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Problem statement (1)

T � pV ,E , ρq random rooted tree (in the graph theoretic sense), locally
finite. For p P p0,1q, define the random tree CppT q by contracting each
edge in T with probability 1� p. Contracting an edge means removing
it and identifying its head and tail.

Equivalent definition: V 1 � set containing each vertex with probability p
(plus root). Construct tree on V 1 by preserving ancestral relationships.

Note: Resulting tree need not be locally finite (if the critical point pc of
edge percolation on the tree satisfies 1� p ¡ pc)
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Problem statement (2)

Definition
We say that T is p-self-similar if T and CppT q are equal in law (up to
graph isomorphisms fixing the root).

Problem
Characterize/construct all p-self-similar trees.
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Related works

Large body of literature concerning dynamics on random trees:
Growth - construction of consistent families of uniform trees with n
leaves (Rémy (1985), Aldous (1991), Marchal (2008) ...)
Percolation on the edges: different perspective however - dynamic
of the component containing the root (Aldous and Pitman (1998),
Miermont (2005), Abraham and Delmas (2012)...)
Subtree pruning and regrafting (Evans and Winter (2006),...)
Percolation on the leaves (Duquesne and Winkel (2007), ...)
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Trivialities

Problem
Characterize/construct all p-self-similar trees.

Necessary conditions for T to be self-similar:
T is infinite
Finite number of infinite rays, separating at root.

Trivial examples of p-self-similar trees: N, N\ . . .\ N.
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Further examples.
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First example

Bouquet example
Attach to each vertex of N a bouquet of edges, with independent
Geopqq number of edges edges in each bouquet, q P p0,1s.

Relies on the claim: take F � Geoppq, and Gi � Geopqq independent,
the sum of F � 1 independent Binomial random variables with
parameters Gi and p has law G1.

F�1̧

i�1

Bi
pdq
� G1, with Bi iid BinpGi ,pq

To find this: look for the stationary distribution of the continuous time
Markov process N

N Ñ N � N 1 at rate 1, with N 1 an independent copy of N,
N Ñ N � 1 at rate N
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the sum of F � 1 independent Binomial random variables with
parameters Gi and p has law G1.

F�1̧

i�1

Bi
pdq
� G1, with Bi iid BinpGi ,pq

To check this:
Take two independent Poisson processes on the real line, with
intensity i1 and i2.
Number of points of the second before the first point of the first is
Geopi1{pi1 � i2qq.
Thin the two processes with the same parameter p.
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Real trees

A real tree is a geodesic metric space pV,dq “without cycles”.

Definition
An R-tree is a metric space T � pV,dq with the following properties:

1 It is geodesically linear, i.e. for every x , y P V, there is a unique
isometry fx ,y : r0,dpx , yqs Ñ V such that fx ,y p0q � x and
fx ,y pdpx , yqq � y .

2 It is “without loops”, i.e. for every x , y P V, if r and q are
continuous injective maps from r0,1s to V such that qp0q � x and
qp1q � y , and rp0q � x and rp1q � y , then qpr0,1sq � rpr0,1sq.

The length measure on T � pV,dq is a σ-finite measure `T on V that
satisfies:

@a,b P V : `T psa,brq � dpa,bq
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Real trees

A real tree is a geodesic metric space pV,dq “without cycles”.

Definition
T: space of (equivalence classes of) measured, rooted, real,
locally compact trees T � pV,d , ρq with a locally finite length
measure `.
T1 � T the subspace where ` is a probability measure.

We endow these trees with the Gromov–Hausdorff (GH) topology.

Note: Most prominent examples of real trees do not have a locally finite length
measure, e.g. Aldous’ (Brownian) continuum random tree.
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Rescaling /discretization.

We define two operations on the space T: rescaling and
discretization/Poissonian sampling.
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Rescaling /discretization.

We define two operations on the space T: rescaling and
discretization/Poissonian sampling.

Rescaling: For T � pV,d , ρq P T and p ¡ 0, we define the rescaled tree
SppT q by

SppT q � pV, p � d , ρq.

Definition
We say a (random) tree T taking values in T is p-self-similar, p P p0,1q,
if T and SppT q are equal in law (up to measure-preserving isometries
fixing the root).
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Rescaling /discretization.

We define two operations on the space T: rescaling and
discretization/Poissonian sampling.

Discretization: For T � pV,d , ρ, µq P T, we define the discretized tree
DpT q as follows: Sample a random set of vertices V0 � V according to
a Poisson process with intensity `T . Then DpT q is the discrete tree with
the following properties:

The set of vertices is V � tρu Y V0,
For two vertices v ,w P V ,

v ¨DpT q w ðñ v ¨T w .

(v ¨T w if v lies on geodesic between ρ and w in T )
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Rescaling /discretization.

We define two operations on the space T: rescaling and
discretization/Poissonian sampling.

Commutation relation
For every p P p0,1q,

Cp �D � D � Sp.
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Statement

Second example
If T P T is a random real p-self-similar tree, then the discrete random
tree T given by

T � DpT q

is p-self-similar again.

Proof is elementary:

Cp �DpT q � D � SppT q � DpT q when T is p-self similar.

What about the converse? Is the bouquet example contained in this
example?
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Towards the converse

Iterating the contraction n times yields:

T � CppT q � Cp � . . . CppT q � CpnpT q.

With ιT is the embedding of the discrete tree T into the space of real
trees T - just adding edge length 1 between two adjacent vertices:

CpnpT q � DpSpnpιT qq w.h.p.

Then, find the appropriate subspace of the set of real trees in which
the sequence of rescaled real trees SpnpιT q is tight, and the map D is
continuous. Then, if T is a limit point,

T � DpT q.
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Towards the converse

Now, we can devise the tree T associated with the bouquet example
(in which a Geo(q) number of edges is attached to each vertex of N). It
is a random real measured tree, that is the limit of the sequence of
rescaled (real) trees SpnpιT q. If ` denotes the Lebesgue measure,

T � pR�,dEucl,0,
�
1�

1� q
q

�
� `q.

and we have to distinguish whether a point is sampled according to `
or 1�q

q � ` in the discretization.

So we need to:
redefine the state space,
and the discretization operation on it.
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Characterization.

OLIVIER HÉNARD On trees invariant under edge contraction 13 / 26



Real trees

Definition
T: space of (equivalence classes of) measured, rooted, real,
locally compact trees T � pV,d , ρ, µq where µ is a locally finite
measure,
T1 � T the subspace where µ is a probability measure,
T` � T and T`1 � T1 the subspaces where µ ¥ `T .

We endow these trees with the Gromov–Hausdorff–Prokhorov
topology, which makes T topologically complete (ADH13).

OLIVIER HÉNARD On trees invariant under edge contraction 14 / 26



Rescaling/Discretization

We re-define the discretization/Poissonian sampling in a consistent
way.
Rescaling: For T � pV,d , ρ, µq P T` and p ¡ 0, we define the rescaled
tree SppT q by

SppT q � pV, p � d , ρ, p � µq.

Definition

We say a (random) tree T taking values in T` is p-self-similar,
p P p0,1q, if T and SppT q are equal in law (up to measure-preserving
isometries fixing the root).
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Rescaling/Discretization

We re-define the discretization/Poissonian sampling in a consistent
way.
Discretization: For T � pV,d , ρ, µq P T`, we define the discretized tree
DpT q as follows: Sample two random (multi-)sets of vertices V0,V1 �
V according to independent Poisson processes with intensity `T and
µ � `T , respectively. Then DpT q is the discrete tree with the following
properties:

The set of vertices is V � tρu Y V0 Y V1,
For two vertices v ,w P V ,

v ¨DpT q w ðñ v ¨T w and v P V0 Y tρu.

(v ¨T w if v lies on geodesic between ρ and w in T )
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Main result

Theorem
There exists a one-to-one correspondence between

random discrete p-self-similar trees T and
random real p-self-similar trees T taking values in T`,

given by
T � DpT q.
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Elements of the proof

We already explained how T arises as the limit of the sequence of
rescaled trees SpnpιT q in the GHP topology.
For the uniqueness, we rely on the injectivity of the discretization
map D which itself is a consequence of the Gromov-Vershik
characterization of measured metric spaces through their distance
matrix distribution

pDijqi,jPN � pdpXi ,Xjqqi,jPN

where X1,X2, . . . are iid according to µ.
Last, T inherits from T the self-similarity property:

SppT q � lim
nÑ8

Spn�1pιT q � lim
nÑ8

SpnpιT q � T .
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p-self-similar real trees
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Examples of p-self-similar real trees

Construction through subordination of a real-valued self-similar
process. Ingredients:

1 A random real tree T0 taking values in T`1.
2 A real-valued process pX ptq; t ¥ 0q, which is increasing,

pure-jump and satisfies

pX pptq; t ¥ 0q law
� pp X ptq; t ¥ 0q.

Construct a p-self-similar real tree as follows:
Start with an infinite ray (the spine).
For each jump time t of the process X , take an independent copy
T ptq

0 of T0, and attach its rescaling SXptq�Xpt�qpT
ptq

0 q to the spine at
distance t from the root.
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Translation invariant trees

Question
Can one construct examples of one-ended p-self-similar trees
T � pV,d , ρ, µq which are translation invariant (in law) along the spine?

Denote by vt the spine vertex at distance t from the root and by V¤t

the subset of vertices which are not descendants of vt . Define the
mass process pX ptq; t ¥ 0q by X ptq � µpV¤tq. Then pX ptq; t ¥ 0q is a
real-valued, increasing, stochastic process with stationary increments
satisfying,

pX pptq; t ¥ 0q law
� pp X ptq; t ¥ 0q.

Theorem (basically Vervaat (1985))

Let pX ptq; t ¥ 0q be a process as above. Then, almost surely, for every
t ¥ 0, X ptq � X p1q t .
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Translation invariant trees (2)

Theorem (basically Vervaat (1985))

Almost surely, for every t ¥ 0, X ptq � X p1qt .

Corollary

A random, one-ended tree T taking values in T`, which is translation
invariant along the spine, is p-self-similar if and only if

T � pR�,dEucl,0,Y � `q, Y ¥ 1 a random variable.

Corollary
The unique random, one-ended, translation invariant and p-self-similar
discrete tree T is the bouquet example.
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A generalization

To get more interesting examples, generalize the contraction and
rescaling operations Cp and Sp: Let p,q P p0,1q.

Cp,q: Defined as Cp, but vertices on the spine are retained with
probability q.
Sp,q: Defined as Sp, but distances on the spine are rescaled by q
instead of p.

Definition

A random (discrete) T is pp,qq-self-similar if T law
� Cp,qpT q.

A random (real) tree T is pp,qq-self-similar if T law
� Sp,qpT q.

The characterization holds with p-self-similar replaced by
pp,qq-self-similar.
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The iid case

In the translation invariant case, many examples can be constructed
when q ¡ p. Let us consider the case where the subtrees along the
spine are iid. Write the (discrete) tree T as T � pT 0,T 1, . . .q, where T n

is the subtree of the n-th vertex on the spine. We construct a
pp,qq-self-similar tree where T 0,T 1, . . . are iid. The ingredients are the
following:

pT n
0 qn¥0: an iid sequence of trees in T`1

ν: a quasi-stationary distribution with eigenvalue q of the
Galton–Watson process pZn;n ¥ 0q with offspring distribution
p0 � 1� p, p1 � p. That is, ν satisfies

@n P N : PνpZn P � |Zn ¡ 0q � ν and PνpZ1 ¡ 0q � q.

A constant c P p0,1s.
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The iid case (2)

pT n
0 qn¥0: an iid sequence of trees in T`

1

ν: a quasi-stationary distribution with eigenvalue q of the GW process
with offspring distribution p0 � 1 � p, p1 � p.

c P p0,1s.

Construct tree T � pT 0,T 1, . . .q, where T 0,T 1, . . . are iid according to
the following law:

T 0 is the union of a Geo(c)-distributed number of iid trees T 1, where

T 1 law
� DpT0,Nq, N � ν.

Here, DpT0,mq is the tree DpT0q cond’ed on having m vertices (plus root).

”Theorem”: This example (almost) covers all cases.
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Conclusion

We characterized all pp,qq-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.

We constructed several classes of examples of such trees.
The limiting real trees have a locally finite finite length measure.
As a consequence, the pp,qq-self-similar trees are rather
elongated, very different from Galton–Watson trees (for example).
Usually in the literature, operations on trees act on the leaves of
the trees or on whole subtrees, not on single internal vertices.

OLIVIER HÉNARD On trees invariant under edge contraction 25 / 26



Conclusion

We characterized all pp,qq-self-similar trees in terms of certain
(measured) real trees satisfying a simple (multiplicative)
self-similarity property; these real trees arise as scaling limits of
these trees.
We constructed several classes of examples of such trees.

The limiting real trees have a locally finite finite length measure.
As a consequence, the pp,qq-self-similar trees are rather
elongated, very different from Galton–Watson trees (for example).
Usually in the literature, operations on trees act on the leaves of
the trees or on whole subtrees, not on single internal vertices.
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OLIVIER HÉNARD On trees invariant under edge contraction 25 / 26



Thanks.
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