Potential energy of biased random walks on trees

Yueyun Hu (Université Paris 13) joint work with Zhan Shi (Paris 6) Bath, June 2014

Plan of talk

- 1. From Random walk in random environment (RWRE) on $\mathbb Z$ to biased random walks (or RWRE) on trees;
- 2. The asymptotic behaviors of a class of recurrent RWRE on trees
- 3. Potential energy and main result.
- 4. Proof.

1-d Random walks in random environments (Z_n)

Let $\omega = \{\omega_x, x \in \mathbb{Z}\}$ be a family of i.i.d. random variables (and no constant) taking values in (0,1). The ω plays the role of random environment.

Given ω , $\{Z_n, n \ge 0\}$ is a Markov chain taking values in \mathbb{Z} starting from 0 with probability transition :

$$\mathbb{P}_{\omega}\Big(Z_{n+1} = y | Z_n = x\Big) = \begin{cases} \omega_x, & \text{if } y = x+1; \\ 1 - \omega_x, & \text{if } y = x-1. \end{cases}$$

1-d Random walks in random environments (Z_n)

Let $\omega = \{\omega_x, x \in \mathbb{Z}\}$ be a family of i.i.d. random variables (and no constant) taking values in (0,1). The ω plays the role of random environment.

Given ω , $\{Z_n, n \ge 0\}$ is a Markov chain taking values in \mathbb{Z} starting from 0 with probability transition :

$$\mathbb{P}_{\omega}\left(Z_{n+1}=y|Z_n=x\right) = \begin{cases} \omega_x, & \text{if } y=x+1;\\ 1-\omega_x, & \text{if } y=x-1. \end{cases}$$

Asymptotic behaviors of (Z_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni : Lecture notes Saint Flour 2001.
- A.S. Sznitman, M.Zerner ... (multi-dimensional case).

Recurrence/transience criteria : Solomon (1975)

- (Z_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) = 0$;
- $Z_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

Asymptotic behaviors of (Z_n)

References

- P. Révész : Random walk in random and non-random environments (1st edition : 1990, 2nd edition : 2005)
- O. Zeitouni : Lecture notes Saint Flour 2001.
- A.S. Sznitman, M.Zerner ... (multi-dimensional case).

Recurrence/transience criteria : Solomon (1975)

- (Z_n) is recurrent if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) = 0$;
- $Z_n \to \infty$ if and only if $\mathbb{E}(\log \frac{1-\omega_x}{\omega_x}) < 0$.

How big is (Z_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $Z_n \to \infty$, $Z_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0, 1].

Recurrent case : Sinai (1982)'s localization

when (Z_n) is recurrent, $\frac{Z_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : What happens on trees?

We may find both (sub)diffusive $(n^{\varrho} \text{ with } 0 < \varrho \leq \frac{1}{2})$ and slow movement behaviors in a class of recurrent RWREs on trees.

How big is (Z_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $Z_n \to \infty$, $Z_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0, 1].

Recurrent case : Sinai (1982)'s localization

when (Z_n) is recurrent, $\frac{Z_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : What happens on trees?

We may find both (sub)diffusive $(n^{\varrho} \text{ with } 0 < \varrho \leq \frac{1}{2})$ and slow movement behaviors in a class of recurrent RWREs on trees.

How big is (Z_n) ?

Transient case : Kesten, Kozlov and Spiter (1976)

when $Z_n \to \infty$, $Z_n \approx n^{\rho}$. The exponent ρ is explicitly determined by the law of ω_x and can vary in (0, 1].

Recurrent case : Sinai (1982)'s localization

when (Z_n) is recurrent, $\frac{Z_n}{\log^2 n}$ converges in law (to some non-degenerated law, explicitly computed by Kesten (1986) and Golosov (1986)).

Question : What happens on trees?

We may find both (sub)diffusive $(n^{\varrho} \text{ with } 0 < \varrho \leq \frac{1}{2})$ and slow movement behaviors in a class of recurrent RWREs on trees.

RWRE on trees

Random environments

Let \mathbb{T} be a supercritical Galton-Watson tree rooted at \emptyset and $\omega = \{(\omega(x, y), y \in \mathbb{T})_{x \in \mathbb{T}}\}$ be a family of random variables such that $\sum_{y \in T: y \sim x} \omega(x, y) = 1$, $\omega(x, y) > 0$ if $x \sim y$ ($x \sim y$ means xand y are adjacent).

Random walk in random environment (X_n) on a tree :

Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with probability transition :

$$\mathbb{P}_{\omega}(X_{n+1}=y|X_n=x)=\omega(x,y).$$

RWRE on trees

Random environments

Let \mathbb{T} be a supercritical Galton-Watson tree rooted at \varnothing and $\omega = \{(\omega(x, y), y \in \mathbb{T})_{x \in \mathbb{T}}\}\$ be a family of random variables such that $\sum_{y \in \mathcal{T}: y \sim x} \omega(x, y) = 1$, $\omega(x, y) > 0$ if $x \sim y$ ($x \sim y$ means xand y are adjacent).

Random walk in random environment (X_n) on a tree :

Conditioned on ω , (X_n) is a Markov chain taking values in \mathbb{T} with probability transition :

$$\mathbb{P}_{\omega}(X_{n+1}=y|X_n=x)=\omega(x,y).$$

Notations

For each vertex $x \in \mathbb{T} \setminus \{\emptyset\}$, we denote its parent by \overleftarrow{x} , and its children by $(x^{(1)}, \dots, x^{(b_x)})$. Write |x| for the generation of x. Instead of looking at $\omega(x, y)$ (for $y \sim x$ and $x \in \mathbb{T}$), it is more convenient to use the notation

$$A(x) := rac{\omega(\overleftarrow{x}, x)}{\omega(\overleftarrow{x}, \overleftarrow{x})}, \qquad |x| \ge 2.$$

Recurrence/transience criteria

Hypothesis :

We assume that for all $|x| \ge 2$, $\{A(x^{(1)}), ..., A(x^{(b_x)})\}$ has the same law as the vector $\{A_1, ..., A_b\}$, where b_x denotes the number of children of x and b may be random. Define

$$\phi(t) := \log \mathbb{E}\Big(\sum_{i=1}^{\mathsf{b}} A_i^t\Big), \qquad orall t \in \mathbb{R}.$$

Lyons and Pemantle (1992)'s theorem :

- 1. if $\inf_{0 \le t \le 1} \phi(t) > 0$, then RWRE (X_n) is a.s. transient.
- 2. If $\inf_{0 \le t \le 1} \phi(t) = 0$, then RWRE (X_n) is a.s. recurrent.
- 3. If $\inf_{0 \le t \le 1} \phi(t) < 0$, then (X_n) is a.s. positive recurrent.

Introduction

Case $\inf_{0 \le t \le 1} \phi(t) = 0$

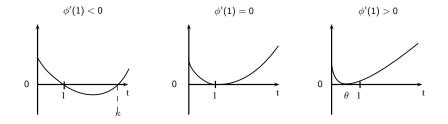


FIGURE: Three different shapes of ϕ : We call "subdiffusive case" the first shape and "slow movement case" the two other shapes.

Subdiffusive case

Theorem (H. and Shi 2007) If $\inf_{0 \le t \le 1} \phi(t) = 0$ and $\phi'(1) < 0$, then almost surely,

$$\max_{0\leq i\leq n}|X_i|=n^{\nu+o(1)},$$

where

$$u:=1-\max(rac{1}{2},rac{1}{\kappa})\in(0,rac{1}{2}],$$

and

$$\kappa:=\inf\{t>1:\phi(t)=\mathsf{0}\}\in(1,\infty].$$

Slow movement case

Theorem (Faraud, H. and Shi 2012) If $\inf_{0 \le t \le 1} \phi(t) = 0$ and $\phi'(1) \ge 0$, then almost surely,

$$\lim_{n\to\infty}\frac{1}{\log^3 n}\max_{0\leq i\leq n}|X_i|=c,$$

where

$$c := \left\{ egin{array}{c} rac{8}{3\pi^2\phi''(1)}, & ext{if } \phi'(1) = 0\,; \ rac{2 heta}{3\pi^2\phi''(heta)}, & ext{if } \phi'(1) > 0, \end{array}
ight.,$$

where $\theta \in (0, 1]$ denotes the unique zero $:\phi'(\theta) = 0$.

Introduction

References

- E. Aïdékon (2008a&b) for rate of convergence and large deviations (transient case).
- Ben Arous and Hammond (2012), Hammond (2013) [subcritical/critical trees, stable laws].
- (sub)diffusive case $(\kappa > 2)$: is there an invariance principle to (reflected) Brownian motion? Faraud (2011) confirms it for $\kappa > 5$. See recent work by E. Aïdékon and his PhD student Loïc de Raphélis.
- Andreoletti and Debs (2011+, 2013+) for the local times.
- If the ω are non random and T is a Galton-Watson tree, the model corresponds to the so-called biased random walk on (Galton-Watson) trees (see Peres and Zeitouni (2008) for a CLT in the recurrent case, Aïdékon (2013) for a formula on the speed in the transient case).

Call "boundary case"

When $\phi(1) = \phi'(1) = 0$, the associated potential process V is a branching random walk in the "boundary case", where

$$V(x) := -\sum_{y \in]\!]arnothing, x]\!]} \log \, rac{\omega(\overleftarrow{y}, y)}{\omega(\overleftarrow{y}, \overleftarrow{y})} = -\sum_{y \in]\!]arnothing, x]\!]} \log \, A(y).$$

Fact : Recalling that $\frac{\max_{0 \le i \le n} |X_i|}{(\log n)^3} \to c$, a.s.

Open Problem :

What is the typical behavior of $|X_n|$? Can we localize X_n à la Sinai?

Conjecture :

 $\frac{|X_n|}{(\log n)^2}$ converges in law to a positive and finite random variable.

Fact : Recalling that $\frac{\max_{0 \le i \le n} |X_i|}{(\log n)^3} \to c$, a.s.

Open Problem :

What is the typical behavior of $|X_n|$? Can we localize X_n à la Sinai?

Conjecture :

 $\frac{|X_n|}{(\log n)^2}$ converges in law to a positive and finite random variable.

Fact : Recalling that $\frac{\max_{0 \le i \le n} |X_i|}{(\log n)^3} \to c$, a.s.

Open Problem :

What is the typical behavior of $|X_n|$? Can we localize X_n à la Sinai?

Conjecture :

 $\frac{|X_n|}{(\log n)^2}$ converges in law to a positive and finite random variable.

Potential energy

Definition

According to Le Doussal - Monthus (2002), $V(X_n)$ is called potential energy for the RWRE.

Motivation

The potential energy $V(X_n)$ is closely related

- to the localization of X_n,
- and to the Metropolis algorithm (Aldous (1998)), the Einstein relation on trees (Maillard and Zeitouni (2013+)).

Main result

Our main result on the maximal potential energy reads as follows :

Theorem 1 (H. and Shi'14+) Assume $\phi(1) = \phi'(1) = 0$. Conditioned on $\{\mathbb{T} = \infty\}$,

$$\lim_{n\to\infty}\frac{1}{(\log n)^2}\max_{0\leq k\leq n}V(X_k)=\frac{1}{2},\qquad \mathbb{P}(d\omega)\otimes P_{\omega}\text{-a.s.}$$

Conjecture

Conditioned on $\{\mathbb{T} = \infty\}$, $\frac{1}{\log n}V(X_n)$ converges in law to a non-degenerated limit.

Main result

Our main result on the maximal potential energy reads as follows :

Theorem 1 (H. and Shi'14+) Assume $\phi(1) = \phi'(1) = 0$. Conditioned on $\{\mathbb{T} = \infty\}$,

$$\lim_{n\to\infty}\frac{1}{(\log n)^2}\max_{0\leq k\leq n}V(X_k)=\frac{1}{2},\qquad \mathbb{P}(d\omega)\otimes P_{\omega}\text{-a.s.}$$

Conjecture

Conditioned on $\{\mathbb{T} = \infty\}$, $\frac{1}{\log n}V(X_n)$ converges in law to a non-degenerated limit.

The one-dimensional case : (RWRE (Z_n) on \mathbb{Z})

1. By reversibility,

$$\limsup_{n\to\infty}\frac{1}{\log n}\,\max_{0\leq k\leq n}V(Z_k)\leq 1,\qquad a.s.$$

In fact, for any x, $P_{0,\omega}(T_x < n) \le ne^{-V(x)}$ where $T_x := \inf\{j > 0 : Z_j = x\}$. Choose x as the first such that $V(x) > (1 + \varepsilon) \log n$, then $P_{\omega}(\max_{0 \le k \le n} V(Z_k) > (1 + \varepsilon) \log n) \le n^{-\varepsilon}$. Borel-Cantelli' lemma and the monotonicity yield the upper bound.

2. The vector

$$\left(\frac{V(Z_n)}{\log n}, \frac{\max_{0 \le k \le n} V(Z_k)}{\log n}\right)$$

converges in law to a non-degenerated limit;

Proof of Theorem 1

• We can prove that a.s. on the survival set $\{\mathbb{T}=\infty\}$,

$$L_n^{\varnothing} = n^{1+o(1)},$$

where L_n^{\varnothing} denotes the local time at \varnothing .

• By the standard extreme value theory, it is enough to prove the following statement : Almost surely on $\{\mathbb{T} = \infty\}$,

$$P_{\omega}\Big(\max_{0\leq k\leq T_{arnothing}}V(X_k)\geq r\Big)=e^{-(1+o(1))\sqrt{2r}},\qquad r
ightarrow\infty,$$

where $T_{\varnothing} := \inf\{n \ge 1 : X_n = \varnothing\}.$

First attempt to $e^{-\sqrt{2r}}$

Notice that

$$P_{\omega}\Big(\max_{0\leq k\leq T_{\varnothing}}V(X_k)\geq r\Big)=P_{\omega}\Big(T_{\mathbb{H}_r}< T_{\varnothing}\Big),$$

where
$$\mathbb{H}_r := \left\{ x : V(x) \ge r, \max_{\emptyset \le y < x} V(y) < r \right\}$$
 and $T_{\mathbb{H}_r} := \inf\{n \ge 1 : X_n \in \mathbb{H}_r\}.$

• Since $T_{\mathbb{H}_r} = \min_{x \in \mathbb{H}_r} T_x$, we get that

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq \sum_{x \in \mathbb{H}_r} P_{\omega}\Big(T_x < T_{\varnothing}\Big) \leq \sum_{x \in \mathbb{H}_r} e^{-V(x)}.$$

• Since $V(x) \to \infty$ a.s., we can add an additional condition that $\underline{V}(x) \ge -\alpha$ with some large constant α and $\underline{V}(x) := \min_{\varnothing \le y \le x} V(y)$.

First attempt to $e^{-\sqrt{2r}}$

By the many-to-one formule (Chauvin, Rouault and Wakolbinger (1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004)) at the stopping line \mathbb{H}_r , we obtain that

$$\mathbb{E}\Big[\sum_{x\in\mathbb{H}_r}e^{-V(x)}\mathbf{1}_{\{\underline{V}(x)\geq-\alpha\}}\Big]=\mathbb{P}\Big(T_r< T_{-\alpha}\Big)\approx\frac{1}{r},$$

where $T_r := \inf\{n \ge 1 : S_n \ge r\}$, $T_{-\alpha} := \inf\{n \ge 1 : S_n \le -\alpha\}$, and *S* is a centered real-valued random walk with finite variance. The bound $\frac{1}{r}$ is too big with respect to $e^{-\sqrt{2r}}$! Introduction

Second attempt to $e^{-\sqrt{2}r}$

• Define
$$V^{\#}(x) := \max_{\emptyset \le y \le x} (\overline{V}(y) - V(y))$$
 with $\overline{V}(y) := \max_{\emptyset \le z \le y} V(z)$.

• For $\lambda > 0$, we define another stopping line :

$$\mathbb{L}^{\#}_{\lambda} := \Big\{ x : V^{\#}(x) > \lambda, \max_{\varnothing \leq y < x} V^{\#}(y) \leq \lambda \Big\}.$$

On the event {T_{H_r} < T_Ø}, the walk (X_n) hits some x ∈ H_r before return to the root, there are two cases : either V[#](x) > λ, the walk (X_n) must have hit L[#]_λ before T_Ø; or V[#](x) ≤ λ.

Second attempt to $e^{-\sqrt{2r}}$

• Then

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq P_{\omega}\Big(T_{\mathbb{L}^\#_\lambda} < T_{\varnothing}\Big) + \sum_{x \in \mathbb{H}_r, V^\#(x) \leq \lambda} P_{\omega}(T_x < T_{\varnothing}).$$

• In the same way as before,

$$P_\omega\Big(T_{\mathbb{L}^\#_\lambda} < T_arnothing\Big) \leq \sum_{x \in \mathbb{L}^\#_\lambda} P_\omega(T_x < T_arnothing) \leq \sum_{x \in \mathbb{L}^\#_\lambda} e^{-\overline{V}(x)} \leq O(e^{-\lambda}),$$

because for $x \in \mathbb{L}^{\#}_{\lambda}$, $\overline{V}(x) - V(x) > \lambda$.

Second attempt to $e^{-\sqrt{2r}}$

• Since $P_{\omega}(T_x < T_{\emptyset}) \le e^{-V(x)}$, we have by the many-to-one formula that

$$\mathbb{E}\Big[\sum_{x\in\mathbb{H}_r,V^{\#}(x)\leq\lambda}P_{\omega}(T_x< T_{\varnothing})\Big]\leq\mathbb{P}\Big(\mathcal{S}_{T_r}^{\#}\leq\lambda\Big).$$

• An a priori estimate for the random walk S :

$$\mathbb{P}\Big(S_{\mathcal{T}_r}^{\#} \leq \lambda\Big) \approx e^{-r/\lambda}.$$

Hence

$$\mathbb{E}\Big[P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big)\Big] \leq O(e^{-\lambda}) + e^{-r/\lambda} = O(e^{-\sqrt{r}}),$$

if we take $\lambda = \sqrt{r}$.

Third (and last) attempt : from $e^{-\sqrt{r}}$ to $e^{-\sqrt{2r}}$

- Let $k = r^{1-\chi}$ with some $\frac{1}{2} < \chi < 1$. Cut the interval [0, r] to k intervals $[h_m, h_{m+1}]$ for $h_m := r\frac{m}{k}$.
- Let $\lambda_m := \sqrt{rg(1 \frac{m}{k})}$ for $0 \le m \le k$, with some positive function g to be optimized.
- Define V[#]_m in the same way as V[#](x) but with those x between ℍ_{hm} and ℍ_{hm+1}.

A refined argument to get $e^{-\sqrt{2r}}$

We have two cases :

• either for all $0 \le m < k$, $V_m^{\#} \le \lambda_m$, then

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq \prod_{m=0}^{k-1} \mathbb{P}\Big(S_{h_{m+1}-h_m}^{\#} \leq \lambda_m\Big) \approx e^{-\sum_{m=0}^{k-1} \frac{h_{m+1}-h_m}{\lambda_m}};$$

• or let m be the first one such that $V_m^{\#} > \lambda_m$, then

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq e^{-\sum_{i=0}^{m-1} \frac{h_{i+1}-h_i}{\lambda_i}} e^{-\lambda_m}$$

A refined argument to get $e^{-\sqrt{2r}}$

• Therefore

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq e^{-\sum_{i=0}^{k-1} \frac{h_{i+1}-h_i}{\lambda_i}} + \sum_{m=1}^{k-1} e^{-\sum_{i=0}^{m-1} \frac{h_{i+1}-h_i}{\lambda_i}} e^{-\lambda_m}.$$

- With the choice $h_{i+1} h_i = \frac{r}{k}$, $\lambda_i := \sqrt{rg(1 \frac{i}{k})}$, we let $\lambda_m = \sum_{i=m}^{k-1} \frac{h_{i+1} h_i}{\lambda_i} \sim \sqrt{r} \int_{m/k}^1 \frac{du}{g(1-u)}$. Hence $g(u) = \sqrt{2u}$.
- We obtain the desired upper bound :

$$P_{\omega}\Big(T_{\mathbb{H}_r} < T_{\varnothing}\Big) \leq e^{-\sqrt{2r}(1+o(1))}$$

Introduction

Limits of a recurrent RWRE (X_n) on trees

Potential energy for RWRE on trees

Proof of Theorem

THANK YOU!