Model Main result Dual process Proof Benind o Benind a	^ References

The impact of selection in the $\Lambda\text{-Wright-Fisher}$ model

Clément Foucart

Université Paris XIII

Branching structures The third Bath-Paris meeting University of Bath, 9-11 June 2014

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References

- 2 Main result and remarks
- 3 Branching-coalescing dual process

4 Sketch of proof

Model Main result Dual process Proof Behind δ Behind α^* References

Wright-Fisher diffusion with selection

$$X_t = x + \sigma \int_{[0,t]} \sqrt{X_s(1-X_s)} dB_s - \alpha \int_0^t X_s(1-X_s) ds$$

- If α = 0, this is the classical Wright-Fisher, which get absorbed in a finite time ζ in 0 or 1.
- If α > 0, a selection term is added and X_t represents the frequency of the *disadvantaged* allele.

Standard methods for diffusion processes yield

$$\mathbb{P}_{x}[X_{\infty}=0]=rac{1-e^{-2xlpha/\sigma^{2}}}{1-e^{-2lpha/\sigma^{2}}}\in(0,1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Λ be a finite measure on]0,1], and $\alpha \geq$ 0. Consider the following SDE

$$\begin{aligned} X_t &= x + \int_{[0,t]\times[0,1]\times[0,1]} z \left(\mathbbm{1}_{u \leq X_{s-}} - X_{s-} \right) \bar{\mathcal{M}}(ds, du, dz) \\ &- \alpha \int_0^t X_s (1 - X_s) ds \end{aligned}$$

where $\mathcal M$ is a Poisson measure on $\mathbb R_+\times [0,1]\times [0,1]$ with intensity

$$ds \otimes du \otimes z^{-2} \Lambda(dz).$$

The solution is a positive supermartingale and thus converges a.s to $X_{\infty} \in \{0,1\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Interp	oretation	of the SDI	Ð			

• Denote the frequency of the allele just before time s by X_{s-} .

If (s, u, z) is an atom of the measure \mathcal{M} , then, at time s,

- if $u \leq X_{s-}$, the frequency of the allele increases by a fraction $z(1-X_{s-})$
- if $u > X_{s-}$, the frequency of the allele decreases by a fraction zX_{s-} .

• Continuously in time, the frequency decreases due to the deterministic selection mechanism.

Question: Are there A and α such that the disadvantaged allele becomes extinguished a.s?

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References

Theorem (main result)

Let

$$\alpha^{\star}:=-\int_0^1\log(1-x)x^{-2}\Lambda(dx)\in(0,\infty].$$

Then,

1) if
$$\alpha < \alpha^*$$
 then $\mathbb{P}_x[X_\infty = 0] \in]0, 1[$, for all $x \in]0, 1[$;

2) if
$$\alpha^* < \infty$$
 and $\alpha > \alpha^*$ then $X_{\infty} = 0$ a.s.

- Der, Epstein and Plotkin (*Genetics* 2012) consider $\Lambda = c\delta_x$.
- Bob Griffiths (2014) obtains the result for $\alpha^* < \infty$ and shows that if $\alpha = \alpha^*$ then $X_{\infty} = 0$ a.s.
- If $\int_0^1 x^{-1} \Lambda(dx) = \infty$ (dust-free) then $\alpha^* = \infty$.
- Bah and Pardoux (2012) show that $(X_t, t \ge 0)$ is absorbed iff $\Lambda \in \mathbb{CDI}$.

Model Main result Dual process Proof Behind δ Behind α^* References Branching-coalescing dual process

Let $(R_t, t \ge 0)$ be the continuous-time Markov chain with values in $\mathbb{N} := \{1, 2, ...\}$ and generator:

$$\mathcal{L}g(n) := \underbrace{\sum_{k=2}^{n} \binom{n}{k} \lambda_{n,k} [g(n-k+1) - g(n)] + \alpha n [g(n+1) - g(n)]}_{\text{coagulations versus branching}}$$
with
$$\lambda_{n,k} := \int_{0}^{1} x^{k} (1-x)^{n-k} x^{-2} \Lambda(dx).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References

Lemma (duality)

For all $x \in [0, 1]$, $n \ge 1$,

$$\mathbb{E}[X_t^n|X_0=x]=\mathbb{E}[x^{R_t}|R_0=n].$$

The asymptotics of $(X_t, t \ge 0)$ are related to those of $(R_t, t \ge 0)$

Lemma

1) If $(R_t, t \ge 0)$ is positive recurrent then the law of X_{∞} charges both 0 and 1.

2) If $(R_t, t \ge 0)$ is transient then $X_{\infty} = 0$ almost surely.

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Functi	ion δ					

Define

$$\delta(n) := -n \int_0^1 \log \left(1 - \frac{1}{n} (nx - 1 + (1 - x)^n) \right) x^{-2} \Lambda(dx)$$

Proposition (Möhle and Herriger 2013)

The maps δ and $n \mapsto \delta(n)/n$ are non-decreasing;

$$\delta(n)/n \xrightarrow[n \to \infty]{} - \int_0^1 \log(1-x) x^{-2} \Lambda(dx) = \alpha^{\star}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Case	$\alpha < \alpha^{\star}$					

Define

$$f(n) := \sum_{k=2}^{n} \frac{k}{\delta(k)} \log\left(\frac{k}{k-1}\right).$$

From Jensen inequality,

$$rac{\delta(n)}{n} \leq \sum_{j=2}^n -\log\left(rac{n-j+1}{n}
ight) \binom{n}{j} \lambda_{n,j}$$

Plugging f in \mathcal{L} , one can show

$$\begin{split} \mathcal{L}f(n) &\leq -1 + \alpha \frac{n}{\delta(n)} \\ &\underset{n \geq n_0}{\underbrace{\leq}} -1 + \alpha \left(1/\alpha^{\star} + \epsilon \right) \\ &< 0 \quad \text{for } \epsilon \text{ small enough and a certain } n_0. \end{split}$$

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References

Set
$$T^{n_0} := \inf\{t; R_t < n_0\}$$
, we get

$$\mathbb{E}_n[f(R_{T^{n_0}})] = f(n) + \mathbb{E}\left[\int_0^{T^{n_0}} \mathcal{L}f(R_s)ds\right]$$

$$\leq f(n) + \left(-1 + \frac{\alpha}{\alpha^*} + \epsilon\alpha\right)\mathbb{E}[T^{n_0}].$$

Thus

$$\underbrace{(1-\frac{\alpha}{\alpha^{\star}}-\epsilon\alpha)}_{>0}\mathbb{E}[T^{n_0}]\leq f(n)-\mathbb{E}_n[f(R_{T^{n_0}}]\leq f(n).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

which establishes the positive recurrence.

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Case of	$\alpha > \alpha^{\star}$					

Let $g: n \mapsto 1/\log(n+1)$, one can show that there exists n_0 such that

$$\mathcal{L}g(n) < 0$$
 for all $n \ge n_0$.

Let $n > n_0$ and assume $\mathbb{P}_n[\mathcal{T}^{n_0} < \infty] = 1$, then by the martingale convergence theorem

$$g(n) = \mathbb{E}[g(R_0)] \ge \mathbb{E}[g(R_{T^{n_0}})]$$

which is not possible since g is decreasing. Thus $\mathbb{P}_n[T^{n_0} < \infty] < 1$ and by irreducibility $R_t \longrightarrow \infty$ a.s.

(日) (日) (日) (日) (日) (日) (日) (日)

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Behine	d δ					

Roughly speaking δ measures the coagulation strength in a logarithm scale. Indeed

$$\delta(n)/n = -\log\left(-\lim_{t\to 0}\frac{1}{t}\mathbb{E}\left[\frac{N_t}{n}|N_0=n\right]\right),$$

where $(N_t, t \ge 0)$ is the block-counting process of a Λ -coalescent. The logarithm scale allows us to compare the exponential growth due to the binary branching with the decay due to the coagulations.

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References
Behin	d α^{\star}					

Let Π a Λ -coalescent, recall

$$rac{\# ext{singletons in }\Pi_{|[n]}(t)}{n} \longrightarrow (ext{exp}(-\xi_t), t \geq 0)$$

with $(\xi_t, t \ge 0)$ a drift-free subordinator with Laplace exponent

$$\Phi(q) := \int_0^1 (1 - (1 - x)^q) x^{-2} \Lambda(dx).$$

One can easily check that $\alpha^{\star} = \mathbb{E}[\xi_1]$.

Adapting Haas and Miermont's work on scaling limits of self-similar Markov chains, if

$$h(u) = \int_{[u,1]} x^{-2} \Lambda(dx)$$
 is $\mathsf{RV}(-\beta)$ with $\beta \in (0,1)$

then $\left(\frac{1}{n}\mathsf{R}([h(1/n)t]), t \ge 0\right) \Longrightarrow \left(\exp\left(-(\xi_{C_t} - \alpha C_t)\right), t \ge 0\right)$ where

$$C_t := \inf\{u \ge 0 : \int_0^u \exp\left(-\beta(\xi_r - \alpha r)\right) dr > t\}$$

By classic results on exponential functional of Lévy process:

$$\int_0^\infty \exp\left(-\beta(\xi_r-\alpha r)\right)dr < \infty \text{ iff } \alpha < \alpha^\star.$$

Model	Main result	Dual process	Proof	Behind δ	Behind α^*	References

Thank you

- Der, Epstein, Plotkin (2012) Dynamics of neutral and selected alleles when the offspring distribution is skewed. Genetics
- F. (2014): The impact of selection in the Λ-Wright-Fisher model. (ECP)
- Griffiths (2014), Lambda-Fleming-Viot process and a connection with Wright-Fisher diffusion.
- Möhle and Herriger (2013): conditions for exchangeable coalescent processes to come down from infinity (ALEA)
- Schweinsberg (2000) A necessary and sufficient condition for the A-coalescent to come down from infinity, (ECP)
- Schweinsberg (2000) Coalescents with simultaneous multiple collisions, EJP