Asymptotic growth of a branching random walk in a random environment on the hypercube

Marion Hesse (WIAS Berlin)
with Luca Avena (Leiden) and Onur Gün (WIAS)

Bath-Paris Branching Structures III, June 9, 2014

Model and some motivation

- n-dimensional hypercube $H_{n}=\{0,1\}^{n}$ with volume $N=2^{n}$ \rightarrow a model for nucleotide sequences of the genome

Model and some motivation

- n-dimensional hypercube $H_{n}=\{0,1\}^{n}$ with volume $N=2^{n}$ \rightarrow a model for nucleotide sequences of the genome
- Random environment consists of
i.i.d. $\quad \xi(x) \sim \exp (1), \quad$ for $x \in H_{n}$
\rightarrow represents the 'fitness landscape'

Model and some motivation

- n-dimensional hypercube $H_{n}=\{0,1\}^{n}$ with volume $N=2^{n}$ \rightarrow a model for nucleotide sequences of the genome
- Random environment consists of
i.i.d. $\xi(x) \sim \exp (1)$, for $x \in H_{n}$
\rightarrow represents the 'fitness landscape'
- Branching random walk on H_{n} evolves as follows:
- each particle jumps at rate κ to a uniformly chosen neighbour
- a particle at x splits into two particles at rate $\xi(x)$
\rightarrow models the evolution of the population

The random environment and the objective

We are interested in, given the environment ξ,

$$
E_{x_{k, N}}[\# \text { particles alive at time } t] \sim \text { ? as } t, n \rightarrow \infty
$$

where $x_{k, N}$ is site with the k th highest branching rate, defined via

$$
\xi_{1, N}:=\xi\left(x_{1, N}\right)>\ldots>\xi_{N, N}:=\xi\left(x_{N, N}\right)
$$

The random environment and the objective

We are interested in, given the environment ξ,

$$
E_{x_{k, N}}[\# \text { particles alive at time } t] \sim \text { ? as } t, n \rightarrow \infty
$$

where $x_{k, N}$ is site with the k th highest branching rate, defined via

$$
\xi_{1, N}:=\xi\left(x_{1, N}\right)>\ldots>\xi_{N, N}:=\xi\left(x_{N, N}\right)
$$

Note, as $n \rightarrow \infty$,

- $\xi_{1, N} \sim \log (N)=n \log 2$
- for any fixed $k, \xi_{1, N}-\xi_{k, N}=$ const.

The result on the complete graph

Branching random walk on the complete graph with N vertices

- each particle jumps at rate κ to a uniformly chosen vertex
- a particle at x splits into two particles at rate $\xi(x)$

The result on the complete graph

Branching random walk on the complete graph with N vertices

- each particle jumps at rate κ to a uniformly chosen vertex
- a particle at x splits into two particles at rate $\xi(x)$

Theorem (Fleischmann, Molchanov, '90)
Write $N_{t}=\#$ particles alive at time t.
(i) if $k=1$ or, if $k \geq 2$ and $t \ll \log N$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim e^{\lambda_{k, N} t}
$$

(ii) if $k \geq 2$ and $t \gg \log N$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim \kappa\left[N\left(\xi_{1, N}-\xi_{k, N}\right)\right]^{-1} e^{\lambda_{1, N} t}
$$

where $\lambda_{k, N}$ is the k th eigenvalue of $\kappa \Delta_{N}+\xi_{N} I_{N}$.

The result on the complete graph

Branching random walk on the complete graph with N vertices

- each particle jumps at rate κ to a uniformly chosen vertex
- a particle at x splits into two particles at rate $\xi(x)$

Theorem (Fleischmann, Molchanov, '90)
Write $N_{t}=\#$ particles alive at time t.
(i) if $k=1$ or, if $k \geq 2$ and $t \ll \log N$,

$$
E_{x_{k}, N}\left[N_{t}\right] \sim e^{\lambda_{k, N} t}
$$

(ii) if $k \geq 2$ and $t \gg \log N$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim \kappa\left[N\left(\xi_{1, N}-\xi_{k, N}\right)\right]^{-1} e^{\lambda_{1, N} t}
$$

where $\lambda_{k, N}$ is the k th eigenvalue of $\kappa \Delta_{N}+\xi_{N} I_{N}$.

- $\lambda_{k, N}=\xi_{k, N}-\kappa+\kappa / N+o(1 / N)$.
- $E_{x_{k, N}}\left[N_{t}\right]=\mathbb{E}_{x_{k, N}}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) d s\right\}\right]$, where $X=\left(X_{s}\right)_{s \geq 0}$ is random walk on the complete graph.

The result on the hypercube

Theorem (Avena, Gün, H., '14)
(i) If $t \ll n \log n(\approx \log N \log \log N)$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim e^{\left(\xi_{k, N}-\kappa\right) t}
$$

(ii) If $t \gg n \log n$,

$$
\begin{aligned}
\log E_{x_{k, N}}\left[N_{t}\right] & \sim \log E_{x_{1, N}}\left[N_{t}\right] \\
\text { and } \quad E_{x_{1, N}}\left[N_{t}\right] & \sim e^{\left(\xi_{1, N}-\kappa+\frac{\kappa^{2}}{n^{2} \log 2}+O\left(n^{-5}\right)\right) t} .
\end{aligned}
$$

The result on the hypercube

Theorem (Avena, Gün, H., '14)
(i) If $t \ll n \log n(\approx \log N \log \log N)$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim e^{\left(\xi_{k, N}-\kappa\right) t}
$$

(ii) If $t \gg n \log n$,

$$
\begin{aligned}
\log E_{x_{k, N}}\left[N_{t}\right] & \sim \log E_{x_{1, N}}\left[N_{t}\right] \\
\text { and } \quad E_{x_{1, N}}\left[N_{t}\right] & \sim e^{\left(\xi_{1, N}-\kappa+\frac{\kappa^{2}}{n^{2} \log 2}+O\left(n^{-5}\right)\right) t}
\end{aligned}
$$

- $t \ll n \log n: X$ stays at $x_{k, N}$ since

$$
E_{x_{k, N}}\left[N_{t}\right]=\mathbb{E}_{x_{k, N}}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) d s\right\} ; X_{s}=x_{k, N} s \leq t\right]=e^{\xi_{k, N} t} e^{-\kappa t}
$$

The result on the hypercube

Theorem (Avena, Gün, H., '14)
(i) If $t \ll n \log n(\approx \log N \log \log N)$,

$$
E_{x_{k, N}}\left[N_{t}\right] \sim e^{\left(\xi_{k, N}-\kappa\right) t},
$$

(ii) If $t \gg n \log n$,

$$
\begin{aligned}
\log E_{X_{x_{k}, N}}\left[N_{t}\right] & \sim \log E_{X_{1, N}}\left[N_{t}\right] \\
\text { and } \quad E_{X_{1, N}}\left[N_{t}\right] & \left.\sim e^{\left(\xi_{1, N}-\kappa+\frac{\kappa^{2}}{n^{2}} \log 2\right.}+O\left(n^{-5}\right)\right) t .
\end{aligned}
$$

- $t \ll n \log n: X$ stays at $x_{k, N}$ since

$$
E_{x_{k, N}}\left[N_{t}\right]=\mathbb{E}_{x_{k, N}}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) d s\right\} ; X_{s}=x_{k, N} s \leq t\right]=e^{\xi_{k, N} t} e^{-\kappa t}
$$

- $n \log n \ll t \ll n^{2}: X$ goes to $x_{1, N}$ and stays there

The result on the hypercube

Theorem (Avena, Gün, H., '14)
(i) If $t \ll n \log n(\approx \log N \log \log N)$,

$$
E_{x_{k}, N}\left[N_{t}\right] \sim e^{\left(\xi_{k, N}-\kappa\right) t},
$$

(ii) If $t \gg n \log n$,

$$
\begin{aligned}
\log E_{X_{x_{k}, N}}\left[N_{t}\right] & \sim \log E_{X_{1, N}}\left[N_{t}\right] \\
\text { and } \quad E_{X_{1, N}}\left[N_{t}\right] & \left.\sim e^{\left(\xi_{1, N}-\kappa+\frac{\kappa^{2}}{n^{2}} \log 2\right.}+O\left(n^{-5}\right)\right) t .
\end{aligned}
$$

- $t \ll n \log n: X$ stays at $x_{k, N}$ since

$$
E_{x_{k, N}}\left[N_{t}\right]=\mathbb{E}_{x_{k, N}}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{s}\right) d s\right\} ; X_{s}=x_{k, N} s \leq t\right]=e^{\xi_{k, N} t} e^{-\kappa t}
$$

- $n \log n \ll t \ll n^{2}: X$ goes to $x_{1, N}$ and stays there
- $n^{2} \ll t \ll n^{5}: X$ goes to $x_{1, N}$ and then stays within dist. 1 .

Bounds required for the phase transition

For $k \geq 2$, study

$$
\begin{aligned}
(\star) & =\lim _{t, n \rightarrow \infty} \frac{\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s} ; X_{s}=x_{1, N}, \text { for some } s \leq t\right]}{\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s} ; X_{s}=x_{k, N}, \text { for all } s \leq t\right]} \\
& =\lim _{t, n \rightarrow \infty} e^{-\left(\xi_{K, N}-\kappa\right) t} \mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s} ; X_{s}=x_{1, N}, \text { for some } s \leq t\right]
\end{aligned}
$$

and show that

- if $t \ll n \log n$, then $(\star) \leq 0$
- if $t \gg n \log n$, then $(\star) \geq \infty$

The lower bound for $t \gg n \log n$
Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty(d$ is Hamming distance $)$

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty$ (d is Hamming distance)
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty$ (d is Hamming distance)
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

Thus

$$
\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] \geq \frac{\left(\frac{n}{2}\right)!}{n^{n / 2}} \frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s} e^{\left(\xi_{1, N}-\kappa\right)(t-s)}
$$

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty$ (d is Hamming distance)
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

Thus

$$
\begin{aligned}
\mathbb{E}_{x_{k}, N}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] & \geq \frac{\left(\frac{n}{2}\right)!}{n^{n / 2}} \frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s} e^{\left(\xi_{1, N}-\kappa\right)(t-s)} \\
& =e^{-n / 2 \log (n /(2 \kappa s))} e^{-\xi_{1, N} s} e^{\left(\xi_{1, N}-\kappa\right) t}
\end{aligned}
$$

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty$ (d is Hamming distance)
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

Thus

$$
\begin{aligned}
\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] & \geq \frac{\left(\frac{n}{2}\right)!}{n^{n / 2}} \frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s} e^{\left(\xi_{1, N}-\kappa\right)(t-s)} \\
& =e^{-n / 2 \log (n /(2 \kappa s))} e^{-\xi_{1, N} s} e^{\left(\xi_{1, N}-\kappa\right) t}
\end{aligned}
$$

and 'cost' is minimised for $s=1 /(2 \log 2)$.

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty$ (d is Hamming distance)
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

Thus

$$
\begin{aligned}
\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] & \geq \frac{\left(\frac{n}{2}\right)!}{n^{n / 2}} \frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s} e^{\left(\xi_{1, N}-\kappa\right)(t-s)} \\
& =e^{-n / 2 \log (n /(2 \kappa s))} e^{-\xi_{1, N} s} e^{\left(\xi_{1, N}-\kappa\right) t}
\end{aligned}
$$

and 'cost' is minimised for $s=1 /(2 \log 2)$. Then

$$
(\star) \geq \lim _{t, n \rightarrow \infty} e^{-\left(\xi_{k, N}-\kappa\right) t} \mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right]
$$

The lower bound for $t \gg n \log n$

Note: $d\left(x_{k, N}, x_{1, N}\right) \sim n / 2$, as $n \rightarrow \infty(d$ is Hamming distance $)$
Let γ be path that goes from $x_{k, N}$ to $x_{1, N}$ in exactly $n / 2$ steps in time s and stays at $x_{1, N}$ up to time t.

- $P_{x_{k, N}}\left(\right.$ go to $x_{1, N}$ in exactly $n / 2$ steps $)=\frac{\left(\frac{n}{2}\right)!}{n^{n / 2}}$
- $P($ make $n / 2$ jumps by time $s)=\frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s}$

Thus

$$
\begin{aligned}
\mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] & \geq \frac{\left(\frac{n}{2}\right)!}{n^{n / 2}} \frac{(\kappa s)^{n / 2}}{\left(\frac{n}{2}\right)!} e^{-\kappa s} e^{\left(\xi_{1, N}-\kappa\right)(t-s)} \\
& =e^{-n / 2 \log (n /(2 \kappa s))} e^{-\xi_{1, N} s} e^{\left(\xi_{1, N}-\kappa\right) t}
\end{aligned}
$$

and 'cost' is minimised for $s=1 /(2 \log 2)$. Then

$$
\begin{aligned}
(\star) & \geq \lim _{t, n \rightarrow \infty} e^{-\left(\xi_{k, N}-\kappa\right) t} \mathbb{E}_{x_{k, N}}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) d s}, X=\gamma\right] \\
& \geq \lim _{t, n \rightarrow \infty} e^{-n / 2 \log (n \log 2 / \kappa)} e^{-\xi_{1, N} /(2 \log 2)} e^{\left(\xi_{1, N}-\xi_{k, N}\right) t}=\infty
\end{aligned}
$$

Thanks!

