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Model and some motivation

I n-dimensional hypercube Hn = {0, 1}n with volume N = 2n

→ a model for nucleotide sequences of the genome

I Random environment consists of

i.i.d. ξ(x) ∼ exp(1), for x ∈ Hn

→ represents the ’fitness landscape’
I Branching random walk on Hn evolves as follows:

I each particle jumps at rate κ to a uniformly chosen neighbour
I a particle at x splits into two particles at rate ξ(x)

→ models the evolution of the population
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The random environment and the objective

We are interested in, given the environment ξ,

Exk,N [# particles alive at time t] ∼ ? as t, n→∞

where xk,N is site with the kth highest branching rate, defined via

ξ1,N := ξ(x1,N) > ... > ξN,N := ξ(xN,N)

Note, as n→∞,

I ξ1,N ∼ log(N) = n log 2

I for any fixed k, ξ1,N − ξk,N = const.
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The result on the complete graph
Branching random walk on the complete graph with N vertices

I each particle jumps at rate κ to a uniformly chosen vertex
I a particle at x splits into two particles at rate ξ(x)

Theorem (Fleischmann, Molchanov, ’90)

Write Nt = # particles alive at time t.

(i) if k = 1 or, if k ≥ 2 and t � logN,

Exk,N [Nt ] ∼ eλk,N t ,

(ii) if k ≥ 2 and t � logN,

Exk,N [Nt ] ∼ κ[N(ξ1,N − ξk,N)]−1 eλ1,N t ,

where λk,N is the kth eigenvalue of κ∆N + ξN IN .

I λk,N = ξk,N − κ+ κ/N + o(1/N).
I Exk,N [Nt ] = Exk,N [exp{

∫ t
0 ξ(Xs)ds}], where X = (Xs)s≥0 is

random walk on the complete graph.
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The result on the hypercube

Theorem (Avena, Gün, H., ’14)

(i) If t � n log n (≈ logN log logN),

Exk,N [Nt ] ∼ e(ξk,N−κ)t ,

(ii) If t � n log n,

log Exk,N [Nt ] ∼ log Ex1,N [Nt ]

and Ex1,N [Nt ] ∼ e
(ξ1,N−κ+ κ2

n2 log 2
+O(n−5))t

.

I t � n log n: X stays at xk,N since

Exk,N [Nt ] = Exk,N [exp{
∫ t

0
ξ(Xs)ds};Xs = xk,N s ≤ t] = eξk,N te−κt

I n log n� t � n2: X goes to x1,N and stays there
I n2 � t � n5: X goes to x1,N and then stays within dist. 1.
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Bounds required for the phase transition

For k ≥ 2, study

(?) = lim
t,n→∞

Exk,N [e
∫ t
0 ξ(Xs)ds ;Xs = x1,N , for some s ≤ t]

Exk,N [e
∫ t
0 ξ(Xs)ds ;Xs = xk,N , for all s ≤ t]

= lim
t,n→∞

e−(ξK ,N−κ)tExk,N [e
∫ t
0 ξ(Xs)ds ;Xs = x1,N , for some s ≤ t]

and show that

I if t � n log n, then (?) ≤ 0

I if t � n log n, then (?) ≥ ∞



The lower bound for t � n log n
Note: d(xk,N , x1,N) ∼ n/2, as n→∞ (d is Hamming distance)

Let γ be path that goes from xk,N to x1,N in exactly n/2 steps in
time s and stays at x1,N up to time t.

I Pxk,N (go to x1,N in exactly n/2 steps) =
( n
2
)!

nn/2

I P(make n/2 jumps by time s) = (κs)n/2

( n
2
)! e−κs

Thus

Exk,N [e
∫ t
0 ξ(Xs)ds ,X = γ] ≥

(n2 )!

nn/2
(κs)n/2

(n2 )!
e−κse(ξ1,N−κ)(t−s)

= e−n/2 log(n/(2κs))e−ξ1,N se(ξ1,N−κ)t

and ’cost’ is minimised for s = 1/(2 log 2). Then

(?) ≥ lim
t,n→∞

e−(ξk,N−κ)tExk,N [e
∫ t
0 ξ(Xs)ds ,X = γ]

≥ lim
t,n→∞

e−n/2 log(n log 2/κ)e−ξ1,N/(2 log 2)e(ξ1,N−ξk,N)t =∞
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Thanks!


