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Problem statement (1)

T = (V, E, p) random rooted tree (in the graph theoretic sense), locally
finite. For p € (0, 1), define the random tree C,(T) by contracting each

edge in T with probability 1 — p. Contracting an edge means removing
it and identifying its head and tail.

Equivalent definition: V’ = set containing each vertex with probability p
(plus root). Construct tree on V' by preserving ancestral relationships.

Note: Resulting tree need not be locally finite (if the critical point p. of
edge percolation on the tree satisfies 1 — p > p¢)
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Problem statement (2)

Definition

We say that T is p-self-similarif T and C,(T) are equal in law (up to
graph isomorphisms fixing the root).
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Problem statement (2)

Definition

We say that T is p-self-similarif T and Cp(T) are equal in law (up to
graph isomorphisms fixing the root).

Characterize/construct all p-self-similar trees. I
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Related works

Large body of literature concerning dynamics on random trees:

@ Growth - construction of consistent families of uniform trees with n
leaves (Rémy (1985), Aldous (1991), Marchal (2008) ...)

@ Percolation on the edges: different perspective however - dynamic
of the component containing the root (Aldous and Pitman (1998),
Miermont (2005), Abraham and Delmas (2012)...)

@ Subtree pruning and regrafting (Evans and Winter (2006),...)
@ Percolation on the leaves (Duquesne and Winkel (2007), ...)
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Trivialities

Characterize/construct all p-self-similar trees.

Necessary conditions for T to be self-similar:
@ T isinfinite

@ Finite number of infinite rays, separating at root.
Trivial examples of p-self-similar trees: N, Ny ... u N
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Further examples.
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First example

Attach to each vertex of N a bouquet of edges, with independent
Geo(q) number of edges edges in each bouquet, g € (0, 1].

Relies on the claim: take F ~ Geo(p), and G; ~ Geo(q) independent,
the sum of F + 1 independent Binomial random variables with
parameters G; and p has law Gj.

F+1
Z B;'Y Gy, with B;iid Bin(Gi, p)

To find this: look for the stationary distribution of the continuous time
Markov process N

e N— N+ N atrate 1, with N/ an independent copy of N,
e N> N-1atrate N
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First example

Attach to each vertex of N a bouquet of edges, with independent
Geo(q) number of edges edges in each bouquet, g € (0, 1].

Relies on the claim: take F ~ Geo(p), and G; ~ Geo(q) independent,
the sum of F + 1 independent Binomial random variables with
parameters G; and p has law Gj.

F+1
Z B;'Y Gy, with B;iid Bin(Gi, p)

To check this:

@ Take two independent Poisson processes on the real line, with
intensity iy and i.

@ Number of points of the second before the first point of the first is
Geo(ir/(it + i2))-

@ Thin the two processes with the same parameter p.
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Real trees

A real tree is a geodesic metric space (V, d) “without cycles”.

Definition
An R-tree is a metric space 7 = (V, d) with the following properties:
@ ltis geodesically linear, i.e. for every x, y € V, there is a unique
isometry fy, : [0,d(x,y)] — V such that f ,(0) = x and
hy(d(x,y)) = .
© It is “without loops”, i.e. for every x,y € V, if r and g are
continuous injective maps from [0, 1] to V such that g(0) = x and
q(1) =y,and r(0) = x and r(1) = y, then q([0,1]) = r(]0, 1]).

The length measure on T = (V,d) is a o-finite measure ¢7 on V that
satisfies:

Va,beV:(r(]a bl) = d(a,b)
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Real trees

A real tree is a geodesic metric space (V, d) “without cycles”.

Definition
@ T: space of (equivalence classes of) measured, rooted, real,

locally compact trees T = (V, d, p) with a locally finite length
measure /.

@ T4 c ¥ the subspace where / is a probability measure.

We endow these trees with the Gromov—Hausdorff (GH) topology.

Note: Most prominent examples of real trees do not have a locally finite length
measure, e.g. Aldous’ (Brownian) continuum random tree.
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Rescaling /discretization.

We define two operations on the space ¥: rescaling and
discretization/Poissonian sampling.
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Rescaling /discretization.

We define two operations on the space ¥: rescaling and
discretization/Poissonian sampling.

Rescaling: For T = (V,d, p) € ¥ and p > 0, we define the rescaled tree
Sp(T) by
Sp(T) = (V, p-d, p).

Definition
We say a (random) tree 7 taking values in ¥ is p-self-similar, p € (0, 1),

if 7and Sp(7) are equal in law (up to measure-preserving isometries
fixing the root).
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Rescaling /discretization.

We define two operations on the space ¥: rescaling and
discretization/Poissonian sampling.

Discretization: For T = (V,d,p,u) € T, we define the discretized tree
D(T) as follows: Sample a random set of vertices Vy < V according to
a Poisson process with intensity /7. Then D(T) is the discrete tree with
the following properties:

@ The set of vertices is V = {p} U Vp,
@ For two vertices v,w e V,

VIpm W &< VT w

(v <7 wif v lies on geodesic between p and win T)
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Rescaling /discretization.

We define two operations on the space <: rescaling and
discretization/Poissonian sampling.

Forevery pe (0,1),

CooD =DoSp.
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Statement

tree T given by

If 7 e T is a random real p-self-similar tree, then the discrete random

T =D(T)
is p-self-similar again.

Proof is elementary:

CooD(T) =DoSp(T)="D(T)when T is p-self similar.
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Statement

tree T given by

If 7 e T is a random real p-self-similar tree, then the discrete random

T =D(T)
is p-self-similar again.

Proof is elementary:

CooD(T) =DoSp(T)="D(T)when T is p-self similar.

What about the converse? Is the bouquet example contained in this
example?

OLIVIER HENARD

= =
On trees invariant under edge contraction



Towards the converse

Iterating the contraction n times yields:

With . T is the embedding of the discrete tree T into the space of real
trees ¥ - just adding edge length 1 between two adjacent vertices:

Con(T) = D(Spn(eT)) w.h.p.

Then, find the appropriate subspace of the set of real trees in which
the sequence of rescaled real trees Syn (¢ T) is tight, and the map D is
continuous. Then, if 7 is a limit point,

T =D(T).
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Towards the converse

Now, we can devise the tree 7 associated with the bouquet example
(in which a Geo(q) number of edges is attached to each vertex of N). It
is a random real measured tree, that is the limit of the sequence of
rescaled (real) trees Spn(.T). If £ denotes the Lebesgue measure,

i1 —
T: (R+’dEUC|507 (1 + Tq) 6)

and we have to distinguish whether a point is sampled according to ¢
or 129 - £in the discretization.
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Towards the converse

Now, we can devise the tree 7 associated with the bouquet example
(in which a Geo(q) number of edges is attached to each vertex of N). It
is a random real measured tree, that is the limit of the sequence of
rescaled (real) trees Spn(.T). If £ denotes the Lebesgue measure,

i1 —
T: (R+’dEUC|507 (1 + Tq) 6)

and we have to distinguish whether a point is sampled according to ¢
or 129 - £in the discretization.

So we need to:
@ redefine the state space,
@ and the discretization operation on it.
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Characterization.
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Real trees

Definition
@ T: space of (equivalence classes of) measured, rooted, real,

locally compact trees T = (V, d, p, ;1) Where . is a locally finite
measure,

@ Ty c ¥ the subspace where p is a probability measure,
@ T c T and Tﬁ c ¥4 the subspaces where 1 > 47

We endow these trees with the Gromov—Hausdorf—Prokhorov
topology, which makes ¥ topologically complete (ADH13).
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Rescaling/Discretization

We re-define the discretization/Poissonian sampling in a consistent
way.

Rescaling: For T = (V,d,p, 1) € T¢ and p > 0, we define the rescaled
tree Sp(7T) by

Definition

We say a (random) tree 7 taking values in T¢ is p-self-similar,

pe (0,1),if 7 and Sp(T) are equal in law (up to measure-preserving
isometries fixing the root).

OLIVIER HENARD On trees invariant under edge contraction 15/26



Rescaling/Discretization

We re-define the discretization/Poissonian sampling in a consistent
way.

Discretization: For T = (V,d, p, 1) € ¢, we define the discretized tree
D(T) as follows: Sample two random (multi-)sets of vertices Vg, Vq <
V according to independent Poisson processes with intensity ¢ and

w — U1, respectively. Then D(T) is the discrete tree with the following
properties:

@ The set of verticesis V = {p} u Vp LU V4,
@ For two vertices v,w e V,

Vpm W < v<rwandve Vyu{p}

(v <7 wif v lies on geodesic between p and win T)
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Main result

Theorem
There exists a one-to-one correspondence between
@ random discrete p-self-similar trees T and
@ random real p-self-similar trees 7 taking values in T,
given by
T =D(T).
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Elements of the proof

@ We already explained how 7T arises as the limit of the sequence of
rescaled trees Spr (. T) in the GHP topology.

@ For the uniqueness, we rely on the injectivity of the discretization
map D which itself is a consequence of the Gromov-Vershik
characterization of measured metric spaces through their distance
matrix distribution

(Dij)i,jGN = (d()(n )(j))i,jEN

where Xi, X, ... are iid according to u.
@ Last, 7 inherits from T the self-similarity property:

Sp(T) = M Sprr(uT) = lim Spo(uT) = T.

n—aoo
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p-self-similar real trees
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Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar
process. Ingredients:

@ A random real tree Ty taking values in T¢.

@ A real-valued process (X(t); t > 0), which is increasing,
pure-jump and satisfies

(X(pt);t = 0)'2 (pX(t);t = 0).
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Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar
process. Ingredients:

@ A random real tree Ty taking values in T¢.

@ A real-valued process (X(t); t > 0), which is increasing,
pure-jump and satisfies

(X(pt);t = 0)'2 (pX(t);t = 0).

Construct a p-self-similar real tree as follows:
@ Start with an infinite ray (the spine).

@ For each jump time t of the process X, take an independent copy

T( ) of To, and attach its rescaling Sx()—x(: (75 ) to the spine at
dlstance t from the root.
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees

T = (V,d, p, u) which are translation invariant (in law) along the spine?
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees
T = (V,d, p, u) which are translation invariant (in law) along the spine?

Denote by v; the spine vertex at distance t from the root and by V<!
the subset of vertices which are not descendants of v;. Define the
mass process (X(t);t = 0) by X(t) = u(V<s?). Then (X(t);t = 0)is a
real-valued, increasing, stochastic process with stationary increments
satisfying,

(X(pt);t=0)'2 (pX(t);t > 0).
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Translation invariant trees

Can one construct examples of one-ended p-self-similar trees
T = (V,d, p, u) which are translation invariant (in law) along the spine?

Denote by v; the spine vertex at distance t from the root and by V<!
the subset of vertices which are not descendants of v;. Define the
mass process (X(t);t = 0) by X(t) = u(V<s?). Then (X(t);t = 0)is a
real-valued, increasing, stochastic process with stationary increments
satisfying,

(X(pt); t = 0) = (pX(t);t > 0).

Theorem (basically Vervaat (1985))

Let (X(t);t > 0) be a process as above. Then, almost surely, for every
t>0, X(t) = X(1)t.
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Almost surely, for every t > 0, X(t) = X(1)t

?

«O>» «F»r « > < » ) Q



Translation invariant trees (2)

Theorem (basically Vervaat (1985))
Almost surely, for every t = 0, X(t) = X(1)t.

Corollary

A random, one-ended tree T taking values in T¢, which is translation
invariant along the spine, is p-self-similar if and only if

T = (R4, deye,0,Y - ¢), Y > 1 arandom variable.
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Translation invariant trees (2)

Theorem (basically Vervaat (1985))
Almost surely, for every t = 0, X(t) = X(1)t.

Corollary

A random, one-ended tree T taking values in T¢, which is translation
invariant along the spine, is p-self-similar if and only if

T = (R4, deye,0,Y - ¢), Y > 1 arandom variable.

o

The unique random, one-ended, translation invariant and p-self-similar
discrete tree T is the bouquet example.

v,
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A generalization

To get more interesting examples, generalize the contraction and
rescaling operations Cp and Sp: Let p,q e (0,1).
@ Cpq: Defined as Cp, but vertices on the spine are retained with
probability g.

@ Sp 4: Defined as Sp, but distances on the spine are rescaled by g
instead of p.
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A generalization

To get more interesting examples, generalize the contraction and
rescaling operations Cp and Sp: Let p,q e (0,1).

@ Cpq: Defined as Cp, but vertices on the spine are retained with
probability g.

@ Sp 4: Defined as Sp, but distances on the spine are rescaled by g
instead of p.

Definition

A random (discrete) T is (p, q)-self-similarif T'E Cp q(T).
A random (real) tree T is (p, q)-self-similarif T'2' S, (T).
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A generalization

To get more interesting examples, generalize the contraction and
rescaling operations Cp and Sp: Let p,q e (0,1).

@ Cpq: Defined as Cp, but vertices on the spine are retained with
probability g.

@ Sp 4: Defined as Sp, but distances on the spine are rescaled by g
instead of p.

Definition
law

A random (discrete) T is (p, q)-self-similarif T = Cp o(T).
A random (real) tree T is (p, q)-self-similarif T'2' S, (T).

The characterization holds with p-self-similar replaced by
(p, q)-self-similar.
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The iid case

In the translation invariant case, many examples can be constructed
when g > p. Let us consider the case where the subtrees along the
spine are iid. Write the (discrete) tree Tas T = (T°, T',...), where T"
is the subtree of the n-th vertex on the spine. We construct a

(p, q)-self-similar tree where T°, T', ... are iid. The ingredients are the
following:

OLIVIER HENARD On trees invariant under edge contraction 23/26



The iid case

In the translation invariant case, many examples can be constructed
when g > p. Let us consider the case where the subtrees along the
spine are iid. Write the (discrete) tree Tas T = (T°, T',...), where T"
is the subtree of the n-th vertex on the spine. We construct a

(p, q)-self-similar tree where T°, T', ... are iid. The ingredients are the
following:

® (7n=o: an iid sequence of trees in T
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The iid case

In the translation invariant case, many examples can be constructed
when g > p. Let us consider the case where the subtrees along the
spine are iid. Write the (discrete) tree Tas T = (T°, T',...), where T"
is the subtree of the n-th vertex on the spine. We construct a

(p, q)-self-similar tree where T°, T', ... are iid. The ingredients are the

following:
® (7n=o: an iid sequence of trees in T

@ v: a quasi-stationary distribution with eigenvalue q of the
Galton—Watson process (Z,; n > 0) with offspring distribution
po=1—p, p1 = p. Thatis, v satisfies

VvneN:P,(Zpe-|Z,>0)=v and P,(Z; >0)=gq.
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The iid case

In the translation invariant case, many examples can be constructed
when g > p. Let us consider the case where the subtrees along the
spine are iid. Write the (discrete) tree Tas T = (T°, T',...), where T"
is the subtree of the n-th vertex on the spine. We construct a

(p, q)-self-similar tree where T°, T', ... are iid. The ingredients are the
following:

® (7n=o: an iid sequence of trees in T

@ v: a quasi-stationary distribution with eigenvalue q of the
Galton—Watson process (Z,; n > 0) with offspring distribution
po=1—p, p1 = p. Thatis, v satisfies

VvneN:P,(Zpe-|Z,>0)=v and P,(Z; >0)=gq.

@ Aconstantce (0,1].
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The iid case (2)

@ (7,")n=0: an iid sequence of trees in ‘Eﬁ

@ v: a quasi-stationary distribution with eigenvalue g of the GW process
with offspring distribution pp = 1 — p, p1 = p.

@ ce (0,1].
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The iid case (2)

@ (7,")n=0: an iid sequence of trees in ‘Sﬁ

@ v: a quasi-stationary distribution with eigenvalue g of the GW process
with offspring distribution pp = 1 — p, p1 = p.

@ ce (0,1].

Constructtree T = (T°, T',...), where T°, T, ... are iid according to
the following law:

7O is the union of a Geo(c)-distributed number of iid trees T’, where

T2 D(T5,N), N~

Here, D(To, m) is the tree D(7y) cond’ed on having m vertices (plus root).
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The iid case (2)

@ (7,")n=0: an iid sequence of trees in ‘Sﬁ

@ v: a quasi-stationary distribution with eigenvalue g of the GW process
with offspring distribution pp = 1 — p, p1 = p.

@ ce (0,1].

Constructtree T = (T°, T',...), where T°, T, ... are iid according to
the following law:

7O is the union of a Geo(c)-distributed number of iid trees T’, where

T2 D(T5,N), N~

Here, D(To, m) is the tree D(7y) cond’ed on having m vertices (plus root).

"Theorem”: This example (almost) covers all cases.
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Conclusion

@ We characterized all (p, g)-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.
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Conclusion

@ We characterized all (p, g)-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.

@ We constructed several classes of examples of such trees.
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Conclusion

@ We characterized all (p, g)-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.

@ We constructed several classes of examples of such trees.

@ The limiting real trees have a locally finite finite length measure.
As a consequence, the (p, q)-self-similar trees are rather
elongated, very different from Galton—Watson trees (for example).
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Conclusion

@ We characterized all (p, g)-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.

@ We constructed several classes of examples of such trees.

@ The limiting real trees have a locally finite finite length measure.
As a consequence, the (p, q)-self-similar trees are rather
elongated, very different from Galton—Watson trees (for example).

@ Usually in the literature, operations on trees act on the /eaves of
the trees or on whole subtrees, not on single internal vertices.
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Thanks.
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