argument to get e
−

√
2r

We have two cases :

• either for all 0 ≤ m < k, V
#
m ≤ λm, then

Pω

(

THr < T∅

)

≤
k−1
∏

m=0

P

(

S
#
hm+1−hm

≤ λm

)

≈ e
−

∑k−1

m=0

hm+1−hm

λm ;

• or let m be the first one such that V
#
m > λm, then

Pω

(

THr < T∅

)

≤ e
−

∑m−1

i=0

hi+1−hi
λi e−λm .
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A refined argument to get e
−

√
2r

• Therefore

Pω

(

THr < T∅

)

≤ e
−

∑k−1

i=0

hi+1−hi
λi +

k−1
∑

m=1

e
−

∑m−1

i=0

hi+1−hi
λi e−λm .

• With the choice hi+1 − hi =
r
k
, λi :=

√
rg(1 − i

k
), we let

λm =
∑k−1

i=m
hi+1−hi

λi
∼ √

r
∫ 1

m/k
du

g(1−u) . Hence g(u) =
√

2u.

• We obtain the desired upper bound :

Pω

(

THr < T∅

)

≤ e−
√

2r(1+o(1)).
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THANK YOU !
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