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Introduction
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Two notions in probability
This module is intended to introduce students to two important
notions in stochastic processes - reversibility and martingales -
identifying the basic ideas, outlining the main results and giving a
flavour of some significant ways in which these notions are used in
statistics.

The notes are arranged in a "two-panel" format: the main slides,
with a white background, contain the main content of the course.
The alternating slides with a grey background contain extra useful
information and some exercises that will help you to cement your
understanding of the material.

4 / 221



Probability provides one of the major underlying languages of
statistics, and purely probabilistic concepts often cross over into the
statistical world. So statisticians need to acquire some fluency in
the general language of probability and to build their own mental
map of the subject. The Applied Stochastic Processes module aims
to contribute towards this end.

The notes illustrate typical features of probability: the interplays
between theory and practice, between rigour and intuition.

These notes were originally written by Wilfrid Kendall. Some
material has since been added by Stephen Connor, Christina
Goldschmidt and Amanda Turner.
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An important instruction
First of all, read the preliminary notes!

They provide notes and examples concerning a basic framework
covering:

Probability and conditional probability;
Expectation and conditional expectation;
Discrete-time countable-state-space Markov chains;
Continuous-time countable-state-space Markov chains;
Poisson processes.
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The purpose of the preliminary notes is not to provide all the
information you might require concerning probability, but to serve
as a prompt about material you may need to revise, and to
introduce and to establish some basic choices of notation.
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Some useful books
At increasing levels of mathematical sophistication:

Finite Markov chains and algorithmic applications by Olle
Häggström.

Probability and random processes by Geoffrey Grimmett and
David Stirzaker.

Probability by Leo Breiman.

Markov chains by James Norris.

Stochastic processes by Sheldon Ross.

Probability with martingales by David Williams.
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"Finite Markov chains and algorithmic applications" is a delightful
introduction to finite state-space discrete-time Markov chains, starting
from the point of view of computer algorithms.

"Probability and random processes" is the standard undergraduate text
on mathematical probability, and contains a huge amount of material.

"Probability" by Breiman is a first-rate graduate-level introduction to
probability.

"Markov chains" by Norris presents the theory of Markov chains at a
more graduate level of sophistication, revealing what we have concealed,
namely the full gory story about -matrices.

"Stochastic processes" by Ross makes use of the renewal process
approach to convergence to equilibrium for a Markov chain which we will
exploit here.

"Probability with martingales" provides an excellent if mathematically
demanding graduate treatment of the theory of martingales.

Q
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Free texts on the web
Random walks and electric networks by Peter Doyle and Laurie
Snell.

Reversibility and stochastic networks by Frank Kelly.

Markov chains and stochastic stability by Sean Meyn and
Richard Tweedie.

Reversible Markov Chains and Random Walks on Graphs by
David Aldous and Jim Fill.
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Random walks and electric networks lays out (in simple and
accessible terms) an important approach to Markov chains using
relationship to resistance in electrical networks.

We'll cover reversibility briefly in the lectures, but Reversibility
and stochastic networks shows just how powerful the technique
can be.

Consult Markov chains and stochastic stability if you need to
get informed about theoretical results on rates of convergence
for Markov chains, e.g. because you are doing MCMC.

Reversible Markov Chains and Random Walks on Graphs is the
best unfinished book on Markov chains known to me (this was
written by Wilfrid Kendall many years ago but remains true to
the present lecturers).
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Markov chains and reversibility
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Reminder: convergence to equilibrium
Recall from the preliminary notes that if a Markov chain  on a
countable state space (in discrete time) is

irreducible
aperiodic (only an issue in discrete time)
positive recurrent (only an issue for infinite state spaces)

then

as  for all states .

 is the unique solution to  such that .

X

P(Xn = i|X0 = j) → πi

n → ∞ i

π πP = π ∑i πi = 1
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Periodic cases, and continuous-time chains, can be considered
with appropriate changes.

Notice that if there are  states then  is (potentially) a
system of  simultaneous equations in  unknowns, so that
there is a complexity issue here if  is very large.

We will see that for chains which have the property of time-
reversibility, the calculation of  becomes much easier. Along
the way, we will encounter some subtle but significant
dependence issues.

N πP = π

N N

N

π
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A simple example
Consider simple symmetric random walk  on , with
"prohibition" boundary conditions: moves ,  are
replaced by , .
1.  is irreducible and aperiodic, so there is a unique equilibrium

distribution .
2. The equilibrium equations  are solved by  for

all .
3. Consider  in equilibrium:

and

4. In equilibrium, the chain looks the same forwards and
backwards. We say that the chain is reversible.

X {0, 1, … , k}
0 → −1 k → k + 1

0 → 0 k → k

X
π = (π0,π1, … ,πk)

πP = π πi = 1
k+1

i

X

P(Xn−1 = x, Xn = y) = P(Xn−1 = x)P(Xn = y|Xn−1 = x)

= πxpx,y

P(Xn = x, Xn−1 = y) = πypy,x = πxpx,y.
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Test understanding: explain why  is aperiodic whereas non-
reflected simple symmetric random walk has period . Getting
boundary conditions right is crucial both for this and for
reversibility.

Test understanding: verify the solution of the equilibrium
equations.

Test understanding: show that the chain run backwards satisfies
the Markov property.

X

2
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Reversibility
 

Definition
Suppose that  and  have the same
distribution for every . Then we say that  is reversible.

 

So  "looks the same" whether we run it backwards or
forwards in time.

A little thought shows that  must all have the same
marginal distribution in order for this to be true. So, in
particular,  must start in equilibrium in order for it to be
reversible.

(Xn−k)0≤k≤n (Xk)0≤k≤n

n X

X

X0,X1, …

X
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Detailed balance
1. Generalising the calculation we did for the random walk shows

that a discrete-time Markov chain is reversible if it starts from
equilibrium and the detailed balance equations hold:

.

2. If one can solve for  in , then it is easy to show
that .

3. So, if one can solve the detailed balance equations, and if the
solution can be normalized to have unit total probability, then
the result also solves the equilibrium equations.

4. In continuous time we instead require , and if we
can solve this system of equations then .

5. From a computational point of view, it is usually worth trying
to solve the (easier) detailed balance equations first; if these are
insoluble then revert to the more complicated  or

.

πxpx,y = πypy,x

π πxpx,y = πypy,x

πP = π

πxqx,y = πyqy,x

πQ = 0

πP = π
πQ = 0 18 / 221



Test understanding: check that the calculation we did for the
random walk generalizes to show point 1 on the previous slide.

Test understanding: show the detailed balance equations
(discrete case) lead to equilibrium equations by applying them
to  and then using .

Even in the simple example of simple symmetric random walk,
reversibility helps us deal with complexity. Detailed balance
involves  equations each with two unknowns, easily "chained
together". The equilibrium equations involve  equations of
which  involve three unknowns.

In general, the detailed balance equations can be solved unless
"chaining together by different routes" delivers inconsistent
results. Kelly's book goes into more detail about this.

∑x πxpx,y ∑x py,x = 1

k

k

k − 2
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Test understanding: show that detailed balance doesn't hold for
the -state chain with transition probabilities  for ,

,  and  for , , . (Draw a
picture.) We could have guessed that this chain is not
reversible. Consider starting the chain in equilibrium and let 
be the number of clockwise jumps before time . For large ,
this is approximately . For the time-reversed chain, we would
get  so that statistically we can tell the difference between
the forwards and backwards chains.

Test understanding: show that detailed balance does work for
doubly reflected asymmetric simple random walk.

We will see later that there are still major computational issues
for more general Markov chains, connected with determining the
normalizing constant for .

3 1
3 0 → 1

1 → 2 2 → 0 2
3 2 → 1 1 → 0 0 → 2

Tn
n n

n/3
2n/3

π
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Detailed balance and reversibility
 

Definition
The Markov chain  satisfies detailed balance if
  Discrete time: there is a non-trivial solution of ;
  Continuous time: there is a non-trivial solution of .

 

Theorem The irreducible Markov chain  satisfies detailed balance
and the solution  can be normalized by  if and only
if  is an equilibrium distribution for  and  started in
equilibrium is statistically the same whether run forwards or
backwards in time.

X

πxpx,y = πypy,x

πxqx,y = πyqy,x

X

{πx} ∑x πx = 1
{πx} X X
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Proof of the theorem is routine: see example of random walk
above.

The reversibility phenomenon has surprisingly deep
ramifications! We will soon see some examples where it is not
immediately apparent that the time-reversed process in
equilibrium should look statistically the same as the original
process.

In general, if  is not possible then we end up with
an invariant measure rather than an invariant probability
distribution. Invariant measures do have probabilistic
signficance, but we won't touch on it here.

∑x πx < ∞
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We will now consider examples of progressively more complicated
Markov chains:

the  queue;
a discrete-time chain on a  state space;
Gibbs samplers;
and Metropolis-Hastings samplers (briefly).

M/M/1
8 × 8
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The  queue
Here is a continuous-time example, the  queue. We have

Arrivals:  at rate ;
Departures:  at rate  if .

Detailed balance gives  and therefore when 
(stability) the equilibrium distribution is  for

, where  (the traffic intensity).

Reversibility is more than a computational device: it tells us that if
a stable  queue is in equilibrium then people leave
according to a Poisson process of rate . (This is known as Burke's
theorem.)

Hence, if a stable  queue feeds into another stable  queue then in equilibrium the second queue on its own behaves as an  queue in equilibrium.

M/M/1
M/M/1

x → x + 1 λ

x → x − 1 μ x > 0

μπx = λπx−1 λ < μ

πx = ρx(1 − ρ)

x = 0, 1, … ρ = λ
μ

M/M/1
λ

M/M/1 ⋅/M/1 M/M/1
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Queueing processes are examples of generalized birth-death
processes. The only possible transitions are from  to  and
so the detailed balance equations are easily solved.

Detailed balance is a subtle and important tool for the study of
Markovian queueing networks. See e.g. Kelly's book.

Burke's theorem has deep consequences, with surprising
applications (for example in the theory of random matrices).

x x ± 1
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Random chess
Now we turn to a multi-dimensional and less generic example,
taken from the book of Aldous and Fill.

Example: a mean knight's tour
Place a chess knight at the corner of a standard 8x8 chessboard.
Move it randomly, at each move choosing uniformly from the
available legal chess moves independently of the past.
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Random chess
Now we turn to a multi-dimensional and less generic example,
taken from the book of Aldous and Fill.

Example: a mean knight's tour
Place a chess knight at the corner of a standard 8x8 chessboard.
Move it randomly, at each move choosing uniformly from the
available legal chess moves independently of the past.

1. Is the resulting Markov chain periodic?

2. What if you sub-sample at even times?

3. What is the equilibrium distribution? (Use
detailed balance.)

4. What is the mean time till the knight returns to its starting
point? (Inverse of equilibrium probability.) 28 / 221



The chain is finite and irreducible.

It is periodic of period 2, white versus black. It is necessary in
computation to take care about this. In particular, a unique
equilibrium distribution exists, but the chain does not converge
to it in distribution. Sub-sampling at even times makes chain
aperiodic on squares of one colour.

Note: we didn't require aperiodicity for any of our detailed
balance/reversibility arguments. Reversibility is pretty plausible
for this chain, so detailed balance is a good bet. It's helpful to
think about the degree of a square, i.e. the number of other
squares to which the knight can jump from it. We will do the
calculations on the next page.
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We have  if , where  is the degree of
. Consider the vertex degrees for the top-left quarter of the

board:

The total degree is

and so  and thus the equilibrium probability
at a corner is .

Inverse of equilibrium probability shows that mean return time
to corner is .

πv/dv = πu/du = c u ∼ v du
u

2 3 4 4

3 4 6 6
4 6 8 8

4 6 8 8

336 = (1 × 2 + 2 × 3 + 5 × 4 + 4 × 6 + 4 × 8) × 4

1 = c∑v dv = 336c

πcorner = 2/336 = 1/168
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The Ising model
Pattern of spins  on (finite fragment of) lattice. So here 
is a vertex of the lattice. We will write  to mean that  is a
neighbour of  in the lattice.
 

Probability mass function:

Si = ±1 i
i ∼ j i

j

P(Si = si all i) ∝ exp (J ∑
i, j: i∼j

sisj)
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The Ising model was introduced as an idealized model for magnetism.
Other applications include modelling a simple binary image with noise.
If  then we get the uniform distribution on spin configurations,
which means spins behave independently. If , neighbouring spins
like to differ (ferromagnetic case); if , neighbouring spins like to
agree (antiferromagnetic case). In the physics setting, we're interested in
expanding the fragment to fill the whole lattice. Changing the strength of
the interaction  yields a phase transition (i.e. a large quantitative
change in behaviour of the system, in this case, in the existence of large-
scale order or not).
The Ising model is the nexus for a whole variety of scientific approaches,
each bringing their own rather different questions.
Note, physics treatments use a (physically meaningful) over-
parametrization  where  is temperature and  is the Boltzmann
constant. The  term can be interpreted physically as modelling
an external magnetic field. We'll come back to a statistical interpretation
for it in a moment.
For a simulation physics view of the Ising model, see the expository
article by David Landau in "Markov chain Monte Carlo: Innovations and
Applications".

J = 0
J < 0

J > 0

J

J → J
kT

T k

H∑i sis̃i
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Gibbs sampler (or heat-bath) for the Ising
model
Note that actually computing the normalizing constant for the Ising
distribution is hard (in the sense of complexity theory). So how can
we actually sample from the Ising model?

For a configuration , let  be the configuration obtained from 
by flipping spin . Let  be a configuration distributed according to
the Ising measure.

Consider a Markov chain with states which are Ising configurations
on an  lattice, moving as follows.
1. Suppose the current configuration is .
2. Choose a site  in the lattice uniformly at random.

3. Flip the spin at  with probability ;
otherwise, leave it unchanged.

s s(i) s
i S

n × n

s
i

i P(S = s(i)∣
∣S ∈ {s, s(i)})
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Gibbs sampler for the Ising model
Noting that , careful calculation yields

We have transition probabilities

and simple calculations then show that

so the chain has the Ising model as its equilibrium distribution.

s
(i)
i = −si

P(S = s(i)∣
∣S ∈ {s, s(i)}) = .

exp(−J∑j:j∼i sisj)

exp(J∑j:j∼i sisj) + exp(−J∑j:j∼i sisj)

p(s, s(i)) = P(S = s(i)∣
∣S ∈ {s, s(i)}), p(s, s) = 1 − ∑

i

p(s, s(i))
1

n2

∑
i

P(S = s(i))p(s(i), s) + P(S = s)p(s, s) = P(S = s),
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This is really a completely general computation! Theoretically
it's straightforward.

But note that the equilibrium equations are complicated to
solve:  equations, each with  terms on left-hand side.

This algorithm fits into the general pattern for Gibbs samplers:
update individual random variables sequentially using
conditional distributions given all other random variables.

We only need to use conditional distributions, which means we
can calculate with ratios, and so normalizing constants cancel
out.

n2 n2
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Detailed balance for the Gibbs sampler
 

Detailed balance calculations provide a much easier justification:
merely check that

for all .

P(S = s)p(s, s(i)) = P(S = s(i))p(s(i), s)

s

36 / 221



Test understanding: check the detailed balance calculations.

It turns out that detailed balance also holds for processes obtained
from:

systematic scans
coding ("simultaneous updates on alternate colours of a
chessboard")

but not for wholly simultaneous updates.
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The Ising model with an external field
Probability mass function for the Ising model with an external field

:

We could do exactly the same as we did for the model without an
external field. The calculations all work without any problems.

{s̃i}

P(Si = si all i) ∝ exp (J ∑
i, j: i∼j

sisj + H ∑
i

sis̃i).
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Image reconstruction using the Gibbs
sampler
Suppose that we have a black and white image that has been
corrupted by some noise. Let  represent the noisy image (e.g.

 if pixel  is black, and  if white), and use it as an external
field, with .  here measures the "noisiness".

Bayesian interpretation: we observe the noisy signal  and want to
make inference about the true signal. We obtain posterior
distribution  from
which we would like to sample. In order to do this, we run the
Gibbs sampler to equilibrium (with  fixed), starting from the noisy
image.

s̃
s̃i = 1 i −1

J,H > 0 H

S̃

P(S = s∣
∣S̃ = s̃ ) ∝ exp (J∑i∼j sisj + H∑i sis̃i)

s̃
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Metropolis-Hastings sampler
Suppose again that we want to sample from a distribution  whose
form we know only up to a normalising constant.

An important alternative to the Gibbs sampler, even more closely
connected to detailed balance, is Metropolis-Hastings:

Suppose that .
Pick  using a transition probability kernel  (the proposal
kernel).
Accept the proposed transition  with probability

If the transition is accepted, set ; otherwise set
.

 
Since  satisfies detailed balance,  is an equilibrium distribution (if
the chain converges to a unique equilibrium!).

π

Xn = x

y κ(x, y)

x → y

α(x, y) = min {1, } .
π(y)κ(y,x)

π(x)κ(x, y)

Xn+1 = y
Xn+1 = x

π π
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Actually the Gibbs sampler is a special case of the Metropolis-
Hastings sampler.

Test understanding: write down the transition probability kernel
for .

Test understanding: check that  solves the detailed balance
equations.

Common proposal kernels include:

independence sampler: ;
random-walk sampler: ;
Langevin sampler: replace random-walk shift by shift
depending on .

Importantly, the acceptance probability depends only on the
ratio , so normalizing constants cancel out.

X

π

κ(x, y) = f(y)
κ(x, y) = f(y − x)

grad logπ

π(x)/π(y) 41 / 221



Renewal processes and
stationarity
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We spent the first lecture exploring a particular way to go about
finding equilibrium distributions for Markov chains. In this lecture,
we're going to delve a little deeper into the structure of Markov
chains and into their convergence to stationarity. A key tool is a
simple class of processes called renewal processes. The approach we
take here will be the one we build upon towards the end of the
course when we consider Markov chains on general state-spaces.

43 / 221



Stopping times
Let  be a stochastic process and write  for the collection
of events "which can be determined from ."For
example,

but

Definition
A random variable  taking values in  is said to
be a stopping time (for the process ) if, for all ,  is
determined by the information available at time , i.e.

.

(Xn)n≥0 Fn

X0,X1, … ,Xn

{ min
0≤k≤n

Xk = 5} ∈ Fn

{ min
0≤k≤n+1

Xk = 5} ∉ Fn.

T {0, 1, 2, …} ∪ {∞}
X n {T ≤ n}

n

{T ≤ n} ∈ Fn 44 / 221



Intuitively, a stopping time is one such that "we know when it
has occurred".

Note that we need to have a clear notion of exactly what might
be , the information revealed by time .

Here is a poetical illustration of a non-stopping time, due to
David Kendall:
There is a rule for timing toast,
You never need to guess;
Just wait until it starts to smoke,
And then ten seconds less.
(Adapted from a "grook" by Piet Hein, Grooks II MIT Press,
1968.)

Fn n
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Random walk example
Let  be a random walk started from .

The random time  is a stopping time.

Indeed  is clearly determined by the information
available at time :

On the other hand, the random time
 is not a stopping time.

Note that the minimum of two stopping times is a stopping time!

X 0

T = inf{n > 0 : Xn ≥ 10}

{T ≤ n}
n

{T ≤ n} = {X1 ≥ 10} ∪ … ∪ {Xn ≥ 10} .

S = sup{0 ≤ n ≤ 100 : Xn ≥ 10}
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 need not be symmetric, need not be simple. Indeed a Markov chain or
even a general random process would do.

Note that the stopping time  could take the value , since it is possible
that  never goes above 10. In particular, if  has a negative drift, this
occurs with positive probability.

We could replace  by ,  by  for some subset
 of state-space, i.e. we could have  (the

"hitting time of ").

In the case of the hitting time of ,

so  is determined by information at time , so  is a stopping
time.

Let  and  be stopping times for , and let . Then

X

T ∞
Xn X

n > 0 n ≥ 0 Xn ≥ 10 Xn ∈ A
A TA = inf{n > 0 : Xn ∈ A}

A

A

{TA ≤ n} = {X1 ∈ A} ∪ … ∪ {Xn ∈ A}

{TA ≤ n} n TA

T1 T2 X T = min{T1,T2}

{T ≤ n} = {T1 ≤ n} ∪ {T2 ≤ n} ∈ Fn . 47 / 221



Strong Markov property
Suppose that  is a stopping time for the Markov chain .

Theorem
Conditionally on  and , the process  has
the same distribution as  started from . Moreover,
given ,  and  are conditionally
independent given .

This is called the strong Markov property.

T (Xn)n≥0

{T < ∞} XT = i (XT+n)n≥0

(Xn)n≥0 X0 = i

{T < ∞} (XT+n)n≥0 (Xn)0≤n<T

XT
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The strong Markov property says that "the future and the past
are independent given the present" remains true even at random
times , as long as they are stopping times.

This is, in general, not true for non-stopping times. For
example, if  is a simple random walk and

 then, if , we know the
path of  between times  and 100 cannot hit 10. So it
cannot be a new copy of the original Markov chain.

T

X

T = sup{0 ≤ n ≤ 100 : Xn = 10} T < ∞
X T + 1
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Hitting times and the Strong Markov property
Consider an irreducible recurrent Markov chain on a discrete state-
space . Fix  and let

For , recursively let

It follows from the strong Markov property that the random
variables

are independent and identically distributed and also independent of
.

S i ∈ S

H
(i)
0 = inf{n ≥ 0 : Xn = i}.

m ≥ 0

H
(i)
m+1 = inf{n > H

(i)
m : Xn = i}.

H
(i)
m+1 − H

(i)
m ,m ≥ 0

H
(i)
0
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Test understanding: show that  is a sequence of
stopping times.

Notice that the MC is recurrent iff these random variables are
all almost surely finite. It is positive recurrent iff they all have
finite mean.

Test understanding: check that you can see why the increments

are independent and identically distributed.

H
(i)
0 ,H

(i)
1 , …

H
(i)
m+1 − H

(i)
m ,m ≥ 0
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Suppose we start our Markov chain from . Then .

Consider the number of visits to state  which have occurred by
time  (not including the starting point!) i.e.

This is an example of a renewal process.

X0 = i H
(i)
0 = 0

i

n

N (i)(n) = # {k ≥ 1 : H
(i)
k ≤ n} .
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Renewal processes
Definition Let  be i.i.d. integer-valued random variables
such that . Let  and, for , let

and, for ,

Then  is a (discrete) renewal process.

Z1,Z2, …
P(Z1 > 0) = 1 T0 = 0 k ≥ 1

Tk =
k

∑
j=1

Zj

n ≥ 0

N(n) = #{k ≥ 1 : Tk ≤ n}.

(N(n))n≥0
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Draw a picture!

 are the times of incidents (say, times when we need
to replace a lightbulb) and  counts the number of
incidents which have occurred by time .

Note that the times  between incidents must be
strictly positive!

Note that .

We can make a more general definition where  doesn't have
to be integer-valued, but we won't need that here. But note
that if  is exponentially distributed then  is a Poisson
process.

T1,T2, …
N(n)

n

Z1,Z2, …

{N(n) = k} = {Tk ≤ n < Tk+1}

Z1

Z1 N
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Here is a special example. Suppose that  are i.i.d.
 i.e.

Then we can think of  as the number of independent coin tosses
required to first see a head, if heads has probability .

So  has the same distribution as the number of heads in 
independent coin tosses i.e.  and, moreover,

and

So, in this case,  is a Markov chain.

Z1,Z2, …
Geom(p)

P(Z1 = k) = (1 − p)k−1p, k ≥ 1.

Z1

p

N(n) n
N(n) ∼ Bin(n, p)

P(N(k + 1) = nk + 1|N(0) = n0,N(1) = n1, … ,N(k) = nk)

= P(N(k + 1) = nk + 1|N(k) = nk) = p

P(N(k + 1) = nk|N(0) = n0,N(1) = n1, … ,N(k) = nk)

= P(N(k + 1) = nk|N(k) = nk) = 1 − p.

(N(n))n≥0
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However, renewal processes are not normally Markov. The example
on the previous slide is essentially the only example of a discrete
renewal process which is Markov.

Why? Because the geometric distribution has the memoryless
property:

So, regardless of what I know about the process up until the
present time, the distribution of the remaining time until the next
renewal is again geometric. The geometric is the only discrete
distribution with this property.

P(Z1 − r = k|Z1 > r) = (1 − p)k−1p, k ≥ 1.
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For example, take . Then

and

Z1 ∼ 1 + Ber(p)

P(N(k + 1) = N(k) + 1|N(k) = N(k − 1)) = 1

P(N(k + 1) = N(k) + 1|N(k) = N(k − 1) + 1) = 1 − p.
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Delayed renewal processes
Definition
Let  be a non-negative integer-valued random variable and,
independently, let  be independent strictly positive and
identically distributed integer-valued random variables.
For , let

and, for ,

Then  is a (discrete) delayed renewal process, with delay
.

Z0

Z1,Z2, …

k ≥ 0

Tk =
k

∑
j=0

Zj

n ≥ 0

N(n) = #{k ≥ 0 : Tk ≤ n}.

(N(n))n≥0

Z0
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In general, we may wish to start our Markov chain  from a
general initial distribution. Then we do not necessarily have

 and so, in particular,  may be non-zero. This
motivates a more general definition of a renewal process.

The distribution of  depends on the initial distribution of
the Markov chain .

In the lightbulb setting: you might not know when the bulb
present at time 0 was installed! So its lifetime is represented by

.

Note that this allows for the possibility that , unlike the
other inter-renewal times which must be strictly positive.

X

X0 = i H
(i)
0

H
(i)
0

X

Z0

Z0 = 0
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Strong law of large numbers
Suppose that . Then the SLLN tells us that

One can use this to show that

which tells us that we see renewals at a long-run average rate of
.

μ := E[Z1] < ∞

=
k

∑
j=0

Zj → μ  almost surely as  k → ∞.
Tk

k

1

k

→  almost surely as  n → ∞
N(n)

n

1

μ

1/μ
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Observe that  and  are effectively inverses of one another.

Test understanding: see if you can write down the argument to
show what is claimed in the previous slide. Hint:  as

.

T N

N(n) → ∞
n → ∞
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Probability of a renewal
Think back to our motivating example of hitting times of state 
for a Markov chain. Suppose we want to think in terms of
convergence to equilibrium: we would like to know what is the
probability that at some large time  there is a renewal (i.e. a visit
to ). We have  for large  (where  is the expected
return time to ), so as long as renewals are evenly spread out, the
probability of a renewal at a particular large time should look like

.

This intuition turns out to be correct as long as every sufficiently
large integer time is a possible renewal time. In particular, let

If  then this is fine; if we are interpreting renewals as returns
to  for our Markov chain, this says that the chain is aperiodic.

i

n

i N(n) ≈ n/μ n μ

i

1/μ

d = gcd{n : P(Z1 = n) > 0}.

d = 1
i
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Recall that  and so !

If  and we are in the non-delayed setting, then renewals
are only possible at times which are multiples of  and so the
probability of a renewal at one of these times ends up tending
to  (note  necessarily in this case!).

Z1 ≥ 1 1/μ ≤ 1

d ≥ 2
d

d/μ E[Z1] ≥ d

63 / 221



An auxiliary Markov chain
We saw that a delayed renewal process  is not normally
itself Markov. But we can find an auxiliary process which is. For

, let

This is the time until the next renewal.

(N(n))n≥0

n ≥ 0

Y (n) := TN(n−1) − n.
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Transition probabilities for the time to
next renewal
For ,

 has very simple transition probabilities: if  then

and

n ≥ 0

Y (n) := TN(n−1) − n.

(Y (n))n≥0 k ≥ 1

P(Y (n + 1) = k − 1|Y (n) = k) = 1

P(Y (n + 1) = i|Y (n) = 0) = P(Z1 = i + 1)  for  i ≥ 0.
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A stationary version
Recall that , where  is our original Markov chain.
Then the stationary distribution for the auxiliary Markov chain is

If we start a delayed renewal process  with  then
the time until the next renewal is always distributed as . We call
such a delayed renewal process stationary.

Notice that the stationary probability of being at a renewal time is
.

μ = E[Z1] (Zn)n≥0

νi = P(Z1 ≥ i + 1), i ≥ 0.
1

μ

(N(n))n≥0 Z0 ∼ ν

ν

ν0 = 1/μ
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Test understanding: check that  defines a probability mass
function.

Test understanding: demonstrate that  is stationary for .
Note:  is clearly not reversible, so there's no point trying
detailed balance!

Test understanding: check that in the case , the
stationary distribution  is also . So the renewal
process is already stationary.

ν

ν Y

Y

Z1 ∼ Geom(p)
ν Geom(p)
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Size-biasing and inter-renewal intervals
The stationary distribution

has an interesting interpretation.

Let  be a random variable with probability mass function

We say that  has the size-biased distribution associated with the
distribution of .

Now let . Then .

νi = P(Z1 ≥ i + 1), i ≥ 0
1

μ

Z∗

P(Z∗ = i) = , i ≥ 1.
iP(Z1 = i)

μ

Z∗

Z1

L ∼ U{0, 1, … ,Z∗ − 1} L ∼ ν
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Test understanding: check that the definition of  is indeed a
probability mass function.

Test understanding: check the last line of the previous slide.

Z∗
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Interpretation
This isn't a coincidence! We are looking at a large time  and want
to know how much time there is until the next renewal. Intuitively,
 has more chance to fall in a longer interval. Indeed, it is  times

more likely to fall in an interval of length  than an interval of
length . So the inter-renewal time that  falls into is size-biased.

Again intuitively, it is equally likely to be at any position inside that
renewal interval, and so the time until the next renewal should be
uniform on  i.e. it should have the same
distribution as .

n

n i

i

1 n

{0, 1, … ,Z∗ − 1}
L
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Convergence to stationarity
Theorem (Blackwell's renewal theorem)
Suppose that the distribution of  in a delayed renewal process is
such that  and . Then

as .

(Recall that the stationary probability of being at a renewal time is
.)

Z1

gcd{n : P(Z1 = n) > 0} = 1 μ := E[Z1] < ∞

P(renewal at time n) = P(Y (n) = 0) →
1

μ

n → ∞

ν0 = 1/μ
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The idea behind the proof: coupling
We start two independent versions of our renewal process: one
with a general delay distribution, and one with delay distribution
. The second version of  is therefore in equilibrium.

We show that, if we wait long enough, there will be a (random
but finite) time  such that both renewal processes have a
renewal at .

After , the renewal times of both versions have the same law.
Therefore the difference between the probability that the first
version has a renewal at time  and the probability that the
second version has a renewal at time  must be smaller than

.

ν Y

τ

τ

τ

n

n

P(τ > n)
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The idea behind the proof: coupling
(cont.)

Since the second version is in equilibrium, the probability it has
a renewal at time  is  for any . Thus we deduce that

 

This is only a sketch proof (and not examinable), but it is not too
difficult to make rigorous. Most of the work is in showing that  is
almost surely finite.

n ν0 = 1/μ n

|P(renewal of first version at time n) − 1/μ| ≤ P(τ > n) → 0.

τ
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Convergence to stationarity
We have shown:

Theorem (Blackwell's renewal theorem)
Suppose that the distribution of  in a delayed renewal process is
such that  and . Then

as .

Z1

gcd{n : P(Z1 = n) > 0} = 1 μ := E[Z1] < ∞

P(renewal at time n) = P(Y (n) = 0) →
1

μ

n → ∞
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Convergence to stationarity
From Blackwell's renewal theorem we can immediately deduce the
usual convergence to stationarity for a Markov chain.

Theorem
Let  be an irreducible, aperiodic, positive recurrent Markov chain

(i.e. ). Then, whatever the distribution of
,

as .

Note the interpretation of the stationary probability of being in
state  as the inverse of the mean return time to .

X

μi = E[H (i)
1 − H

(i)
0 ] < ∞

X0

P(Xn = i) →
1

μi

n → ∞

i i
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You may have seen a direct proof of convergence to stationarity
that is very similar to the proof of Blackwell's renewal theorem.

Irreducibility tells that we can reach  from any other state.
Aperiodicity gives us the necessary non-lattice condition in
Blackwell's theorem. Positive recurrence tells us precisely that
the inter-renewal times have finite expectation.

i
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Decomposing a Markov chain
Consider an irreducible, aperiodic, positive recurrent Markov chain

, fix some state  and let  for all .

Recall that  is a collection of i.i.d. random
variables, by the Strong Markov property.

More generally, it follows that the collection of pairs

(where the first element of the pair is the time between the th
and st visits to , and the second element is a path which
starts and ends at  and doesn't touch  in between) are
independent and identically distributed.

X i Hm = H
(i)
m m ≥ 0

(Hm+1 − Hm,m ≥ 0)

(Hm+1 − Hm, (XHm+n)0≤n≤Hm+1−Hm
) ,m ≥ 0,

m

(m + 1) i

i i
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Decomposing a Markov chain (cont.)
Conditionally on ,  has the same
distribution as the Markov chain  started from  and conditioned
to first return to  at time .

So we can split the path of a recurrent Markov chain into
independent chunks ("excursions"), between successive visits to .
The renewal process of times when we visit  becomes stationary.
To get back the whole Markov chain, we just need to "paste in"
pieces of conditioned path.

Hm+1 − Hm = k (XHm+n)0≤n≤k

X i

i k

i

i
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Decomposing a Markov chain (cont.)

Essentially the same picture will hold true when we come to
consider general state-space Markov chains in the last three
lectures.
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Martingales
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This is the second major theme of this course: martingales are a
class of random processes which are closely linked to ideas of
conditional expectation.

Briefly, martingales model your fortune if you are playing a fair
game. (There are associated notions of "supermartingale", for a
game unfair to you, and "submartingale", for a game unfair to your
opponent.)

But martingales can do so much more! They are fundamental to
the theory of how one's predictions should evolve as time
progresses.

In this section we discuss a wide range of different martingales.
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Martingales pervade modern probability
1. We say the random process  is a martingale if

it satisfies the martingale property:

2. Simplest possible example: simple symmetric random walk
. The martingale property follows from

independence and distributional symmetry of jumps.

3. For convenience and brevity, we often replace 
by  and think of "conditioning on " as "conditioning
on all events which can be determined to have happened by
time ".

X = (Xn : n ≥ 0)

E[Xn+1|Xn,Xn−1, …] =

E[Xn plus jump at time n + 1|Xn,Xn−1, …] = Xn .

X0 = 0,X1,X2, …

E[ ⋅ |Xn,Xn−1, …]
E[ ⋅ |Fn] Fn

n
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For a conversation with the inventor, see
https://chance.dartmouth.edu/Doob/conversation.html

In words: expected future level of  is current level.

We use  notation without comment in future, usually
representing conditioning by  (if  is martingale
in question). Sometimes further conditioning will be added; but

 has at least as much conditioning as . Crucially, the
"Tower property" of conditional expectation then applies:

Test understanding: deduce 

There is an extensive theory about the notion of a filtration of 
-algebras (also called -fields), . We avoid going
into details...

X

Fn

X0,X1, … ,Xn X

Fn+1 Fn

E[E[Z|Fn+1]|Fn] = E[Z|Fn] .

E[Xn+k|Fn] = Xn .

σ

σ {Fn : n ≥ 0}
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Thackeray's martingale
1. MARTINGALE:

spar under the bowsprit of a sailboat;
a harness strap that connects the nose piece to the girth;
prevents the horse from throwing back its head.

2. MARTINGALE in gambling: The original sense is given in the OED: "a

system in gambling which consists in doubling the stake when losing in the hope

of eventually recouping oneself." The oldest quotation is from 1815 but the

nicest is from 1854: Thackeray in The Newcomes I. 266 "You have not played

as yet? Do not do so; above all avoid amartingale if you do."

3. Result of playing Thackeray's martingale system and stopping
on first win: Set fortune at time  to be . If

 then
, otherwise .

n Mn

X1 = −1, … ,Xn = −n

Mn = −1 − 2 − … − 2n−1 = 1 − 2n Mn = 1
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This is the "doubling" strategy. The equestrian meaning
resembles the probabilistic definition to some extent.

Notice how the randomness of Thackeray's martingale is the
same as for a simple symmetric random walk.

Test understanding: compute the expected value of  from
first principles.

Test understanding: what should be the value of  if  is

computed as for  but stopping play if  hits level ?
(Think about this, but note that a satisfactory answer has to
await discussion of optional stopping theorem in next section.)

Mn

E[M̃n] M̃

M M 1 − 2N
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Martingales and populations
1. Consider a branching process : population at time  is ,

where  (say) and  is the sum 
of  independent copies of a non-negative integer-valued
family-size r.v. . The formal definition requires the  to
be independent of .

2. Suppose . Then  defines a
martingale.

3. Suppose . Let  be total of all
populations up to time . Then  defines a
martingale.

4. If  is the smallest non-negative root of the equation ,
then  defines a martingale.

5. In all these examples we can use , representing
conditioning by all  for .

Y n Yn
Y0 = 1 Yn+1 Zn+1,1 + … + Zn+1,Yn

Yn
Z Zn+1,i

Y0, … ,Yn

E[Z] = μ < ∞ Xn = Yn/μn

E[sZ] = G(s) Hn = Y0 + … + Yn
n sHn/(G(s)Hn−1)

ζ G(s) = s

ζYn

E[ ⋅ |Fn]
Zm,i m ≤ n
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New Yorker's definition of branching process:

You are born. You live a while. You have a random number of kids. You
die. Your children are completely independent of you, but behave in
exactly the same way.

Test understanding: check Example 2. Note,  measures
relative deviation from the deterministic Malthusian model of
growth.

Test understanding: check Example 3.

Test understanding: check Example 4. It can be shown that  is
the probability that the population eventually becomes extinct.

Indeed, we can also generalize to general .

X

ζ

Y0
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Definition of a martingale
Formally:

Definition
 is a martingale if  (for all ) andX E[|Xn|] < ∞ n

Xn = E[Xn+1|Fn] .
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It is useful to have a general definition of expectation here (see
the section on conditional expectation in the preliminary notes).

It is important that the  are integrable.

It is a consequence that  is part of the conditioning expressed
by .

Sometimes we expand the reference to :

Xn

Xn

Fn

Fn

Xn = E[Xn+1|Xn,Xn−1, … ,X1,X0] .
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Supermartingales and submartingales
Two associated definitions.

Definition
 is a supermartingale if  for all  and

(and  forms part of conditioning expressed by ).

Definition
 is a submartingale if  for all  and

(and  forms part of conditioning expressed by ).

(Xn : n ≥ 0) E[|Xn|] < ∞ n

Xn ≥ E[Xn+1|Fn]

Xn Fn

(Xn : n ≥ 0) E[|Xn|] < ∞ n

Xn ≤ E[Xn+1|Fn]

Xn Fn
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Supermartingales:
It is important that the  are integrable.
It is now not automatic that  forms part of the conditioning
expressed by , and it is therefore important that this
requirement is part of the definition.

Submartingales:
It is important that the  are integrable.
Again it is important that  forms part of the conditioning
expressed by .

How to remember the difference between "sub-" and "super-"?
Suppose  measures your fortune in a casino gambling game.
Then "sub-" is bad and "super-" is good for the casino!

Xn

Xn

Fn

Xn

Xn

Fn

(Xn)
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Examples of super/submartingales
1. Consider asymmetric simple random walk: supermartingale if

jumps have negative expectation, submartingale if jumps have
positive expectation.

2. This holds even if the walk is stopped on its first return to .

3. Consider Thackeray's martingale based on asymmetric random
walk. This is a supermartingale or a submartingale depending on
whether jumps have negative or positive expectation.

4. Consider the branching process  and think about  on its
own instead of . This is a supermartingale if  (sub-
critical case), a submartingale if  (super-critical case), and
a martingale if  (critical case).

5. By the conditional form of Jensen's inequality, if  is a
martingale then  is a submartingale.

0

(Yn) Yn
Yn/μn μ < 1

μ > 1
μ = 1

X
|X|
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Test understanding: check all these examples.

In each case the general procedure is as follows: compare
 to .

Note that all martingales are automatically both sub- and
supermartingales and, moreover, they are the only processes to be
both sub- and supermartingales.

E[Xn+1|Fn] Xn
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More martingale examples
1. Repeatedly toss a coin, with probability of heads equal to :

each Head earns £1 and each Tail loses £1. Let  denote your
fortune at time , with . Then

defines a martingale.
2. A shuffled pack of cards contains  black and  red cards. The

pack is placed face down, and cards are turned over one at a
time. Let  denote the number of black cards left just before
the -th card is turned over:

the proportion of black cards left just before the -th card is
revealed, defines a martingale.

p
Xn

n X0 = 0

( )
Xn1 − p

p

b r

Bn

n

,
Bn

r + b − (n − 1)

n
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Test understanding: check both of these examples.

It is instructive to try to figure out why it is "obvious" that the
second example is a martingale. (Hint: it's about symmetry...)

On the other hand, the first example yields a martingale because

After some training, one can often spot martingales like this almost
on sight.

p × ( ) + (1 − p) × ( )
−1

= 1 .
1 − p

p

1 − p

p
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An example of importance in finance
1. Suppose  are independent identically distributed

normal random variables of mean  and variance , and put
.

2. Then the following is a martingale:

3. A modification exists for which the  have non-zero mean .
Hint: .

N1,N2, …
0 σ2

Sn = N1 + … + Nn

Yn = exp(Sn − σ2) .n
2

Ni μ

Sn → Sn − nμ
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Here modifications of  provide the simplest model for market
price fluctuations appropriately discounted.

In fact  is a martingale, though this is not the point here.

Test understanding: Prove that  is a martingale! Hint:
.

Test understanding: figure out the modification!

A continuous-time variation on this example (using Brownian
motion) is an important baseline model in mathematical
finance.

Note that the martingale can be expressed as

Yn

(Sn)

(Yn)

E[exp(N1)] = eσ
2/2

Yn+1 = Yn exp(Nn+1 − ) .σ2

2
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Martingales and likelihood
1. Suppose that a random variable  has a distribution which

depends on a parameter . Independent copies  of 
are observed at times . The likelihood of  at time  is

2. If  is the "true" value then (computing expectation with
)

X

θ X1,X2, … X

1, 2, … θ n

L(θ;X1, … ,Xn) = p(X1, … ,Xn ∣ θ) .

θ0

θ = θ0

E[
∣
∣
∣
Fn] = .

L(θ1;X1, … ,Xn+1)

L(θ0;X1, … ,Xn+1)

L(θ1;X1, … ,Xn)

L(θ0;X1, … ,Xn)
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Simple case of normal data with unknown mean :

Idea to have in mind:  and . So taking
the expectation under  is assuming that  is the true value.

Test understanding: check that this is a martingale.

Hence likelihood ratios are really the same thing as martingales.

The martingale in the finance example can also arise in this way,
as the likelihood ratio between two different values of  if the
model is that the  are independent identically distributed

.

θ

L(θ;X1, … ,Xn) ∝ exp(−
n

∑
1

(Xi − θ)2) .
1

2σ2

H0 : θ = θ0 H1 : θ = θ1

H0 θ0

θ

Xi

N(θ,σ2)
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Martingales for Markov chains
To connect to the first theme of the course, Markov chains provide
us with a large class of examples of martingales.
1. Let  be a Markov chain with countable state-space  and

transition probabilities . Let  be any bounded
function.

2. Take  to contain all the information about .
3. Then

defines a martingale.
4. In fact, if  is a martingale for all bounded functions  then

 is a Markov chain with transition probabilities .

X S
px,y f : S → R

Fn X0,X1, … ,Xn

M
f
n = f(Xn) − f(X0) −

n−1

∑
i=0

⎡

⎣
∑
y∈S

(f(y) − f(Xi))pXi,y
⎤

⎦

M f f
X px,y
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We need some condition on  to ensure that the resulting
process is integrable.

Note that  contains more information than just
.

Test understanding: show that  is indeed a martingale. First
note that .
Using this and the Markov property, check that

.

See Section 4.1 of Norris' book for a proof and discussion.

f

Fn

M0,M1, … ,Mn

M f

∑y∈S(f(y) − f(Xi))pXi,y = E[f(Xi+1) − f(Xi)|Xi]

E[M f
n+1 − M

f
n |Fn] = 0
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Martingales for Markov chains: harmonic
functions
Call a function  harmonic if  for all

.

We defined

and so we see that if  is harmonic then  is itself a
martingale.

The terminology supermartingale/submartingale was actually chosen to mirror the
potential-theoretic terminology superharmonic/subharmonic.

f : S → R f(x) = ∑y∈S f(y)px,y

x ∈ S

M
f
n = f(Xn) − f(X0) −

n−1

∑
i=0

⎡

⎣
∑
y∈S

(f(y) − f(Xi))pXi,y
⎤

⎦

f f(Xn)
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Martingale convergence
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It's often not enough just to know about stochastic processes at
fixed, deterministic times; for many applications, it's also natural to
think about what happens at random times. For example, suppose
you are playing a fair game. What happens if you adopt a strategy
of leaving the game at a random time? For "reasonable" random
times, this should offer you no advantage. Here we seek to make
sense of the term "reasonable".

Note that the gambling motivation is less frivolous than it might
appear. Mathematical finance is about developing trading strategies
(complex gambles!) aimed at controlling uncertainty.
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The martingale property at random times
The big idea
Martingales  stopped at "nice" times are still martingales. In
particular, for a "nice" random ,

For a random time  to be "nice", two things are required:

1.  must not "look ahead";
2.  must not be "too big".

Note that random times  turning up in practice often have
positive chance of being infinite.

M

T

E[MT ] = E[M0] .

T

T

T

T
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How can  fail to be "nice"? Consider simple symmetric random
walk  begun at .

Example of "looking ahead": Set 
and set . Then

.

Example of being "too big":  so (assuming
 is almost surely finite, which it is here)

.
This is the nub of the matter for the Thackeray example.

Example of possibly being infinite: asymmetric simple random
walk  begun at , ,  as above.

T

X 0

S = sup{Xn : 0 ≤ n ≤ 10}
T = inf{n : Xn = S}

E[XT ] ≥ P(S > 0) > 0 = E[X0]

T1 = inf{n : Xn = 1}
T1

E[XT1 ] = 1 > 0 = E[X0]

X 0 E[X1] < 0 T1 = inf{n : Xn = 1}
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Stopping times
We have already seen what we mean by a random time "not
looking ahead": such a time  is more properly called a stopping
time.

Example
Let  be a branching process of mean-family-size  (recall that

 determines a martingale), with .

The random time  is a
stopping time.

Indeed  is clearly determined by the information
available at time :

since  implies  etc.

T

Y μ

Xn = Yn/μn Y0 = 1

T = inf{n : Yn = 0} = inf{n : Xn = 0}

{T ≤ n}
n

{T ≤ n} = {Yn = 0},
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Recall  for independent family sizes
.

For a more interesting example, consider

In the case of ,

where . Thus  is
determined by information at time , so  is a stopping time.

It is important to be clear about what is information provided at
time . Here we suppose it to be made up only of the sizes of
families produced by individuals in generations .
Other choices are possible, of course.

Yn = Zn,1 + … + Zn,Yn−1

Zm,j

S = inf{n : there is at least one family of size 0 before n}.

S

{S ≤ n} = A1 ∪ A2 ∪ … ∪ An

Ai = {Zi,j = 0 for some j ≤ Yi} {S ≤ n}
n S

n

0, 1, …n − 1
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Stopping times aren't enough

However, even if  is a stopping time, we clearly need a stronger
condition in order to say that .

e.g. let  be a random walk on , started at 0.

 is a stopping time

 is typically "too big": so long as it is almost surely finite,
 and we deduce that .

T

E[MT |F0] = M0

X Z

T = inf{n > 0 : Xn ≥ 10}

T

XT ≥ 10 0 = E[X0] < E[XT ]
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General hitting times  need not be "too big": e.g. if  is
simple symmetric random walk begun at  and .

 being almost surely finite means that, with probability 1, 
does eventually exceed 10. (This happens if  or if

 and .)

Another example: let  be a branching process of mean-family-
size  with  — recall that  determines a
martingale.

The random time  is a
stopping time but, again,  here is "too big": so long as it is
almost surely finite then . (  is almost surely
finite if , or if  and there is positive chance of zero
family size.)

TA X

0 A = {±10}

T X

E[X1] > 0
E[X1] = 0 P(X1 > 0) > 0

Y

μ Y0 = 1 Xn = Yn/μn

T = inf{n : Yn = 0} = inf{n : Xn = 0}
T

1 = E[X0] > E[XT ] T

μ < 1 μ = 1
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Optional stopping theorem

Theorem
Suppose  is a martingale and  is a bounded stopping time.
Then

We can generalize to general stopping times either if  is bounded
or (more generally) if  is "uniformly integrable".

M T

E[MT |F0] = M0 .

M

M
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Note we can take expectation of a single random variable  (i.e.,
 is integrable) exactly when 

as . (This fails when !).

Uniform integrability requires this to hold uniformly for a whole
collection of random variables :

Examples:
if the  are bounded;
if there is a single non-negative random variable  with

 and  for all ;
if the th moments  are bounded for some .

The optional stopping theorem also holds for stopping times 
, in that , but this requires more serious measure
theory to carefully define what we mean by  (events determined
by time )...

X

X E[|X|; |X| > n] ≡ E[|X|1|X|>n] → 0
n → ∞ E[|X|; |X| > n] = ∞

Xi

lim
n→∞

sup
i

E[|Xi|; |Xi| > n] = 0 .

Xi

Z
E[Z] < ∞ |Xi| ≤ Z i

p E[|Xi|
p] p > 1

S ≤ T
E[MT |FS] = MS

FS
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Gambling: you shouldn't expect to win
Suppose your fortune in a gambling game is , a martingale begun
at  (for example, a simple symmetric random walk). If  is the
maximum time you can spend playing the game, and if  is a
bounded stopping time, then

Contrast with Fleming (1953):

Then the Englishman, Mister Bond, increased his winnings to exactly
three million over the two days. He was playing a progressive system on
red at table five. ... It seems that he is persevering and plays in
maximums. He has luck.

X

0 N

T ≤ N

E[XT ] = 0 .
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There are exceptions, for example Blackjack (using card-counting:
en.wikipedia.org/wiki/Card_counting)

Strategies proposed for other games to seem less convincing; for
example, the Labouchère system favoured by Ian Fleming
en.wikipedia.org/wiki/Labouchère_system:

The Labouchère system, also called the cancellation system, is a
gambling strategy used in roulette. The user of such a strategy decides
before playing how much money they want to win, and writes down a list
of positive numbers that sum to the predetermined amount. With each
bet, the player stakes an amount equal to the sum of the first and last
numbers on the list. If only one number remains, that number is the
amount of the stake. If bet is successful, the two amounts are removed
from the list. If the bet is unsuccessful, the amount lost is appended to
the end of the list. This process continues until either the list is
completely crossed out, at which point the desired amount of money has
been won, or until the player runs out of money to wager.
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Exit from an interval
Here's an elegant application of the optional stopping theorem.

Suppose that  is a simple symmetric random walk started
from . Then  is a martingale.
Let . (  is almost surely
finite.) Suppose we want to find

.
On the (random) time interval ,  is bounded, and so we
can apply the optional stopping theorem to see that

But then

Solving gives .

X
0 X

T = inf{n : Xn = a or Xn = −b} T

P(X hits a before −b) = P(XT = a)

[0,T ] X

E[XT ] = E[X0] = 0.

0 = E[XT ] = aP(XT = a) − bP(XT = −b)

= aP(XT = a) − b(1 − P(XT = a)).

P(X hits a before −b) = b
a+b
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Martingales and hitting times
Suppose that  are i.i.d.  random variables,
where . Let  and let  be the time when
 first exceeds level .

Then  determines a martingale (for any
), and the optional stopping theorem can be applied to show

This can be improved to an equality, at the expense of using more
advanced theory, if we replace the Gaussian random walk  by
Brownian motion.

X1,X2, … N(−μ, 1)
μ > 0 Sn = X1 + … + Xn T

S ℓ > 0

exp(α(Sn + μn) − n)α2

2

α ≥ 0

E[exp(−pT )] ∼ e−(μ+√μ2+2p)ℓ, p > 0.

S
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Note . Use the optional stopping theorem on
the bounded stopping time :

and then take . (For this example,  with positive
probability, so extra care must be taken!)

On , we have  for all . Also,
 a.s. (by SLLN), so for ,

On , we have  relatively close to ; letting , for
 and large ,

T = inf{n : Sn ≥ ℓ}
min{T ,n}

E[exp(αSmin{T ,n} + α(μ − ) min{T ,n})] = 1
α

2

n → ∞ T = ∞

{T = ∞} min{n,T} = n n ≥ 0
Sn → −∞ α > 2μ

E[exp(αSn + α(μ − )n)] → 0 as n → ∞.
α

2

{T < ∞} ST ℓ n → ∞
α > 2μ ℓ

E[exp(αℓ + α(μ − )T )] ∼ 1 .
α
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Now set , so :

Improvement to equality arises since Brownian motion is continuous
in time and so cannot jump over the level  without hitting it.

α = μ + √μ2 + 2p > 0 α(μ − ) = −pα
2

E[exp(−pT )] ∼ exp(−(μ + √μ2 + 2p)ℓ) .

ℓ
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Martingale convergence
Theorem
Suppose  is a non-negative supermartingale. Then there exists a
random variable  such that  a.s.; moreover,

.

Theorem
Suppose  is a bounded martingale (or, more generally, uniformly
integrable). Then  exists a.s.; moreover,

.

Theorem
Suppose  is a martingale and  for some fixed constant

. Then one can prove directly that  exists a.s.;
moreover, .

X

Z Xn → Z

E[Z|Fn] ≤ Xn

X

Z = limn→∞ Xn

E[Z|Fn] = Xn

X E[X2
n] ≤ K

K Z = limn→∞ Xn

E[Z|Fn] = Xn
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At the heart of the argument here is Doob's famous "upcrossing
lemma": use the supermartingale property and non-negativity to
control the number of times a supermartingale can cross up from a
fixed low level to a fixed high level.

Consider symmetric simple random walk  begun at  and
stopped at 0:  if  and  is
symmetric simple random walk. Clearly  is non-negative;
clearly , since  will eventually hit ;
clearly  since .

Thus simple symmetric random walk  begun at  and stopped
on hitting  or  must converge to a limiting value .
Evidently  can only take the values  or . Moreover, since

 we deduce .

X 1
Xn = Ymin{n,T} T = inf{n : Yn = 0} Y

Xn

Xn = Ymin{n,T} → Z = 0 Y 0

0 = E[Z|Fn] ≤ Xn Xn ≥ 0

X 0
a −b Z

Z a −b

E[Z|Fn] = Xn P(Z = a|Fn) = Xn+b

a+b
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Sketch argument: from martingale property

hence  is non-decreasing; hence it converges to a limiting
value; hence  tends to .

0 ≤ E[(Xm+n − Xn)2∣
∣Fn] = E[X2

m+n
∣
∣Fn] − X2

n ;

E[X2
n]
E[(Xm+n − Xn)2] 0
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Birth-death process
Suppose  is a discrete-time birth-and-death process started at

 and absorbed at zero:

 is a non-negative supermartingale and so  exists.

 is a biased random walk with a single absorbing state at 0. Let
; then  a.s., and so the only possible

limit for  is 0.

Y

y > 0

pk,k+1 = , pk,k−1 = , for k > 0,  with 0 < λ < μ.
λ

λ + μ

μ

λ + μ

Y limn→∞ Yn

Y

T = inf{n : Yn = 0} T < ∞
Y
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This is the discrete-time analogue of the  queue seen in
Lecture 1.

Test understanding: show that  is a supermartingale.

M/M/1

Y
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Birth-death process
Now let

This is a non-negative martingale converging to .

Thus, recalling that  and using the martingale
convergence theorem,

Xn = Ymin{n,T} + ( ) min{n,T}.
μ − λ

μ + λ

Z = T
μ−λ

μ+λ

Y0 = X0 = y

E[T ] ≤ ( ) y .
μ + λ

μ − λ
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Test understanding: show that  is a martingale.

The convergence theorem tells us that,
.

Markov's inequality then implies that

X

E[T ] = E[Z] = E[Z|F0] ≤ X0 = y
μ−λ

μ+λ

P(T > k) ≤ ( ) .
μ + λ

μ − λ

y

k
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Likelihood revisited
Suppose i.i.d. random variables  are observed at times

, and suppose the common density is . Suppose also
that . Recall that, if the "true" value of  is

, then

is a martingale, with  for all .

The SLLN and Jensen's inequality show that

moreover if  and  differ as densities then , and
so .

X1,X2, …
1, 2, … f(θ;x)

E[| log(f(θ;X1))|] < ∞ θ

θ0

Mn =
L(θ1;X1, … ,Xn)

L(θ0;X1, … ,Xn)

E[Mn] = 1 n ≥ 1

logMn → −c as n → ∞ ,
1

n

f(θ0; ⋅ ) f(θ1; ⋅ ) c > 0
Mn → 0 126 / 221



Test understanding: check that this argument works.
Test understanding: the result is still true even if the random
variables are neither independent nor identically distributed.
Show this is true!
Remember that the expectation is computed using .
Jensen's inequality for concave functions is opposite to that for
convex functions: if  is concave then .
Moreover if  is non-deterministic and  is strictly concave
then the inequality is strict.
The rate of convergence of  is geometric if the difference
between  and  is identifiable.
Note that this is in keeping with hypothesis testing: as more
information is gathered, so we would expect the evidence
against  to accumulate, and the likelihood ratio to tend to
zero.

θ = θ0

ψ E[ψ(X)] ≤ ψ (E[X])
X ψ

Mn

θ0 θ1

θ1
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Sequential hypothesis testing
In the setting above, suppose that we want to satisfy

How large a sample size do we need?

Let

and consider observing  and then rejecting  iff
.

P(reject H0|H0) ≤ α and P(reject H1|H1) ≤ β .

T = inf{n : Mn ≥ α−1 or Mn ≤ β}

X1, … ,XT H0

MT ≥ α−1
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Here  is the hypothesis that  have density 
etc.

(A slight variant of) this strategy was originally suggested by
Wald.

Note that , since we've seen that in this
case .

H0 X1,X2, … f(θ0; ⋅)

P(T = ∞ ∣ H0) = 0
Mn → 0
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Sequential hypothesis testing continued
On the (random) time interval ,  is a bounded martingale,
and so

(where we are computing the expectation using ).

So

Interchanging the roles of  and  we also obtain
.

The attraction here is that on average, fewer observations are
needed than for a fixed-sample-size test.

[0,T ] M

E[MT ] = E[M0] = 1

θ = θ0

1 = E[MT ] ≥ α−1
P(MT ≥ α−1 | θ0) = α−1

P(reject H0|H0) .

H0 H1

P(reject H1|H1) ≤ β

130 / 221



Test understanding: check that .

For  with  vs  with 
and , the sequential test should need (roughly) 29
observations, whereas classical sample size calculations suggest
54. See (Williams 2001) for details and another example.

P(reject H1|H1) ≤ β

X ∼ N(θ, 1) H0 : θ = 0 H1 : θ = 0.4 α = 0.05
β = 0.10
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Ergodicity

and general state spaces
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We have a well-understood theory for discrete state space Markov
chains.

For example, recall that  is irreducible if for all states  and  it
has a positive chance of visiting  at some positive time, if it is
started at . And  is positive recurrent if  for all
states .

But what if the state space is not discrete? How should we
generalise these ideas? And how can we describe the speed of
convergence to equilibrium? The purpose of this lecture is to give
you a taster of what's possible.

X i j

j

i X E[Ti|X0 = i] < ∞
i
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Ergodicity
We already know that if  is a Markov chain on a discrete state-
space then its transition probabilities converge to a unique limiting
equilibrium distribution if:

1.  is irreducible;

2.  is aperiodic;

3.  is positive-recurrent.

In this case, we call the chain ergodic.

What can we say quantitatively, in general, about the speed at
which convergence to equilibrium occurs? And what if the state-
space is not discrete?

X

X

X

X
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Irreducible: the state space of  cannot be divided into regions
some of which are inaccessible from others;

Aperiodic: the state space of  cannot be broken into regions
that can only be accessed at different times;

Positive recurrent: the mean time for  to return to its starting
point is finite.

X

X

X
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Measuring speed of convergence to equilibrium (I)
The speed of convergence of a Markov chain  to equilibrium
can be measured as discrepancy between two probability
measures:  (the distribution of ) and  (the
equilibrium distribution).

Simple possibility: total variation distance. Let  be the state-
space. For , find the maximum discrepancy between

 and :

Alternative expression in the case of a discrete state-space:

There are many other possible measures of distance.

X

L (Xn|X0 = x) Xn π

X
A ⊆ X

L (Xn|X0 = x) (A) = P(Xn ∈ A|X0 = x) π(A)

distTV(L (Xn|X0 = x) ,π) = sup
A⊆X

{P(Xn ∈ A|X0 = x) − π(A)} .

distTV(L (Xn|X0 = x) ,π) = ∑
y∈X

|P(Xn = y|X0 = x) − πy| .1
2
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 is the probability that  belongs to ,
given that .

Test understanding: in the definition of total variation distance,
why is it not necessary to take ?
(Hint: consider .)

Test understanding: prove the alternative expression for the
total variation distance by considering

.

It is not even clear that total variation is the "best" notion of
distance (if there is such a thing).

L (Xn|X0 = x) (A) Xn A

X0 = x

|P(Xn ∈ A|X0 = x) − π(A)|
P(Xn ∈ Ac|X0 = x) − π(Ac)

A = {y : P(Xn = y|X0 = x) > πy}
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Measuring speed of convergence to equilibrium (II)
Definition
The Markov chain  is uniformly ergodic if its distribution
converges to equilibrium in total variation uniformly in the starting
point : for some fixed  and for fixed ,

In theoretical terms, for example when carrying out MCMC, this is
a very satisfactory property. No account need be taken of the
starting point, and accuracy improves in proportion to the length of
the simulation.

X

X0 = x C > 0 γ ∈ (0, 1)

sup
x∈X

distTV(L (Xn|X0 = x) ,π) ≤ Cγn .
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In fact, uniform ergodicity is a consequence of the apparently
weaker assertion that as ,

Any finite ergodic Markov chain is automatically uniformly
ergodic.

Much depends on the size of  and on how small  is. Typically
theoretical estimates of  and  are very conservative.

Other things being equal(!), given a choice, consider choosing a
uniformly ergodic Markov chain for your MCMC algorithm.

n → ∞

sup
x∈X

distTV(L (Xn|X0 = x) ,π) → 0 .

C γ

C γ
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Measuring speed of convergence to equilibrium (III)
Definition The Markov chain  is geometrically ergodic if its
distribution converges to equilibrium in total variation for some

 depending on the starting point  and for fixed 
(not depending on the starting point),

Here, account does need to be taken of the starting point, but still
accuracy improves in proportion to the length of the simulation.

X

C(x) > 0 x γ ∈ (0, 1)

distTV(L (Xn|X0 = x) ,π) ≤ C(x)γn .
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A significant question is, how might one get a sense of whether a
specified chain is indeed geometrically ergodic (because at least
that indicates the rate at which the distribution of  gets closer to
equilibrium) and how one might obtain upper bounds on .

We shall see later on that even given good information about  and
, and even if total variation is of primary interest, geometric

ergodicity still leaves important phenomona untouched!

Xt

γ

γ

C
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Motivation from MCMC
Given a probability density  of interest, for example a Bayesian
posterior, we could address the question of drawing from  by
using, for example, Gaussian random-walk Metropolis-Hastings:

Proposals are normal, with mean given by the current location
, and fixed variance-covariance matrix.

We use the Hastings ratio to accept/reject proposals.

We end up with a Markov chain  which has a transition
mechanism which mixes a density with staying at the starting
point.

Evidently, the chain almost surely never visits specified points other
than its starting point. Thus, it can never be irreducible in the
classical sense, and the discrete state-space theory cannot apply.

p(x)
p(x)

x

X
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Draw a picture.  for all .

This example is actually quite well-behaved!

Clearly the discrete-chain theory needs major rehabilitation if it
is to be helpful in the continuous state space case!

P(hit y|X0 = x) = 0 y ≠ x
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Measures
A measure is a way of assigning sizes to subsets of a space. Think
of probability measures, but not necessarily with total mass 1 (in
fact, not necessarily with finite total mass).

For example, length is a measure on , area is a measure on 
and volume is a measure on . These are all special cases of
Lebesgue measure on .

And counting measure is a measure on the integers: if 
then .

These examples, and probability measures, are the only ones we will
use in this course, but there are many more.

R R
2

R
3

R
d

A ⊂ Z

c(A) = |A|
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Non-examinable definition:

A measure  on a space  is a function from (some) subsets of 
to  such that:

, i.e. sets can only have positive measure;

, i.e. the empty set has measure zero;

if  are pairwise disjoint then

(There is some subtlety in deciding which subsets of  the measure
 is defined on, but we won't go into that.)

ϕ E E

R

ϕ(A) ≥ 0

ϕ(∅) = 0

A1,A2, …

ϕ (
∞

⋃
i=1

Ai) =
∞

∑
i=1

ϕ(Ai) .

E

ϕ
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Irreducibility for general chains
As we have seen, the discrete theory fails to apply directly even
to well-behaved chains on non-discrete state-spaces. (The chain
will never hit "most" points in the space, so we can't ask it to
be irreducible in the discrete sense.)

Suppose  is a measure on the state-space: then we could ask
for the chain to be irreducible on sets of positive -measure.

Definition The Markov chain  is -irreducible if for any state 
and for any subset  of the state-space with , we find
that  has positive chance of reaching  if begun at .

(That is, letting , if  we have
 for all .)

ϕ

ϕ

X ϕ x

B ϕ(B) > 0
X B x

TB = min{n ≥ 1 : Xn ∈ B} ϕ(B) > 0
P(TB < ∞|X0 = x) > 0 x
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We are skating over the issue of periodicity, which is largely
technical.

Recall the example of the Gaussian random walk  (jumps have
standard normal distribution): if  then we can assert that
with probability one  never returns to its starting point.

But it will hit any set of positive length with positive
probability! So it is length-irreducible, or in technical jargon,
Lebesgue-irreducible.

Indeed, if a set has , then 
and so .

Irreducible chains on a discrete state-space are -irreducible
where  is counting measure. So -irreducibility generalizes the
discrete notion of irreducibility.

X

X0 = 0
X

Leb(B) > 0 P(N(0, 1) ∈ B − x) > 0
P(X1 ∈ B|X0 = x) > 0

c

c ϕ
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Example of -irreducibility
Let  be i.i.d.  random variables, and define a
Markov chain  on the state space  by setting

Claim that  is -irreducible, where  is uniform on  (or
Lebesgue measure - this is equivalent).

Need to check that for any  and for any interval
 with , the chain  has positive chance of

reaching  if begun at .

Idea of proof: show that

ϕ

U1,U2, … U(−1, 1)
X (−1, 1)

Xn+1 = .
Xn + Un+1

2

X ϕ ϕ (−1, 1)

x ∈ (−1, 1)
(a, b) −1 ≤ a < b ≤ 1 X

(a, b) x

P(T[1−2−n,1) ≤ n + 1 ∣
∣X0 = x) > 0 ∀x ∈ (−1, 1).
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It's enough to check intervals of the form  for any 
because (a) there is symmetry, so the same will be true for

 and (b) any interval  with 
intersects either  or  for some .

What if the state space was  instead of ?

[1 − 2−n, 1) n

(1, 1 − 2−n] (a, b) −1 ≤ a < b ≤ 1
(1, 1 − 2−n] [1 − 2−n, 1) n ≥ 0

R (−1, 1)
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Regeneration and small sets (I)
The discrete-state-space theory works because (a) the Markov
chain regenerates each time it visits individual states, and (b) it has
a positive chance of visiting specified individual states.

In effect, this reduces the theory of convergence to a question
about renewal processes, with renewals occurring each time the
chain visits a specified state. (See lecture 2.)

We want to extend this idea by thinking in terms of renewals when
visiting sets instead.
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Regeneration and small sets (II)
Definition
Suppose that  is a -irreducible Markov chain. A set  of
positive -measure is a small set for  if there is  and a
probability measure  such that for all  the following
minorisation condition is satisfied:

 

(The terminology "small" might be confusing. There is no reason
why  necessarily has to be "small" in the traditional sense.)

X ϕ E

ϕ X α ∈ (0, 1)
ν x ∈ E

P(X1 ∈ A|X0 = x) ≥ αν(A)  for all A .

E
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Non-examinable, more general definition:

A set  of positive -measure is a small set of lag  for  if there
is  and a probability measure  such that for all 
the following minorisation condition is satisfied:

E ϕ k X

α ∈ (0, 1) ν x ∈ E

P(Xk ∈ A|X0 = x) ≥ αν(A)  for all A .
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Example of a small set
Recall the example from a few slides ago: let  be i.i.d.

 random variables, and define a Markov chain  on
the state space  by setting 

We decided  is -irreducible, where  is uniform on .

Claim that  is a small set with  and  the
uniform distribution on .

Proof: for any  and any ,

(check this!). If  then this is at least

U1,U2, …
U(−1, 1) X

(−1, 1) Xn+1 = .
Xn+Un+1

2

X ϕ ϕ (−1, 1)

[−1/2, 1/2] α = 1/2 ν
[−1/4, 1/4]

x A ⊂ (−1, 1)

P(X1 ∈ A|X0 = x) = ∫
A∩[x/2−1/2,x/2+1/2]

dy

x ∈ [−1/2, 1/2]

∫
A∩[−1/4,1/4]

2dy = ν(A).
1

2

1
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Are there any other small sets for this chain? Is  a small
set? What about ?

[−3/4, 3/4]
(−1, 1)
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Regeneration and small sets (III)
Why is this useful? Consider a small set , so that for ,

This means that, given , we can think of sampling  as a
two-step procedure. With probability , sample  from . With
probability , sample  from the probability distribution

.

E x ∈ E

p(x,A) = P(X1 ∈ A|X0 = x) ≥ αν(A)  for all A .

X0 = x X1

α X1 ν

1 − α X1
p(x,⋅)−αν(⋅)

1−α
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Non- examinable: if instead we have a small set of lag  for ,
we can sub-sample  every  time-steps and then, every time it
visits , there is probability  that  forgets its entire past and
starts again, using probability measure .

k k > 1
X k

E α X

ν
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Regeneration and small sets (IV)
Consider the Gaussian random walk described earlier in the lecture.
Any bounded set is small. For example, take .

The green region represents the overlap of all the Gaussian
densities centred at all points in .

Let  be the area of the green region and let  be its upper
boundary. Then  is a probability density and, for any ,

E = [−1, 1]

E

α f

f(x)/α x ∈ E

P(X1 ∈ A|X0 = x) ≥ α ∫
A

dx = αν(A).
f(x)
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Regeneration and small sets (V)
Let  be a random walk with transition density

Consider the set : this is small, with  and  the
uniform distribution on .

 

X

p(x, y) = 1|x−y|<1.
1

2

[0, 1] α = 1/2 ν

[0, 1]
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Take the same random walk as the previous slide,with transition
density .

The set  is not small of lag 1, but is small of lag 2.

                   

p(x, d y) = 1|x−y|<1
1
2

[0, 2]
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(Non-examinable.)

Small sets would not be very interesting except that:

1. All -irreducible Markov chains  possess small sets of some
lag;

2. Consider chains  with continuous transition density kernels.
They possess many small sets of lag  (This is very useful! Test
understanding: try seeing why this is true!);

3. Consider chains  with measurable transition density kernels.
They need possess no small sets of lag , but will possess many
sets of lag ;

4. Given just one small set,  can be represented using a chain
which has a single recurrent atom.

In a word, small sets discretize Markov chains.

ϕ X

X

1

X

1
2

X
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Example: a random walk on 
Transition density

i.e. transitions from  according to a triangular density around .

For any  and all ,

where . Hence, the whole state-space
is a small set.

Detailed balance equations (in terms of densities):
; we can spot an invariant probability

density, .

[0, 1]

p(x, y) = 2 min { , },
y

x

1 − y

1 − x

x x

A ⊂ [0, 1] x ∈ [0, 1]

P(X1 ∈ A|X0 = x) ≥ ν(A),
1

2

ν(A) = 2 ∫
A

min{x, 1 − x} dx

π(x)p(x, y) = π(y)p(y,x)
π(x) = 6x(1 − x)
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Regeneration and small sets (VII)
Here is an indication of how we can use the discretization provided
by small sets.

Theorem
Suppose that  is a stationary distribution for . Suppose that the
whole state-space  is a small set i.e. there exists a probability
measure  and  such that

Then

and so  is uniformly ergodic.

π X

X
ν α ∈ (0, 1)

P(X1 ∈ A|X0 = x) ≥ αν(A) for all x ∈ X .

sup
x∈X

distTV(L(Xn|X0 = x),π) ≤ (1 − α)n

X
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Non-examinable sketch proof
We use a coupling argument: we create two copies,  and ,
of the Markov chain  such that  and . We
construct them so that the two meet after a random time and,
since  is stationary, this will entail that  converges.

Given that  and , to generate step :

(a) with probability , choose the next position for both chains
according to distribution , and then run them so that 
forever after.

(b) with probability , sample  from 

and sample  independently from .

X(1) X(2)

X X
(1)
0 = x X

(2)
0 ∼ π

X(2) X(1)

X
(1)
n = x1 X

(2)
n = x2 n + 1

α

ν X(1) = X(2)

1 − α X
(1)
n+1 (P(x1, ⋅) − αν)1

1−α

X
(2)
n+1 (P(x2, ⋅) − αν)1

1−α
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Non-examinable sketch proof (cont.)
Then  and  are Markov chains with the same transition
mechanism  (Test understanding: check this!) and  for
all .

Let  be the first time that option (a) is used.  has a Geometric
distribution with success probability  and so .
Since the total variation distance between two probability measures
is always bounded above by 1, we have

Note that this also proves that  is unique (otherwise the same
argument produces a contradiction).

X(1) X(2)

P X
(2)
n ∼ π

n ≥ 0

T T

α P(T > k) = (1 − α)k

distTV(L(X
(1)
n |X

(1)
0 = x),π) ≤ P(T > n) = (1 − α)n.

π
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Foster-Lyapunov criteria
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Recap from previous lecture
Let  be a Markov chain and let . Let 
be a measure on the state-space.

 is -irreducible if  for all  whenever
.

A set  of positive -measure is a small set for  if there is
 and a probability measure  such that for all ,

X TB = inf{n ≥ 1 : Xn ∈ B} ϕ

X ϕ P(TB < ∞|X0 = x) > 0 x

ϕ(B) > 0

E ϕ X

α ∈ (0, 1) ν x ∈ E

P(X1 ∈ A|X0 = x) ≥ αν(A)  for all A .
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Renewal and regeneration
Suppose  is a small set for : for ,

If we can ensure that  hits  with probability , then we can
identify regeneration events:  regenerates at  with
probability  and then makes a transition with distribution ;
otherwise it makes a transition with distribution .

The regeneration events occur as a renewal sequence. Set

If the renewal sequence is non-defective (i.e. ) and
positive-recurrent (i.e. ) then there exists a stationary
version. This is the key to equilibrium theory whether for discrete or
continuous state-space.

C X x ∈ C

P(X1 ∈ A|X0 = x) ≥ αν(A) .

X C 1
X x ∈ C

α ν
p(x,⋅)−αν(⋅)

1−α

pj = P(next regeneration at time j | regeneration at time 0).

∑j pj = 1

∑j jpj < ∞
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If we have a small set with lag  then sub-sample every 
steps!

Non-defective: So there will always be a next regeneration.

Positive-recurrent: So mean time to next regeneration is finite.

k > 1 k
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Positive recurrence
Here is the Foster-Lyapunov criterion for positive recurrence of a -
irreducible Markov chain  on a state-space .

Theorem
Suppose that there exist a function , strictly
positive constants , , , and a small set 
such that

Then  for all  and any  such that
 (where  is the time when 

first hits ) and, moreover,  has an equilibrium distribution.

ϕ

X X

Λ : X → [0, ∞)
a b c C = {x : Λ(x) ≤ c} ⊆ X

E[Λ(Xn+1)|Fn] ≤ Λ(Xn) − a + b1Xn∈C.

E[TA|X0 = x] < ∞ x ∈ X A

ϕ(A) > 0 TA = inf{n ≥ 0 : Xn ∈ A} X

A X
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There is a delicate balance between all these conditions on 
and . Each one is absolutely essential!

In words, we can find a non-negative  such that
 determines a supermartingale until  becomes

small enough for  to belong to a small set!

 is called the "scale function". Choosing a good  is a real art
form, but once we have  the choice of  is mechanical. In
fact we can always renormalise  to get .

In fact, if the criterion holds then it can be shown that any sub-
level set of  is small.

It is evident from the verbal description that reflected simple
asymmetric random walk (negatively biased) is an example for
which the criterion applies.

Λ
C

Λ(X)
Λ(Xn) + an Λ(X)

X

Λ Λ
Λ a, b, c

Λ a = 1

Λ
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Example of a positive recurrent chain
Recall an example from the previous lecture: let  be
i.i.d.  random variables, and define a Markov chain 
on the state space  by setting 

We decided  is -irreducible, where  is uniform on ,
and that  is a small set with  and  the
uniform distribution on .

Let  and take  so
.

Exercise 1: 

Exercise 2: check that if we choose  and  then
we satisfy the Foster-Lyapunov criterion for positive recurrence.

U1,U2, …
U(−1, 1) X

(−1, 1) Xn+1 = .
Xn+Un+1

2

X ϕ ϕ (−1, 1)
[−1/2, 1/2] α = 1/2 ν

[−1/4, 1/4]

Λ(x) = x2 c = 1/4
C = {x : Λ(x) ≤ c} = [−1/2, 1/2]

E[Λ(Xn+1)|Fn] = + .
X2

n

4
1

12

a = 5/48 b = 3/16
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Solution to Exercise 2: if  then

so whenever  we have

and this is why we choose .

Then if  we have

which is why we choose .

Xn ∉ [−1/2, 1/2]

= X2
n − X2

n ≤ X2
n −

X2
n

4

3

4

3

16

Xn ∉ [−1/2, 1/2]

E[Λ(Xn+1)|Fn] ≤ Λ(Xn) −
5

48

a = −5/48

Xn ∈ [−1/2, 1/2]

E[Λ(Xn+1)|Fn] = + ≤ X2
n + = X2

n − +
X2

n

4

1

12

1

12

5

48

3

16

b = 3/16
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Positive recurrence
Before we give a sketch proof, we recall the theorem:

Theorem: Foster-Lyapunov criterion for positive recurrence
Suppose that there exist a function , strictly
positive constants , , , and a small set 
such that

Then  for all  and any  such that
 (where  is the time when 

first hits ) and, moreover,  has an equilibrium distribution.

Λ : X → [0, ∞)
a b c C = {x : Λ(x) ≤ c} ⊆ X

E[Λ(Xn+1)|Fn] ≤ Λ(Xn) − a + b1Xn∈C.

E[TA|X0 = x] < ∞ x ∈ X A

ϕ(A) > 0 TA = inf{n ≥ 0 : Xn ∈ A} X

A X
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Sketch of proof (non-examinable)
1. Suppose . Then  is non-negative

supermartingale up to time : if
 then

Hence,  converges.

2. So  (otherwise ,  and so
). Moreover,  (martingale

convergence theorem) so .

3. Now use the finiteness of  to show that , where
 is the time of the first regeneration in .

4. -irreducibility:  has a positive chance of hitting  between
regenerations in . Hence, .

X0 ∉ C Yn = Λ(Xn) + an

TC = inf{m ≥ 1 : Xm ∈ C}
TC > n

E[Yn+1|Fn] ≤ (Λ(Xn) − a) + a(n + 1) = Yn .

Ymin{n,TC}

P(TC < ∞) = 1 Λ(Xn) > c Yn > c + an

Yn → ∞ E[YTC |X0] ≤ Λ(X0)
aE[TC|X0] ≤ Λ(X0)

b E[T ∗|X0] < ∞
T ∗ C

ϕ X A

C E[TA|X0] < ∞ 174 / 221



There is a stationary version of the renewal process of
successive regenerations on .

One can construct a "bridge" of  conditioned to regenerate on
 at time , and then to regenerate again on  at time .

Hence one can sew these together to form a stationary version
of , which therefore has the property that  has the
equilibrium distribution for all time .

C

X

C 0 C n

X Xt

t
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A converse
Suppose, on the other hand, that  for all
starting points , where  is some small set.

The Foster-Lyapunov criterion for positive recurrence follows for
 as long as  is bounded for

.

E[TC|X0 = x] < ∞
x C

Λ(x) = E[TC|X0 = x] E[TC|X0 = x]
x ∈ C
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-irreducibility follows automatically from the condition.

To see why the converse holds, note that

where .

Moreover if the renewal process of successive regenerations on
 is aperiodic then a coupling argument shows general  will

converge to equilibrium.

If the renewal process of successive regenerations on  is not
aperiodic then one can sub-sample...

Showing that  has an equilibrium is then a matter of
probabilistic constructions using the renewal process of
successive regenerations on .

ϕ

E[Λ(Xn+1)|Fn] ≤ Λ(Xn) − 1 + b1Xn∈C ,

b = supx∈C E[TC|X0 = x] < ∞

C X

C

X

C 177 / 221



Example: general reflected random walk
Let

for  i.i.d. with continuous density ,  and
. Then

(a)  is Lebesgue-irreducible on ;

(b) the Foster-Lyapunov criterion for positive recurrence applies.

Similar considerations often apply to Metropolis-Hastings Markov
chains based on random walks.

Xn+1 = max{Xn + Zn+1, 0} ,

Z1,Z2, … f(z) E[Z1] < 0
P(Z1 > 0) > 0

X [0, ∞)
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(a)  so by SLLN , so  hits 
for any .

 so  for , some , .
So if  then the density of  is positive on .
If  is of positive measure then one of

 for some  is of positive measure so
.

 so  for , some , . Start
 at some  in  (positive chance of hitting this

interval if ). Then  has positive density over
 which includes . By

choosing  large enough, we now see we can get anywhere.

(b) Test understanding: Check Foster-Lyapunov criterion for
positive recurrence for .

E[Z1] < 0 (Z1 + … + Zn) → −∞1
n

X 0

X0

P(Z1 > 0) > 0 f(z) > 0 a < z < a(1 + )1
m

a m > 0

X0 = 0 Xn (na,na + a)n
m

A ⊂ (ma, ∞)
A ∩ (na,na + a)n

m
n ≥ m

P(X hits A|X0 = 0) > 0

E[Z1] < 0 f(z) > 0 −b − < z < −b1
k

b k > 0

X x (nb − ,nb)1
k

nb − > ma1
k

Xn

(max{0,x − nb},x − nb + )n
m

(0, )n−1
k

n

Λ(x) = x 179 / 221



Geometric ergodicity
Here is the Foster-Lyapunov criterion for geometric ergodicity of a
-irreducible Markov chain  on a state-space .

Theorem
Suppose that there exist a function , positive
constants , , , and a small set

 with

Then  for any  such that  (where
 is the time when  first hits ) and,

moreover (under suitable periodicity conditions),  is geometrically
ergodic.

Uniform ergodicity follows if the function  is bounded above.

ϕ X X

Λ : X → [1, ∞)
γ ∈ (0, 1) b c ≥ 1

C = {x : Λ(x) ≤ c} ⊆ X

E[Λ(Xn+1)|Fn] ≤ γΛ(Xn) + b1Xn∈C.

E[γ−TA |X0 = x] < ∞ A ϕ(A) > 0

TA = inf{n ≥ 0 : Xn ∈ A} X A

X

Λ
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In words, we can find a  such that 
determines a supermartingale until  becomes small enough
for  to belong to a small set!

We can rescale  so that .

The criterion for positive-recurrence is implied by this criterion.

We can enlarge  and alter  so that the criterion holds
simultaneously for all .

Λ(X) ≥ 1 Λ(Xn)/γn

Λ(X)
X

Λ b = 1

C b

E[Λ(Xn+m)|Fn]
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Example of geometric ergodicity
Return to our favourite example on  where

 with .

This time use . Previously showed that  is
small; in fact  is also small (and so is  for any

).

Use  i.e. .

Exercise: show that  satisfies the Foster-Lyapunov criterion for
geometric ergodicity with  and

 (or some other  and  if easier).

(−1, 1)

Xn+1 =
Xn+Un+1

2 Un+1 ∼ U(−1, 1)

Λ(x) = e|x| [−1/2, 1/2]
[−3/4, 3/4] [−α,α]

0 < α < 1

C = [−3/4, 3/4] c = e3/4

X

γ = e−3/8 ⋅ 2(e1/2 − 1)
b = (2(e1/2 − 1) − γ)e3/4 γ b
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Solution to exercise:

If  then

so

We can therefore choose .

E[Λ(Xn+1)|Fn] = E[e|Xn+1|∣
∣Fn]

= E[e|Xn+Un+1|/2∣
∣Fn]

≤ e|Xn|/2
E[e|Un+1|/2]

= e|Xn|/2 ⋅ 2(e1/2 − 1).

Xn ∉ [−3/4, 3/4]

e|Xn|/2 = e|Xn| ⋅ e−|Xn|/2 ≤ e|Xn|−3/8

E[Λ(Xn+1)|Fn] ≤ Λ(Xn)e−3/8 ⋅ 2(e1/2 − 1).

γ = e−3/8 ⋅ 2(e1/2 − 1) ≈ 0.89 < 1 183 / 221



Continued...

If  then

We can therefore choose .

Xn ∈ [−3/4, 3/4]

E[Λ(Xn+1)|Fn] ≤ γΛ(Xn) + (2(e1/2 − 1) − γ)e3/4.

b = (2(e1/2 − 1) − γ)e3/4
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Geometric ergodicity
Before we give a sketch proof, we recall the theorem:

Theorem: Foster-Lyapunov criterion for geometric ergodicity
Suppose that there exist a function , positive
constants , , , and a small set

 with

Then  for any  such that  (where
 is the time when  first hits ) and,

moreover (under suitable periodicity conditions),  is geometrically
ergodic.

Uniform ergodicity follows if the function  is bounded above.

Λ : X → [1, ∞)
γ ∈ (0, 1) b c ≥ 1

C = {x : Λ(x) ≤ c} ⊆ X

E[Λ(Xn+1)|Fn] ≤ γΛ(Xn) + b1Xn∈C.

E[γ−TA |X0 = x] < ∞ A ϕ(A) > 0

TA = inf{n ≥ 0 : Xn ∈ A} X A

X

Λ
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Sketch of proof (non-examinable)
1. Suppose . Then  defines a non-negative

supermartingale up to time : if  then

Hence,  converges.

2. So  (otherwise  and so 
does not converge). Moreover,

3. Finiteness of  shows that , where  is the
time of the first regeneration in .

4. From -irreducibility there is a positive chance of hitting 
between regenerations in . Thus .

X0 ∉ C Yn = Λ(Xn)/γn

TC TC > n

E[Yn+1|Fn] ≤ γ × Λ(Xn)/γn+1 = Yn .

Ymin{n,TC}

P(TC < ∞) = 1 Λ(Xn) > c Yn > c/γn

E[γ−TC |X0] ≤ Λ(X0).

b E[γ−T ∗
|X0] < ∞ T ∗

C

ϕ A

C E[γ−TA |X0] < ∞ 186 / 221



Geometric/uniform ergodicity follows by a coupling argument
which we do not specify here.

The constant  here provides an upper bound on the constant 
used in the definition of geometric ergodicity. However, it is not
necessarily a very good bound!

γ γ
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A converse
Suppose, on the other hand, that  for all starting
points  (and fixed ), where  is some small set and 
is the first time for  to return to .

The Foster-Lyapunov criterion for geometric ergodicity then follows
for  as long as  is bounded
for .

E[γ−TC |X0] < ∞

X0 γ ∈ (0, 1) C TC
X C

Λ(x) = E[γ−TC |X0 = x] E[γ−TC |X0 = x]
x ∈ C
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Markov's inequality can be used to convert the condition on 
into the existence of a Markov chain on  whose exponential
dominates .

The chain in question turns out to be a kind of queue (in fact,
). For  the queue will not be recurrent; however one

can sub-sample  to convert the situation into one in which the
dominating queue will be positive-recurrent.

In particular, geometric ergodicity forces a useful partial ordering on
the state-space.

Strikingly, for Harris-recurrent Markov chains (a -irreducible chain
 is Harris recurrent if, for all starting points x and any set B with

, when started at x the chain X hits B eventually with
probability 1) the existence of a geometric Foster-Lyapunov
condition is equivalent to the property of geometric ergodicity.

Λ(X)
[0, ∞)

Λ(X)

D/M/1 γ ≥ e−1

X

ϕ

X

ϕ(B) > 0
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Example: reflected simple asymmetric
random walk
Let  where  are i.i.d. with

 and .

(a)  is (counting-measure-) irreducible on non-negative integers;

(b) Foster-Lyapunov criterion for positive recurrence applies, using
 and :

(c) Foster-Lyapunov criterion for geometric ergodicity applies, using
 and .

Xn+1 = max{Xn + Zn+1, 0} , Z1,Z2, …
P(Z1 = 1) = p < 1/2 P(Z1 = −1) = 1 − p = q

X

Λ(x) = x C = {0}

E[Λ(X1)|X0 = x0] = { Λ(x0) − (q − p)  if x0 ∉ C ,
0 + p  if x0 ∈ C .

Λ(x) = eax C = {0} = Λ−1({1})
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(a) Test understanding: this is the same as ordinary irreducibility
for discrete state-space Markov chains.

(b) Test understanding: check this calculation!

(c) Test understanding: show this works! Note that

This works when ; equivalently when
 (solve the quadratic in ).

One may ask, does this kind of argument show that all positive-
recurrent random walks can be shown to be geometrically ergodic
simply by moving from  to ? The answer is no,
essentially because there exist random walks whose jump
distributions have negative mean but fail to have exponential
moments.

E[Λ(X1)|X0 = x0] = { Λ(x0) × (pea + qe−a)  if x0 ∉ C ,
1 × (pea + q)  if x0 ∈ C .

pea + qe−a < 1
0 < a < log(q/p) ea

Λ(x) = x Λ(x) = eax
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Cutoff
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In what way does a Markov chain converge to equilibrium? Is it a
gentle exponential process? Or might most of the convergence
happen relatively quickly?
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Convergence: cutoff or geometric decay?
What we have so far said about convergence to equilibrium will
have left the misleading impression that the distance from
equilibrium for a Markov chain is characterized by a gentle and
rather geometric decay.

It is true that this is typically the case after an extremely long time,
and it can be the case over all time. However, it is entirely possible
for "most" of the convergence to happen quite suddenly at a
specific threshold.

The theory for this is developing fast, but many questions remain
open. In this section we describe a a few interesting results, and
look in detail at a specific easy example.
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Cutoff: first example
Consider repeatedly shuffling a pack of  cards using a riffle shuffle.

Write  for the distribution of the cards at time .

This shuffle can be viewed as a random walk on  with uniform
equilibrium distribution .

n

P t
n t

Sn

πn
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 is the symmetric group on  elements. The fact that the
equilibrium distribution is uniform means that repeated shuffles
really do mix up the cards as we would wish!

Sn n
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Cutoff: first example
With , the total variation distance  of 
from equilibrium decreases like this:

n = 52 distTV(P t
n,πn) P t

n
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Notice that it takes about 7 shuffles for the total variation
distance to get small — the decay beyond this point is pretty
fast, and so one could argue that there's not a lot of point in
shuffling more than this.
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Riffle shuffle: sharp result (Bayer and Diaconis, 1992)

Let 

Then

As a function of  this looks something like:

So as  gets large, convergence to uniform happens quickly after
about  shuffles (  when ).

τn(θ) = log2 n + θ .
3

2

distTV(P
τn(θ)
n ,πn) = 1 − 2Φ ( ) + O(n−1/4) .−2−θ

4√3

θ

n
(3/2) log2 n ≈ 7 n = 52

199 / 221



Here  is the standard normal distribution function.Φ
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Cutoff: the general picture
Scaling the -axis by the cutoff time, we see that the total
variation distance drops more and more rapidly towards zero as 
becomes larger: the curves in the graph below tend to a step
function as .

Moral: effective convergence can be much faster than one realizes,
and occur over a fairly well-defined period of time.

x

n

n → ∞

201 / 221



This says that convergence really does take place quickly around
the cutoff time .

The speed of convergence of the re-normalised graphs to a step
function depends on the size of the 'time window' over which
the cutoff takes place.

τn
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Cutoff: more examples
There are many examples of this type of behaviour:

Chain

Riffle shuffle

Top-to-random ??

Random transpositions ??

Symmetric random walk

Methods of proving cutoff include coupling theory, eigenvalue-
analysis, group representation theory, ...

Xn τn

Sn log2 n
3
2

Sn

Sn

Z
n
2 n logn1

4
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In general, expect cutoff when there are large numbers of "second"
eigenvalues of the transition matrix .

The famous Peres conjecture says cutoff is to be expected for a
chain with transitive symmetry if , where  is the
second largest eigenvalue (so  is the "spectral gap"), and 
is the (deterministic) time at which the total variation distance to
equilibrium becomes smaller than .

However there is a counterexample to Peres' conjecture as
expressed above, due to David Aldous (Levin, Peres and Wilmer,
2009). So the conjecture needs to be refined!

P

(1 − λ2)τ → ∞ λ2

1 − λ2 τ

1
2
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An example in more detail: the top-to-random shuffle
Let us show how to prove cutoff in a very simple case: the top-to-
random shuffle. This is another random walk  on the symmetric
group : each 'shuffle' consists of removing the top card and
replacing it into the pack uniformly at random.

Hopefully it's not too hard to believe that the equilibrium
distribution of  is again the uniform distribution  on  (i.e.,

 for all permutations ).

Theorem (Aldous & Diaconis, 1986)
Let . Then

1.  for  and ;
2.  as , for .

X

Sn

X πn Sn

πn(σ) = 1/n! σ ∈ Sn

τn(θ) = n logn + θn

distTV(P
τn(θ)
n ,πn) ≤ e−θ θ ≥ 0 n ≥ 2

distTV(P
τn(θ)
n ,πn) → 1 n → ∞ θ = θ(n) → −∞
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Note that this random walk is certainly not reversible!

Test understanding: prove that  really is stationary for , and
check that the distribution of  really will converge to  as

.

This theorem shows that there is a cutoff (in total variation
distance) at time . If we do an extra  shuffles, with

, then the first part of the theorem says that the distance
from stationarity decreases exponentially fast in . Alternatively,
if we perform only  shuffles, with , then as

 the distance between  and  tends to 1. So as
 gets large the time taken for the pack to randomise

concentrates more and more around .

πn X

Xk πn
k → ∞

n logn θn

θ ≥ 0
θ

n logn + θn θ < 0

θ → −∞ P
τn(θ)
n πn

n

n logn
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Strong uniform times
Recall from earlier lectures that a stopping time is a non-negative
integer-valued random variable , with  for all . Let

 be a random walk on a group , with uniform equilibrium
distribution .

Definition
A strong uniform time  is a stopping time such that for each

 and ,

Strong uniform times (SUT's) are useful for the following reason...

T {T ≤ k} ∈ Fk k

X G

π

T

k < ∞ σ ∈ G

P(Xk = σ |T = k) = π(σ) = 1/|G| .

207 / 221



If you're not familiar with the idea of a group, don't worry! Just
think of  as the set of possible permutations of  cards.

Note that this definition is equivalent to saying that 
and that  is independent of .

Test understanding: show that the definition is equivalent to

or to

G n

XT ∼ π

XT T

P(Xk = σ,T = k) = π(σ)P(T = k),

P(Xk = σ |T ≤ k) = π(σ).
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Lemma (Aldous & Diaconis, 1986)
Let  be a random walk on a group , with uniform stationary
distribution , and let  be a SUT for . Then for all ,

Proof.
For any set ,

So .

X G

π T X k ≥ 0

distTV(P k,π) ≤ P(T > k) .

A ⊆ G

P(Xk ∈ A) = ∑
j≤k

P(Xk ∈ A,T = j) + P(Xk ∈ A,T > k)

= ∑
j≤k

π(A)P(T = j) + P(Xk ∈ A |T > k)P(T > k)

= π(A) + (P(Xk ∈ A |T > k) − π(A))P(T > k) .

|P k(A) − π(A)| ≤ P(T > k)
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This lemma, and the definition of SUT's, can be generalised to
cases where the stationary distribution of  is not the uniform
distribution. In this case,  is called a strong stationary time.)

Note where we have used in the proof the fact that  is a
SUT...

Recall the definition of total variation distance to see why this
implies the required result!

X

T

T

210 / 221



Back to shuffling: the upper bound
Consider the card originally at the bottom of the deck (suppose for
convenience that it's ). Let

 time until the 1st card is placed below ;
 time until a 2nd card is placed below ;

 time until  reaches the top of the pack.

Then note that:

at time , the 2 cards below  are equally likely to be in
either order;

at time , the 3 cards below  are equally likely to be in any
order;

Q♡

T1 = Q♡

T2 = Q♡

…
Tn−1 = Q♡

T2 Q♡

T3 Q♡
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... so at time , the  cards below  are uniformly
distributed.

Hence, at time ,  is inserted uniformly at random,
and now the cards are all uniformly distributed!

Since  is a SUT, we can use it in our Lemma to upper bound the
total variation distance between  and the distribution of the pack
at time .

Note first of all that

and that

Tn−1 n − 1 Q♡

T = Tn−1 + 1 Q♡

T

πn
k

T = T1 + (T2 − T1) + ⋯ + (Tn−1 − Tn−2) + (T − Tn−1) ,

Ti+1 − Ti
ind∼ Geom ( ) .

i + 1
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Convince yourself that  really is a SUT! (An inductive
argument along the lines of the previous slide should suffice.)

Instead of considering , we could instead work with  the
time at which the card originally second from bottom is inserted
into the pack for the first time. Show that this is also a SUT.

(Clearly this is a faster SUT than the time  that we're using.
In fact,  is a fastest SUT:

for all  and for any other SUT !)

T

T T ∗ =

T

T ∗

P(T ∗ > k) ≤ P(
~
T > k)

k ≥ 0
~
T
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Test understanding: ensure that you understand why

i.e., that

Ti+1 − Ti
ind
∼ Geom ( ) ,

i + 1

n

P(Ti+1 − Ti = k) = ( ) (1 − )
k−1

, k ≥ 1 .
i + 1

n

i + 1

n
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We can find the distribution of  by turning to the coupon
collector's problem. Consider a bag with  distinct balls - keep
sampling (with replacement) until each ball has been seen at least
once.

Let  number of draws needed until  distinct balls have been
seen. Then

where

Thus, .

T

n

Wi = i

Wn = (Wn − Wn−1) + (Wn−1 − Wn−2) + ⋯ + (W2 − W1) + W1 ,

Wi+1 − Wi
ind∼ Geom ( ) .

n − i

n

T
d
= Wn
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This is a classic probability problem; maybe you have seen it
before!

Test understanding: check that the distribution of  really does
agree with that of .

T

Wn
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Now let  be the event that ball  has not been seen in the first 
draws.

Plugging in , we get

Now use the fact that  and  have the same distribution, the
important information that  is a SUT for the chain, and the
Lemma above to deduce part 1 of our cutoff theorem.

Ad d k

P(Wn > k) = P(∪n
d=1Ad) ≤

n

∑
d=1

P(Ad)

= n(1 − )
k

≤ ne−k/n.
1

n

k = τn(θ) = n logn + θn

P(Wn > τn(θ)) ≤ e−θ.

T Wn

T
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Test understanding: check that you understand every step of this
argument!
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The lower bound
To prove lower bounds of cutoffs, a frequent trick is to find a set 
such that  is large, where  is now equal to

, with .

So let

This satisfies . Furthermore, we can argue that, for
any fixed , with ,

Therefore,

B

|P
τn(θ)
n (B) − πn(B)| τn(θ)

n logn + θ(n)n θ(n) → −∞

Bi = {σ : bottom i original cards remain in original relative order}.

πn(Bi) = 1/i!
i θ = θ(n) → −∞

P
τn(θ)
n (Bi) → 1 as n → ∞.

distTV(P
τn(θ)
n ,πn) ≥ max

i
(P τn(θ)

n (Bi) − πn(Bi)) → 1 .
219 / 221



This is often sufficient, thanks to the definition of total
variation distance.

Test understanding: show that .

Note that, for any ,

since  is distributed as the time for the card initially 
from bottom to come to the top and be inserted - if this has
not occurred by time  then the original bottom  cards must
still be in their original relative order.

Test understanding: estimate  using
Chebychev's inequality applied to the random variable .
Now complete the proof of the lower bound!

πn(Bi) = 1/i!

k ≥ 0

P k
n (Bi) ≥ P(T − Ti−1 > k) ,

T − Ti−1 ith

k i

P(T − Ti−1 > τn(θ))
T − Ti−1
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Final comments...
So how does this shuffle compare to others?

Chain

Top-to-random

Riffle shuffle

Random transpositions

Overhand shuffle

So shuffling using random transpositions, or even the top-to-
random shuffle, is much faster than the commonly used
overhand shuffle!

Xn τn

Sn n logn

Sn log2 n
3
2

Sn n logn1
2

Sn Θ(n2 logn)
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