
Paris-Bath branching structures meeting, June 2014

The scaling limit of the
minimum spanning tree of the

complete graph

Christina Goldschmidt
University of Oxford

Joint work with Louigi Addario-Berry (McGill), Nicolas Broutin
(INRIA Rocquencourt) and Grégory Miermont (ENS Lyon).

Minimum spanning trees

Suppose that G = (V (G),E (G)) is a finite connected graph. To
each edge e ∈ E (G), associate a positive weight w(e).

Problem: find the connected subgraph T of G which has the
same vertex set as G and minimises∑

e∈E(T)

w(e).

Since the weights are positive, the minimum is necessarily attained
by a tree. If the weights are all distinct, this tree is unique and is
the so-called minimum spanning tree (MST).

2.7

0.9

1.2

1.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Three algorithms

There are three commonly-used algorithms for finding the MST of
a graph:

I Kruskal’s algorithm

I Prim’s algorithm

I Cycle-breaking (reverse Kruskal) algorithm.

Three algorithms

There are three commonly-used algorithms for finding the MST of
a graph:

I Kruskal’s algorithm

I Prim’s algorithm

I Cycle-breaking (reverse Kruskal) algorithm.

Kruskal’s algorithm

I Start from a forest of isolated vertices. List the edges as
e1, e2, . . . in increasing order of weight.

I At step i , add edge ei as long as it does not create a cycle.

I Stop when all vertices are connected.

At every stage, we have a forest.

Kruskal’s algorithm

2.7

0.9

1.2

1.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

Kruskal’s algorithm

2.3

1.2

2.1

3.4

5.3

3.6

6.7

1.3

0.9

Kruskal’s algorithm

2.3

1.2

2.1

3.4

5.3

3.6

6.7

1.3

0.9

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

3.6

6.7

1.3

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

3.6

6.7

1.3

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

6.7

1.3

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

6.7

1.3

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

6.7

1.3

Kruskal’s algorithm

2.3

0.9

1.2

2.1

5.3

1.3

Kruskal’s algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Cycle-breaking algorithm

I Start with all edges present. List the edges as e1, e2, . . . in
decreasing order of weight.

I At step i , remove ei as long as it does not disconnect the
graph (i.e. as long as it lies in a cycle).

I Stop when no cycles remain.

Cycle-breaking algorithm

2.7

0.9

1.2

1.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

Cycle-breaking algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

Cycle-breaking algorithm

2.7

1.7

2.1

3.4

5.3

3.6

1.3

2.3

0.9

1.2

Cycle-breaking algorithm

2.7

1.7

2.1

3.4

5.3

3.6

1.3

2.3

0.9

1.2

Cycle-breaking algorithm

2.7

1.7

2.1

3.4

5.3

3.6

1.3

2.3

0.9

1.2

Cycle-breaking algorithm

2.7

1.7

2.1

3.4

5.3

3.6

1.3

2.3

0.9

1.2

Cycle-breaking algorithm

2.7

1.2

1.7

2.1

3.4

5.3

1.3

2.3

0.9

Cycle-breaking algorithm

2.7

1.2

1.7

2.1

3.4

5.3

1.3

2.3

0.9

Cycle-breaking algorithm

2.7

0.9

1.2

1.7

2.1

5.3

1.3

2.3

Cycle-breaking algorithm

2.7

0.9

1.2

1.7

2.1

5.3

1.3

2.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

1.7

2.1

5.3

1.3

Cycle-breaking algorithm

2.3

0.9

1.2

2.1

5.3

1.3

Cycle-breaking algorithm

2.7

2.1

3.4

5.3

3.6

6.7

1.3

2.3

0.9

1.2

1.7

The minimum spanning tree of the complete graph
Consider the complete graph on n vertices with independent
edge-weights which are uniformly distributed on [0, 1].

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24
0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

The minimum spanning tree of the complete graph

Consider the complete graph on n vertices with independent
edge-weights which are uniformly distributed on [0, 1].

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24

0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

Question (Aldous (1990))

Does the MST of the complete graph on n vertices possess a
scaling limit?

[Picture by Louigi Addario-Berry]

Graphs as metric spaces

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24

0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

We don’t really care about the vertex labels or the weights.

Fill up
some space so that it fits.

Graphs as metric spaces

So we will think of the tree as a metric space using the graph
distance for the metric.

We will also want to be able to pick points
uniformly at random from the tree, so we equip it with the uniform
measure (call this a measured metric space).

Graphs as metric spaces

So we will think of the tree as a metric space using the graph
distance for the metric. We will also want to be able to pick points
uniformly at random from the tree, so we equip it with the uniform
measure (call this a measured metric space).

An easier scaling limit: the uniform spanning tree

Suppose that instead we consider Tn, the uniform spanning tree
(UST) of the complete graph on n vertices.

(This is simply the
uniform random tree on n vertices.)

Again, think of Tn as a measured metric space by using the graph
distance and assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

An easier scaling limit: the uniform spanning tree

Suppose that instead we consider Tn, the uniform spanning tree
(UST) of the complete graph on n vertices. (This is simply the
uniform random tree on n vertices.)

Again, think of Tn as a measured metric space by using the graph
distance and assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

An easier scaling limit: the uniform spanning tree

Suppose that instead we consider Tn, the uniform spanning tree
(UST) of the complete graph on n vertices. (This is simply the
uniform random tree on n vertices.)

Again, think of Tn as a measured metric space by using the graph
distance and assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

An easier scaling limit: the uniform spanning tree

Suppose that instead we consider Tn, the uniform spanning tree
(UST) of the complete graph on n vertices. (This is simply the
uniform random tree on n vertices.)

Again, think of Tn as a measured metric space by using the graph
distance and assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

Real trees from excursions

Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1).

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together...

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together to get a tree.

Real trees from excursions

Now put glue on the underside of the excursion and push the two
sides together to get a real tree.

The Brownian CRT

[Picture by Grégory Miermont]

The Brownian continuum random tree T is the random real tree
we obtain by doing this gluing procedure to the function 2e, where
(e(x), 0 ≤ x ≤ 1) a standard Brownian excursion.

Properties of the Brownian CRT

Since local minima of e are a.s. unique, T is binary.

T comes naturally equipped with a uniform measure µ, which is
the probability measure induced on T from the Lebesgue measure
on [0, 1]. µ is concentrated on the leaves of the tree.

Properties of the Brownian CRT

Since local minima of e are a.s. unique, T is binary.

T comes naturally equipped with a uniform measure µ, which is
the probability measure induced on T from the Lebesgue measure
on [0, 1]. µ is concentrated on the leaves of the tree.

The scaling limit of the UST

Consider Tn, the UST of the complete graph on n vertices. Think
of Tn as a measured metric space by using the graph distance and
assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

The distance between measured metric spaces
Suppose that (X , d , µ) and (X ′, d ′, µ′) are measured metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

The distance between measured metric spaces
Suppose that (X , d , µ) and (X ′, d ′, µ′) are measured metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

The distance between measured metric spaces
Suppose that (X , d , µ) and (X ′, d ′, µ′) are measured metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

Measuring the distance between measured metric spaces

(X , d , µ) and (X ′, d ′, µ′) are close in the
Gromov-Hausdorff-Prokhorov distance if:

We can find a correspondence R between X and X ′ and a measure
π on X × X ′ in such a way that

I R has small distortion (i.e. d(x , y) and d ′(x ′, y ′) are close
whenever x ∈ X corresponds to x ′ ∈ X ′ and y ∈ X
corresponds to y ′ ∈ X ′);

I π is almost a coupling of µ and µ′;
I π(Rc) is small.

Measuring the distance between measured metric spaces

(X , d , µ) and (X ′, d ′, µ′) are close in the
Gromov-Hausdorff-Prokhorov distance if:

We can find a correspondence R between X and X ′ and a measure
π on X × X ′ in such a way that

I R has small distortion (i.e. d(x , y) and d ′(x ′, y ′) are close
whenever x ∈ X corresponds to x ′ ∈ X ′ and y ∈ X
corresponds to y ′ ∈ X ′);

I π is almost a coupling of µ and µ′;
I π(Rc) is small.

Measuring the distance between measured metric spaces

(X , d , µ) and (X ′, d ′, µ′) are close in the
Gromov-Hausdorff-Prokhorov distance if:

We can find a correspondence R between X and X ′ and a measure
π on X × X ′ in such a way that

I R has small distortion (i.e. d(x , y) and d ′(x ′, y ′) are close
whenever x ∈ X corresponds to x ′ ∈ X ′ and y ∈ X
corresponds to y ′ ∈ X ′);

I π is almost a coupling of µ and µ′;

I π(Rc) is small.

Measuring the distance between measured metric spaces

(X , d , µ) and (X ′, d ′, µ′) are close in the
Gromov-Hausdorff-Prokhorov distance if:

We can find a correspondence R between X and X ′ and a measure
π on X × X ′ in such a way that

I R has small distortion (i.e. d(x , y) and d ′(x ′, y ′) are close
whenever x ∈ X corresponds to x ′ ∈ X ′ and y ∈ X
corresponds to y ′ ∈ X ′);

I π is almost a coupling of µ and µ′;
I π(Rc) is small.

The scaling limit of the UST

Consider Tn, the UST of the complete graph on n vertices. Think
of Tn as a measured metric space by using the graph distance and
assigning each vertex weight 1/n.

Theorem. (Aldous (1993); Le Gall (2006)) As n→∞,

1√
n
Tn

d→ T ,

in the sense of the Gromov-Hausdorff-Prokohorov distance dGHP

between compact measured metric spaces, where T is the
Brownian continuum random tree.

Back to the original question: what about the MST?

0.11

0.41

0.23

1

2

3

4

5

6

0.01

0.94

0.49

0.24

0.32

0.69

0.18

0.03

0.36

0.95

0.16

0.57

Does the MST of the complete graph on n vertices possess a
scaling limit?

Hold on, isn’t it the same?!

desired subset Tn. By symmetry, the probability for any star shaped MST to occur is thus

48/720. Yet, 48/720 = 1/15 > 1/16. We have thereby shown that star shaped trees are

more likely to occur than trees for which all vertices lie in a row.

Figure 4: A unniform random tree (left) and a minimum spanning tree (right) on 3000 vertices

This proof as well as its empirical illustration correspond to the fact that the distances on

minimum spanning trees, as n → ∞, grow by a factor of n1/3, whereas the distances on

uniform random trees grow faster, by a factor of n1/2. Roughly speaking, uniform random

trees tend to be more stretched than minimum spanning trees. This is also illustrated in

Figure 4.

2.3 Illustration of Theoretical Results for Uniform Random Trees

Consider a uniform random tree on n vertices, labelled {1, 2, · · · , n}. As n approaches

infinity and distances of the tree are rescaled by n−1/2, the tree converges to the so-called

Brownian Continuum Random Tree. It satisfies the following conditions [2]:

1. the reduced tree on k randomly chosen vertices is a binary tree with all chosen ver-

tices on the leaves (almost surely). The tree shape of the k-reduced tree is uniformly

distributed on the set of binary trees with k labelled leaves,

2. the 2k − 3 segmental lengths of the reduced tree follow a joint probability distribu-

9

a UST on 3000 vertices an MST on 3000 vertices

[Pictures by Karl-Friedrich Israel]

The scaling limit of the MST

Let Mn be the MST of the complete graph on n vertices,
considered as a metric space using the graph distance, and
endowed with the uniform measure on its vertices.

Theorem. (Addario-Berry, Broutin, G. & Miermont) There exists
a random compact measured metric space M such that

1

n1/3
Mn

d→M

as n→∞, in the sense of dGHP.

The key to understanding this result is a connection to the
Erdős-Rényi random graph.

The scaling limit of the MST

Let Mn be the MST of the complete graph on n vertices,
considered as a metric space using the graph distance, and
endowed with the uniform measure on its vertices.

Theorem. (Addario-Berry, Broutin, G. & Miermont) There exists
a random compact measured metric space M such that

1

n1/3
Mn

d→M

as n→∞, in the sense of dGHP.

The key to understanding this result is a connection to the
Erdős-Rényi random graph.

Reminder: the Erdős-Rényi random graph

Take n vertices labelled by {1, 2, . . . , n} and put an edge between
any pair independently with probability p. Call the resulting model
G(n, p). (Bond percolation on the complete graph.)

Example: n = 10, p = 0.4 (vertex labels omitted).

The Erdős-Rényi random graph process

Take the obvious coupling of (G(n, p), p ∈ [0, 1]): simply assign
each edge e an independent random edge-weight W (e) with
uniform distribution on [0, 1] and keep all edges with weight
W (e) ≤ p.

It’s then natural to think of p as a time and the evolving graph as
a process.

The Erdős-Rényi random graph process

Take the obvious coupling of (G(n, p), p ∈ [0, 1]): simply assign
each edge e an independent random edge-weight W (e) with
uniform distribution on [0, 1] and keep all edges with weight
W (e) ≤ p.

It’s then natural to think of p as a time and the evolving graph as
a process.

Kruskal and Erdős-Rényi

By using the same weights, we can think of (a continuous-time
version of) Kruskal’s algorithm as “sitting inside” the Erdős-Rényi
process: we call this the Kruskal process. When an edge appears in
the Erdős-Rényi process, it gets included in the Kruskal process as
long as it doesn’t create a cycle.

In particular, the components in both processes (which are all trees
in the case of Kruskal) have the same vertex-sets.

Indeed, the Kruskal components are the MST’s of the Erdős-Rényi
components.

Kruskal and Erdős-Rényi

By using the same weights, we can think of (a continuous-time
version of) Kruskal’s algorithm as “sitting inside” the Erdős-Rényi
process: we call this the Kruskal process. When an edge appears in
the Erdős-Rényi process, it gets included in the Kruskal process as
long as it doesn’t create a cycle.

In particular, the components in both processes (which are all trees
in the case of Kruskal) have the same vertex-sets.

Indeed, the Kruskal components are the MST’s of the Erdős-Rényi
components.

Kruskal and Erdős-Rényi

By using the same weights, we can think of (a continuous-time
version of) Kruskal’s algorithm as “sitting inside” the Erdős-Rényi
process: we call this the Kruskal process. When an edge appears in
the Erdős-Rényi process, it gets included in the Kruskal process as
long as it doesn’t create a cycle.

In particular, the components in both processes (which are all trees
in the case of Kruskal) have the same vertex-sets.

Indeed, the Kruskal components are the MST’s of the Erdős-Rényi
components.

The phase transition

Sitting inside each component of the Erdős-Rényi process is a
component of the Kruskal process.

So above the critical point
p = 1/n, there is a giant component for Kruskal too and, outside
the giant component, there are only tiny tree components which
gradually get glued onto the giant.

This entails that by time p = (1 + ε)/n, the global metric structure
of the minimum spanning tree has essentially already been built.
(However, the vast majority of the mass is still outside the largest
component!)

So the action is happening a bit earlier, in the critical window for
the Erdős-Rényi phase transition.

The phase transition

Sitting inside each component of the Erdős-Rényi process is a
component of the Kruskal process. So above the critical point
p = 1/n, there is a giant component for Kruskal too and, outside
the giant component, there are only tiny tree components which
gradually get glued onto the giant.

This entails that by time p = (1 + ε)/n, the global metric structure
of the minimum spanning tree has essentially already been built.
(However, the vast majority of the mass is still outside the largest
component!)

So the action is happening a bit earlier, in the critical window for
the Erdős-Rényi phase transition.

The phase transition

Sitting inside each component of the Erdős-Rényi process is a
component of the Kruskal process. So above the critical point
p = 1/n, there is a giant component for Kruskal too and, outside
the giant component, there are only tiny tree components which
gradually get glued onto the giant.

This entails that by time p = (1 + ε)/n, the global metric structure
of the minimum spanning tree has essentially already been built.

(However, the vast majority of the mass is still outside the largest
component!)

So the action is happening a bit earlier, in the critical window for
the Erdős-Rényi phase transition.

The phase transition

Sitting inside each component of the Erdős-Rényi process is a
component of the Kruskal process. So above the critical point
p = 1/n, there is a giant component for Kruskal too and, outside
the giant component, there are only tiny tree components which
gradually get glued onto the giant.

This entails that by time p = (1 + ε)/n, the global metric structure
of the minimum spanning tree has essentially already been built.
(However, the vast majority of the mass is still outside the largest
component!)

So the action is happening a bit earlier, in the critical window for
the Erdős-Rényi phase transition.

The phase transition

Sitting inside each component of the Erdős-Rényi process is a
component of the Kruskal process. So above the critical point
p = 1/n, there is a giant component for Kruskal too and, outside
the giant component, there are only tiny tree components which
gradually get glued onto the giant.

This entails that by time p = (1 + ε)/n, the global metric structure
of the minimum spanning tree has essentially already been built.
(However, the vast majority of the mass is still outside the largest
component!)

So the action is happening a bit earlier, in the critical window for
the Erdős-Rényi phase transition.

The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

Define the surplus of a component to be the number of edges more
than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9

The critical random graph

The critical window: p = 1
n + λ

n4/3 , where λ ∈ R. For such p, the

largest components have size Θ(n2/3).

Define the surplus of a component to be the number of edges more
than a tree that it has.

A component with surplus 3:

5

6

1

2

7

8

4

103

9

Convergence of the sizes and surpluses

Fix λ ∈ R. Let Cn,1
λ ,Cn,2

λ , . . . be the sequence of component sizes

of G(n, n−1 + λn−4/3) in decreasing order, and let Sn,1
λ ,Sn,2

λ , . . . be
their surpluses.

Write Cn
λ = (Cn,1

λ ,Cn,1
λ , . . .) and Sn

λ = (Sn,1
λ , Sn,2

λ , . . .).

Theorem (Aldous (1997)). For fixed λ ∈ R, as n→∞,

(n−2/3Cn
λ,S

n
λ)

d→ (Cλ,Sλ).

(Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

and for the second in the sense of finite-dimensional distributions.)

Convergence of the sizes and surpluses

Fix λ ∈ R. Let Cn,1
λ ,Cn,2

λ , . . . be the sequence of component sizes

of G(n, n−1 + λn−4/3) in decreasing order, and let Sn,1
λ ,Sn,2

λ , . . . be
their surpluses.

Write Cn
λ = (Cn,1

λ ,Cn,1
λ , . . .) and Sn

λ = (Sn,1
λ , Sn,2

λ , . . .).

Theorem (Aldous (1997)). For fixed λ ∈ R, as n→∞,

(n−2/3Cn
λ,S

n
λ)

d→ (Cλ,Sλ).

(Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

and for the second in the sense of finite-dimensional distributions.)

Convergence of the sizes and surpluses

Fix λ ∈ R. Let Cn,1
λ ,Cn,2

λ , . . . be the sequence of component sizes

of G(n, n−1 + λn−4/3) in decreasing order, and let Sn,1
λ ,Sn,2

λ , . . . be
their surpluses.

Write Cn
λ = (Cn,1

λ ,Cn,1
λ , . . .) and Sn

λ = (Sn,1
λ , Sn,2

λ , . . .).

Theorem (Aldous (1997)). For fixed λ ∈ R, as n→∞,

(n−2/3Cn
λ,S

n
λ)

d→ (Cλ,Sλ).

(Convergence for the first co-ordinate takes place in

`2
↘ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2
i <∞

}

and for the second in the sense of finite-dimensional distributions.)

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

Limiting sizes and surpluses
Let Wλ(t) = W (t) + λt − t2

2 , t ≥ 0, where (W (t), t ≥ 0) is a
standard Brownian motion.

Let Bλ(t) = Wλ(t)−min0≤s≤t Wλ(s) be the process reflected at
its minimum.

[Pictures by Louigi Addario-Berry]

x xx x x
x x

Decorate the picture with the points of a rate one Poisson process
which fall above the x-axis and below the graph.

Cλ is the sequence of excursion-lengths of this process, in
decreasing order.

Sλ is the sequence of numbers of points falling in the
corresponding excursions.

The critical Erdős-Rényi random graph
Let Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .) be the sequence of components of
G(n, n−1 + λn−4/3) in decreasing order of size, each considered as
a metric space with the graph distance. Put mass n−2/3 on each
vertex.

Theorem (A-B, B, G). As n→∞,

n−1/3Gn
λ

d→ Gλ,

where Gλ = (G 1
λ ,G

2
λ , . . .) is a sequence of measured real trees with

vertex-identifications encoded by Aldous’ marked limit process in
decreasing order of length.

Convergence is with respect to the distance

dist4
GHP(A,B) :=

(∞∑
i=1

dGHP(Ai ,Bi)4

)1/4

.

The critical Erdős-Rényi random graph
Let Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .) be the sequence of components of
G(n, n−1 + λn−4/3) in decreasing order of size, each considered as
a metric space with the graph distance. Put mass n−2/3 on each
vertex.

Theorem (A-B, B, G). As n→∞,

n−1/3Gn
λ

d→ Gλ,

where Gλ = (G 1
λ ,G

2
λ , . . .) is a sequence of measured real trees with

vertex-identifications encoded by Aldous’ marked limit process in
decreasing order of length.

Convergence is with respect to the distance

dist4
GHP(A,B) :=

(∞∑
i=1

dGHP(Ai ,Bi)4

)1/4

.

The critical Erdős-Rényi random graph
Let Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .) be the sequence of components of
G(n, n−1 + λn−4/3) in decreasing order of size, each considered as
a metric space with the graph distance. Put mass n−2/3 on each
vertex.

Theorem (A-B, B, G). As n→∞,

n−1/3Gn
λ

d→ Gλ,

where Gλ = (G 1
λ ,G

2
λ , . . .) is a sequence of measured real trees with

vertex-identifications encoded by Aldous’ marked limit process in
decreasing order of length.

Convergence is with respect to the distance

dist4
GHP(A,B) :=

(∞∑
i=1

dGHP(Ai ,Bi)4

)1/4

.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component.

(Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component. (Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component. (Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component. (Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component. (Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

The limit of the random graph

I Each excursion of the process (Bλ(t), t ≥ 0) encodes a
random real tree, which is a “spanning tree” for a limit
component. (Unfortunately, it’s not a minimum spanning
tree!)

I These are not scaled Brownian CRT’s, but random real trees
whose distribution has been biased in favour of excursions
with larger area.

I The kth-longest excursion has length C k
λ and so the

corresponding tree is endowed with a uniform measure of that
total mass.

I In the limit, surplus edges correspond to vertex-identifications.

I In each excursion, the points of the Poisson process tell us
where these vertex-identifications should occur.

Spanning tree and vertex identifications

Kruskal from Erdős-Rényi

To get from the state of the Erdős-Rényi process at a fixed time
p ∈ [0, 1] to the state of the Kruskal process, we need to break the
cycles at high-weight edges.

Kruskal from Erdős-Rényi

Consider the Erdős-Rényi random graph at the point λ in the
critical window: Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .).

Let Tn
λ = (T n,1

λ ,T n,2
λ , . . .) be the components in the Kruskal

process (which have the same vertex-sets but no cycles).

For fixed λ and k , we can construct T n,k
λ from Gn,k

λ by running the
cycle-breaking algorithm on the latter.

Kruskal from Erdős-Rényi

Consider the Erdős-Rényi random graph at the point λ in the
critical window: Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .).

Let Tn
λ = (T n,1

λ ,T n,2
λ , . . .) be the components in the Kruskal

process (which have the same vertex-sets but no cycles).

For fixed λ and k , we can construct T n,k
λ from Gn,k

λ by running the
cycle-breaking algorithm on the latter.

Kruskal from Erdős-Rényi

Consider the Erdős-Rényi random graph at the point λ in the
critical window: Gn

λ = (Gn,1
λ ,Gn,2

λ , . . .).

Let Tn
λ = (T n,1

λ ,T n,2
λ , . . .) be the components in the Kruskal

process (which have the same vertex-sets but no cycles).

For fixed λ and k , we can construct T n,k
λ from Gn,k

λ by running the
cycle-breaking algorithm on the latter.

Kruskal from Erdős-Rényi

Reminder: cycle-breaking

I Start with all edges present. List them as e1, e2, . . . in
decreasing order of weight.

I At step i , remove ei as long as it does not disconnect the
graph (i.e. as long as it lies in a cycle).

I Stop when no cycles remain.

Kruskal from Erdős-Rényi

Notice that only edges in cycles are affected by this procedure. So
we could just ignore any edges which don’t lie in cycles.

If we
don’t know the weights in advance then the highest-weight edge in
a given cycle is equally likely to be any edge in that cycle.

This tells us what the limiting analogue of the cycle-breaking
procedure should be: repeatedly remove points chosen according
to the uniform (Lebesgue) measure on the cycles in the metric
space, until no cycles remain.

(It’s actually a little delicate to check that the cycle-breaking
procedure passes nicely to the limit . . .)

Kruskal from Erdős-Rényi

Notice that only edges in cycles are affected by this procedure. So
we could just ignore any edges which don’t lie in cycles. If we
don’t know the weights in advance then the highest-weight edge in
a given cycle is equally likely to be any edge in that cycle.

This tells us what the limiting analogue of the cycle-breaking
procedure should be: repeatedly remove points chosen according
to the uniform (Lebesgue) measure on the cycles in the metric
space, until no cycles remain.

(It’s actually a little delicate to check that the cycle-breaking
procedure passes nicely to the limit . . .)

Kruskal from Erdős-Rényi

Notice that only edges in cycles are affected by this procedure. So
we could just ignore any edges which don’t lie in cycles. If we
don’t know the weights in advance then the highest-weight edge in
a given cycle is equally likely to be any edge in that cycle.

This tells us what the limiting analogue of the cycle-breaking
procedure should be: repeatedly remove points chosen according
to the uniform (Lebesgue) measure on the cycles in the metric
space, until no cycles remain.

(It’s actually a little delicate to check that the cycle-breaking
procedure passes nicely to the limit . . .)

Kruskal from Erdős-Rényi

Notice that only edges in cycles are affected by this procedure. So
we could just ignore any edges which don’t lie in cycles. If we
don’t know the weights in advance then the highest-weight edge in
a given cycle is equally likely to be any edge in that cycle.

This tells us what the limiting analogue of the cycle-breaking
procedure should be: repeatedly remove points chosen according
to the uniform (Lebesgue) measure on the cycles in the metric
space, until no cycles remain.

(It’s actually a little delicate to check that the cycle-breaking
procedure passes nicely to the limit . . .)

A limit for the Kruskal process

Let Tn
λ = (T n,1

λ ,T n,2
λ , . . .) be the components of the Kruskal

process, each endowed with the measure which assigns mass n−2/3

to each vertex, and let Tλ = (T 1
λ ,T

2
λ , . . .) be the sequence of

spaces obtained from Gλ by cycle-breaking.

Theorem. As n→∞,

1

n1/3
Tn
λ

d→ Tλ,

where convergence is with respect to the distance

dist4
GHP(A,B) =

∑
i≥1

dGHP(Ai ,Bi)4

1/4

.

A limit for the Kruskal process

Let Tn
λ = (T n,1

λ ,T n,2
λ , . . .) be the components of the Kruskal

process, each endowed with the measure which assigns mass n−2/3

to each vertex, and let Tλ = (T 1
λ ,T

2
λ , . . .) be the sequence of

spaces obtained from Gλ by cycle-breaking.

Theorem. As n→∞,

1

n1/3
Tn
λ

d→ Tλ,

where convergence is with respect to the distance

dist4
GHP(A,B) =

∑
i≥1

dGHP(Ai ,Bi)4

1/4

.

From Kruskal to the MST

I For fixed n, the process (T n,1
λ , λ ∈ R), which tracks the

largest tree in the Kruskal forest, is eventually constant and
equal to Mn, the MST of the complete graph.

I For fixed λ, we have n−1/3T n,1
λ

d→ T 1
λ as n→∞ in dGHP.

I The process (T 1
λ , λ ∈ R) is eventually “increasing” in an

appropriate sense.

I As λ increases, we glue more and more little trees onto T 1
λ .

However, its diameter remains bounded. Moreover, the
additional mass coming from the little trees gets spread out
essentially uniformly over the tree.

I The mass of T 1
λ diverges as λ→∞, so we renormalise to get

total mass measure 1 for each λ. If we do this, we obtain that
there exists a limiting measured metric space M as λ→∞.

From Kruskal to the MST

I For fixed n, the process (T n,1
λ , λ ∈ R), which tracks the

largest tree in the Kruskal forest, is eventually constant and
equal to Mn, the MST of the complete graph.

I For fixed λ, we have n−1/3T n,1
λ

d→ T 1
λ as n→∞ in dGHP.

I The process (T 1
λ , λ ∈ R) is eventually “increasing” in an

appropriate sense.

I As λ increases, we glue more and more little trees onto T 1
λ .

However, its diameter remains bounded. Moreover, the
additional mass coming from the little trees gets spread out
essentially uniformly over the tree.

I The mass of T 1
λ diverges as λ→∞, so we renormalise to get

total mass measure 1 for each λ. If we do this, we obtain that
there exists a limiting measured metric space M as λ→∞.

From Kruskal to the MST

I For fixed n, the process (T n,1
λ , λ ∈ R), which tracks the

largest tree in the Kruskal forest, is eventually constant and
equal to Mn, the MST of the complete graph.

I For fixed λ, we have n−1/3T n,1
λ

d→ T 1
λ as n→∞ in dGHP.

I The process (T 1
λ , λ ∈ R) is eventually “increasing” in an

appropriate sense.

I As λ increases, we glue more and more little trees onto T 1
λ .

However, its diameter remains bounded. Moreover, the
additional mass coming from the little trees gets spread out
essentially uniformly over the tree.

I The mass of T 1
λ diverges as λ→∞, so we renormalise to get

total mass measure 1 for each λ. If we do this, we obtain that
there exists a limiting measured metric space M as λ→∞.

From Kruskal to the MST

I For fixed n, the process (T n,1
λ , λ ∈ R), which tracks the

largest tree in the Kruskal forest, is eventually constant and
equal to Mn, the MST of the complete graph.

I For fixed λ, we have n−1/3T n,1
λ

d→ T 1
λ as n→∞ in dGHP.

I The process (T 1
λ , λ ∈ R) is eventually “increasing” in an

appropriate sense.

I As λ increases, we glue more and more little trees onto T 1
λ .

However, its diameter remains bounded. Moreover, the
additional mass coming from the little trees gets spread out
essentially uniformly over the tree.

I The mass of T 1
λ diverges as λ→∞, so we renormalise to get

total mass measure 1 for each λ. If we do this, we obtain that
there exists a limiting measured metric space M as λ→∞.

From Kruskal to the MST

I For fixed n, the process (T n,1
λ , λ ∈ R), which tracks the

largest tree in the Kruskal forest, is eventually constant and
equal to Mn, the MST of the complete graph.

I For fixed λ, we have n−1/3T n,1
λ

d→ T 1
λ as n→∞ in dGHP.

I The process (T 1
λ , λ ∈ R) is eventually “increasing” in an

appropriate sense.

I As λ increases, we glue more and more little trees onto T 1
λ .

However, its diameter remains bounded. Moreover, the
additional mass coming from the little trees gets spread out
essentially uniformly over the tree.

I The mass of T 1
λ diverges as λ→∞, so we renormalise to get

total mass measure 1 for each λ. If we do this, we obtain that
there exists a limiting measured metric space M as λ→∞.

The scaling limit of the MST

We obtain
1

n1/3
Mn d→M

as n→∞, in the sense of dGHP.

References

The continuum limit of critical random graphs
L. Addario-Berry, N. Broutin and C. Goldschmidt
Probability Theory and Related Fields 152, 3-4 (2012), pp.367-406.

Critical random graphs: limiting constructions and
distributional properties
L. Addario-Berry, N. Broutin and C. Goldschmidt
Electronic Journal of Probability 15 (2010), pp.741-775.

The scaling limit of the minimum spanning tree of the
complete graph
L. Addario-Berry, N. Broutin, C. Goldschmidt and G. Miermont
arXiv:1301.1664 (2013+).

