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» n-dimensional hypercube H, = {0,1}" with volume N = 2"
— a model for nucleotide sequences of the genome

» Random environment consists of
iid. &(x) ~exp(l), for x € H,

— represents the 'fitness landscape’
» Branching random walk on H, evolves as follows:

» each particle jumps at rate  to a uniformly chosen neighbour
> a particle at x splits into two particles at rate £(x)

— models the evolution of the population
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The random environment and the objective

We are interested in, given the environment &,
Ex v[# particles alive at time t] ~ 7 as t,n— oo
where x; y is site with the kth highest branching rate, defined via
Einvi=Exan) > > v = E(xwn)

Note, as n — oo,
> & ~ log(N) = nlog?
» for any fixed k, &1, v — kv = const.
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The result on the complete graph
Branching random walk on the complete graph with N vertices
» each particle jumps at rate x to a uniformly chosen vertex
» a particle at x splits into two particles at rate £(x)
Theorem (Fleischmann, Molchanov, '90)
Write Ny = # particles alive at time t.
(i) ifk=1or ifk>2and t < logN,

EXk,N[Nt] ~ e)\k’Nta
(i) if k> 2 and t > logN,
Eq n[Nel ~ K[N(En — Eon)] et

where \i n Is the kth eigenvalue of kAN + Enlin.

> /\k,N = §k7/\/ — K+ I{/N + O(l/N).
> E n[Ne] = By, [exp{ [y £(Xs)ds}], where X = (X;)s>0 is
random walk on the complete graph.
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The result on the hypercube
Theorem (Avena, Giin, H., '14)

(i) If t < nlogn (= logN loglog N),
E [Ne] ~ elSn=t,
(i) Ift> nlogn,
log Exk,N[Nt] ~ log Ex ,[N:]

n2 _
and  Eg J[Ne] ~ eV it O

» t < nlogn: X stays at x y since

t
EXk,N[Nt] = ]Exk,N[eXp{/ f(Xs)dS};Xs = Xik,N S < t] = efknte™t
0

» nlogn < t < n?: X goes to x1,n and stays there
» n® <t < nd X goes to x1,n and then stays within dist. 1.



Bounds required for the phase transition

For k > 2, study

(*) o ||m EXk,N [efot g(Xs)dS, XS = Xl,N7 for some s S t]
t,n—00 EXk’N[efotf(Xs)ds; Xs = xk,n, forall s < t]

t
=, lim e_(fK”"_“)tEXk N[efo §(Xs)ds. x x1,n, for some s <t
,n—00 ’

and show that
» if t < nlogn, then (%)
» if t > nlogn, then (%)

<0
> 00



The lower bound for t > nlogn

Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)



The lower bound for t > nlogn
Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)

Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.

—

ny)
> Py (g0 to xi n in exactly n/2 steps) = n’27/)2
("‘5)'1/2 e hs

» P(make n/2 jumps by time s) = 6l




The lower bound for t > nlogn

Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)

Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.

> Py, v(80 to x n in exactly n/2 steps) =

—

Q)

» P(make n/2 jumps by time s) = (“5);,/2
Thus

(8)! (552
()

—KS

EXk’N[efotg(XS)ds’X — 7] >

e(é‘l,N_F"‘)(t_s)

3



The lower bound for t > nlogn

Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)

Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.

—

Q)

> Py, v(80 to x n in exactly n/2 steps) =

» P(make n/2 jumps by time s) = (“5);,/2e_”5
Thus

n n/2
[E(Xo)ds x (3! (58)" s _(ern—r)(t—
Exky,v[efo( )S’X_'y] > T2 (g)| e se(l,\, )(t—s)
e~ "/2108(n/(2r5)) g—E1,n5 o(§1,8—R)E



The lower bound for t > nlogn

Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)

Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.

—

Q)

> Py, v(80 to x n in exactly n/2 steps) =

» P(make n/2 jumps by time s) = (“5);,/2e_”5
Thus

n n/2
[E(Xo)ds x (3! (58)" s _(ern—r)(t—
Exky,v[efo( )S’X_'y] > T2 (g)| e se(l,\, )(t—s)
e~ "/2108(n/(2r5)) g—E1,n5 o(§1,8—R)E

and 'cost’ is minimised for s = 1/(2log 2).



The lower bound for t > nlogn
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Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.
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Note: d(xk,n,X1,n) ~ n/2, as n — oo (d is Hamming distance)

Let v be path that goes from x, y to xq y in exactly n/2 steps in
time s and stays at xq y up to time t.

—

Q)

> Py, v(80 to x n in exactly n/2 steps) =

» P(make n/2 jumps by time s) = (“5);,/2e_”5
Thus

n n/2
[E(Xo)ds x (3! (58)" s _(ern—r)(t—
Exky,v[efo( )S’X_'y] > T2 (g)| e se(l,\, )(t—s)
e~ "/2108(n/(2r5)) g—E1,n5 o(§1,8—R)E

and 'cost’ is minimised for s = 1/(2log?2). Then

—(Ekn—r)t Jo §(Xs)ds x
(x) > . Ll;noo e Ex v[€0 X =1]
> lim e~ /2 |°g(”|0g2/'€)e—§1,N/(2|0g2)e(51,/v—£k,/v)f -

t,n—o0



Thanks!



