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Chapter 1

Introduction

This module will introduce students to two important notions in stochastic processes — reversibility
and martingales — identifying the basic ideas, outlining the main results and giving a flavour of
some of the important ways in which these notions are used in statistics.

Probability provides one of the major underlying languages of statistics, and purely
probabilistic concepts often cross over into the statistical world. So statisticians need
to acquire some fluency in the general language of probability.

1.1 Learning outcomes
After successfully completing this module an APTS student will be able to:

• describe and calculate with the notion of a reversible Markov chain, both in discrete and
continuous time;

• describe the basic properties of discrete-parameter martingales and check whether the mar-
tingale property holds;

• recall and apply some significant concepts from martingale theory;

• explain how to use Foster-Lyapunov criteria to establish recurrence and speed of convergence
to equilibrium for Markov chains.

These outcomes interact interestingly with various topics in applied statistics. However
the most important aim of this module is to help students to acquire general awareness
of further ideas from probability as and when that might be useful in their further
research.
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Chapter 2

Expectation and probability

For most APTS students most of this material should be well-known:

• Probability and conditional probability;

• Basic expectation and conditional expectation;

• discrete versus continuous (sums and integrals);

• limits versus expectations.

It is set out here, describing key ideas rather than details, in order to establish a sound common
basis for the module.

This material uses a two-part format. The main text presents the theory, often using
itemized lists. Indented panels such as this one present commentary and useful exercises
(announced by “Test understanding”). It is likely that you will have seen most, if
not all, of the preliminary material at undergraduate level. However syllabi are not
uniform across universities; if some of this material is not well-known to you then:

• read through it to pick up the general sense and notation;
• supplement by reading (for example) the first five chapters of Grimmett and

Stirzaker [2001].

2.1 Probability
• Sample space Ω of possible outcomes;

• Probability P assigns a number between 0 and 1 inclusive (the probability) to each (sensible)
subset A ⊆ Ω (we say A is an event);

• Advanced (measure-theoretic) probability takes great care to specify what sensible means: A
has to belong to a pre-determined σ-algebra F , a family of subsets closed under countable
unions and complements, often generated by open sets. We shall avoid these technicalities,
though it will later be convenient to speak of σ-algebras Ft as a shorthand for “information
available by time t”.
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• Rules of probability:

– Normalization: P(Ω) = 1;

– σ-additivity: if A1, A2 . . . form a disjoint sequence of events then

P(A1 ∪ A2 ∪ . . . ) =
∑

i

P(Ai) .

Example of a sample space: Ω = (−∞, ∞).
To define a probability P, we could for example start with

P ((a, b)) = 1√
2π

∫ b

a
e−u2/2 du

and then use the rules of probability to determine probabilities for all manner of
sensible subsets of (−∞, ∞).
In this example a “natural” choice for F is the family of all sets generated from intervals
by indefinitely complicated countably infinite combinations of countable unions and
complements.
Test understanding: use the rules of probability to explain

a. why P (∅) = 0,}
b. why P (Ac) = 1 − P (A) if Ac = Ω \ A, and
c. why it makes no sense in general to try to extend σ-additivity to uncountable

unions such as (−∞, ∞) = ⋃
x{x}.

2.2 Conditional probability
• We declare the conditional probability of A given B to be P(A|B) = P(A ∩ B)/P(B), and

declare the case when P(B) = 0 as undefined.

Actually we often use limiting arguments to make sense of cases when P (B) = 0.

• Bayes: if B1, B2, . . . is an exhaustive disjoint partition of Ω then

P(Bi|A) = P(A|Bi)P(Bi)∑
j P(A|Bj)P(Bj)

.

• Conditional probabilities are clandestine random variables! Let X be the Bernoulli random
variable which indicates event B; that is, X takes value 1 if B occurs and value 0 if B does
not occur. Consider the conditional probability of A given information of whether or not B
occurs: it is random, being P(A|B) if X = 1 and P(A|Bc) if X = 0.
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Test understanding: write out an explanation of why Bayes’ theorem is a completely
obvious consequence of the definitions of probability and conditional probability.
The idea of conditioning is developed in probability theory to the point where this
notion (that conditional probabilities are random variables) becomes entirely natural
not artificial.
Test understanding: establish the law of inclusion and exclusion: if A1, . . . , An are
potentially overlapping events then

P (A1 ∪ . . . ∪ An) = P (A1) + . . . + P (An)
− (P (A1 ∩ A2) + . . . + P (Ai ∩ Aj) + . . . + P (An−1 ∩ An))

+ . . . − (−1)n P (A1 ∩ . . . ∩ An) .

2.3 Expectation

Statistical intuition about expectation is based on properties:

• If X ≥ 0 is a non-negative random variable then we can define its (possibly infinite) expectation
E[X].

• If X = X+ − X− = max{X, 0} − max{−X, 0} is such that E[X±] are both finite then set
E[X] = E[X+] − E[X−]. (The reason that we insist that E[X±] are finite is that we can’t
make sense of ∞ − ∞!)

• Familiar properties of expectation follow from

– linearity: E[aX + bY ] = aE[X] + bE[Y ]
– monotonicity: P (X ≥ a) = 1 implies E[X] ≥ a for constants a, b.

Full definition of expectation takes 3 steps: obvious definition for Bernoulli random
variables, finite range random variables by linearity, general case by monotonic limits
Xn ↑ X. The hard work lies in proving this is all consistent.
Test understanding: using the properties of expectation,

• deduce E [a] = a for constant a.
• show Markov’s inequality:

P (X ≥ a) ≤ 1
a
E [X]

for X ≥ 0, a > 0.

• Useful notation: for an event A write E[X; A] = E[X 1A], where 1A is the Bernoulli random
variable indicating A.
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So in the absolutely continuous case

E [X; A] =
∫

A
x fX(x) dx

and in the discrete case
E [X; X = k] = k P (X = k) .

• If X has countable range then E[X] = ∑
x P(X = x).

• If X has density fX then E[X] =
∫

x fX(x) dx.

In the countable (=discrete) case, expectation is defined exactly when the sum converges
absolutely.
When there is a density (=absolutely continuous case), expectation is defined exactly
when the integral converges absolutely.

2.4 Independence
Events A and B are independent if P (A ∩ B) = P (A)P (B).

• This definition can be extended to more than two events: A1, A2, . . . , An are independent if
for any set J ⊆ {1, . . . , n}

P (∩j∈JAj) =
∏
j∈J

P (Aj) .

Note that it’s not enough to simply ask for any two events Ai and Aj to be independent
(i.e. pairwise independence)!
Test understanding: find a set of three events which are pairwise independent, but
for which

P (A1 ∩ A2 ∩ A3) ̸= P (A1)P (A2)P (A3) .

• If A and B and independent, with P (B) > 0, then P (A|B) = P (A).

Test understanding: Show that
• if A and B are independent, then events Ac and Bc are independent;
• if A1, A2, . . . , An are independent then

P (A1 ∪ A2 ∪ · · · ∪ An) = 1 −
n∏

i=1
P (Ac

i) .

Random variables X and Y are independent if for all x, y ∈ R

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) .

In this case, E [XY ] = E [X]E [Y ].
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The definition of independence of random variables is equivalent to

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any (Borel) sets A, B ⊂ R.
Test understanding: Suppose that X and Y are independent, and are either both
discrete or both absolutely continuous; show that

E [XY ] = E [X]E [Y ] .

2.5 Generating functions
We’re often interested in expectations of functions of random variables (e.g. recall that in the
discrete case E [g(X)] = ∑

x g(x)P (X = x)).

Some functions are particularly useful:

• when g(x) = zx for some z ≥ 0 we obtain the probability generating function (pgf) of X,

GX(z) = E
[
zX
]

;

• when g(x) = etx we get the moment generating function (mgf) of X,

mX(t) = E
[
etX

]
;

• when g(x) = eitx, where i =
√

−1, we get the characteristic function of X,

ϕX(t) = E
[
eitX

]
.

Test understanding: Show that
• E [X] = G′

X(1) and P (X = k) = G
(k)
X (0)/k!

(where G
(k)
X (0) means the kth derivative of GX(z), evaluated at z = 0);

• E [X] = m′
X(0) and

mX(t) =
∑

k

E
[
Xk

]
k! tk .

2.6 Uses of generating functions
Generating functions are helpful in many ways. In particular:

• They can be used to determine distributions;

• They can often provide an easy route to finding e.g. moments of a distribution (see the two
exercises in the previous section!);
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• They’re useful when working with sums of independent random variables, since the generating
function of a convolution of distributions is the product of their generating functions. So

GX+Y (z) = GX(z)GY (z)

etc.

Characteristic functions always uniquely determine distributions (i.e. there is a one-to-
one correspondence between a distribution and its characteristic function); the same is
true of pgfs and distributions on {0, 1, . . . }; mgfs are slightly more complicated, but
mostly they can be used to identify a distribution. See Grimmett and Stirzaker [2001]
for more on this.
Test understanding: show that if X and Y are independent random variables then

• GX+Y (z) = GX(z)GY (z);
• mX+Y (t) = mX(t)mY (t);
• ϕX+Y (t) = ϕX(t)ϕY (t).

(Only one argument is needed to see all three results!)
Use the first of these as a quick method of proving that the sum of two independent
Poisson random variables is itself Poisson.

2.7 Conditional Expectation (I): property-based definition
Conventional definitions treat two separate cases (discrete and absolutely continuous:

• E [X|Y = y] = ∑
x xP (X = x|Y = y),

• E [X|Y = y] =
∫

x fX|Y =y(x) dx.

• . . . but what if X is mixed discrete/continuous? or worse?

Focus on properties to get unified approach: if E [X] < ∞, we say Z = E [X|Y ] if:

a. E [Z] < ∞;

b. Z is a function of Y ;

c. E [Z; A] = E [X; A] for events A defined in terms of Y .

This defines E [X|Y ] uniquely, up to events of probability 0.

• “E [Z] < ∞” is needed to get a good definition of any kind of expectation;
• We could express “Z is a function of Y ” etc. more formally using measure theory

if we had to;
• We need (b) to rule out Z = X, for example.

Test understanding: verify that the discrete definition of conditional expectation
satisfies the three properties (a), (b), (c). Hint: use A running through events
A = {Y = y} for y in the range of Y .
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We can now define E [X|Y1, Y2, . . .] simply by using “is a function of Y1, Y2, . . .” and “defined in
terms of Y1, Y2, . . .”, etc. Indeed we often write E [X|G], where (σ-algebra) G represents information
conveyed by a specified set of random variables and events.

Test understanding: suppose X1, X2, . . . , Xn are independent and identically dis-
tributed, with finite absolute mean E [|Xi|] < ∞. Use symmetry and linearity to show
that

E [X1|X1 + . . . + Xn] = 1
n
(X1 + . . . + Xn).

2.8 Conditional Expectation (II): some other properties

Many facts about conditional expectation follow easily from this property-based approach. For
example:

• Linearity:

E [aX + bY |Z] = aE [X|Z] + bE [Y |Z] ;

• “Tower property”:

E [E [X|Y, Z] |Y ] = E [X|Y ] ;

• “Taking out what is known”:

E [f(Y )X|Y ] = f(Y )E [X|Y ] ;

• . . . and variations involving more than one or two conditioning random variables.
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Test understanding: explain how these follow from the property-based definition.
Hints:

• Use E [aX + bY ; A] = aE [X; A] + bE [Y ; A];
• Take a deep breath and use property (c) of conditional expectation twice. Suppose

A is defined in terms of Y . Then

E [E [E [X|Y, Z] |Y ] ; A] = E [E [X|Y, Z] ; A]

and
E [E [X|Y, Z] ; A] = E [X; A] .

• Just consider when f has finite range, and use the (finite) sum

E [E [f(Y )X|Y ] ; A] =
∑

t

E [E [f(Y )X|Y ] ; A ∩ {f(Y ) = t}] .

But then use

E [E [f(Y )X|Y ] ; A ∩ {f(Y ) = t}] = E [E [tX|Y ] ; A ∩ {f(Y ) = t}]
= E [tE [X|Y ] ; A ∩ {f(Y ) = t}]
= E [f(Y )E [X|Y ] ; A ∩ {f(Y ) = t}] .

The general case now follows by approximation arguments.

2.9 Conditional Expectation (III): Jensen’s inequality

This is powerful and yet rather easy to prove.

Theorem 2.1. Let ϕ be a convex function (“curves upwards”, or ϕ′′ ≥ 0 if smooth). Suppose the
random variable X is such that E [|X|] < ∞ and E [|ϕ(X)|] < ∞. Then

ϕ(E [X]) ≤ E [ϕ(X)] ,

and the same is true for conditional expectations:

ϕ(E [X|G]) ≤ E [ϕ(X)|G]

for any conditioning information G.

Clue to proof: any convex function can be represented as supremum of all affine functions ax + b
lying below it.
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Consider the simple convex function ϕ(x) = x2. We deduce that if X has finite second
moment then

(E [X|G])2 ≤ E
[
X2|G

]
.

Here’s a picture to illustrate the clue to the proof of Jensen’s inequality in case
ϕ(x) = x4:

2.10 Limits versus expectations
• Often the crux of a piece of mathematics is whether one can exchange limiting operations

such as lim∑ and ∑ lim. Here are a few very useful results on this, expressed in the language
of expectations (the results therefore apply to both sums and integrals).

• Monotone Convergence Theorem: If P (Xn ↑ Y ) = 1 and E [X1] > −∞ then

lim
n

E [Xn] = E
[
lim

n
Xn

]
= E [Y ] .

Note that the Xn must form an increasing sequence. We need E [X1] > −∞.
Test understanding: consider case of Xn = −1/(nU) for a fixed Uniform(0, 1)
random variable.

• Dominated Convergence Theorem: If P (Xn → Y ) = 1 and |Xn| ≤ Z where E [Z] < ∞
then

lim
n

E [Xn] = E
[
lim

n
Xn

]
= E [Y ] .

Note that convergence need not be monotonic here or in the following.
Test understanding: explain why it would be enough to have finite upper and lower
bounds α ≤ Xn ≤ β.

• Fubini’s Theorem: If E [|f(X, Y )|] < ∞, X, Y are independent, g(y) = E [f(X, y)],
h(x) = E [f(x, Y )] then

E [g(Y )] = E [f(X, Y )] = E [h(X)] .
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Fubini exchanges expectations rather than an expectation and a limit.

• Fatou’s lemma: If P (Xn → Y ) = 1 and Xn ≥ 0 for all n then

E [Y ] ≤ lim
n

inf
m≥n

E [Xm] .

Try Fatou if all else fails. Note that something like Xn ≥ 0 is essential (any constant
lower bound would suffice, though, it doesn’t need to be 0).
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Chapter 3

Markov chains

• Discrete-time countable-state-space basics:

– Markov property, transition matrices;

– irreducibility and aperiodicity;

– transience and recurrence;

– equilibrium equations and convergence to equilibrium.

• Discrete-time countable-state-space: why ‘limit of sum need not always equal sum of limit’.

• Continuous-time countable-state-space: rates and Q-matrices.

• Definition and basic properties of Poisson counting process.

Instead of “countable-state-space” Markov chains, we’ll use the shorter phrase “discrete Markov
chains” or “discrete space Markov chains”.

If some of this material is not well-known to you, then invest some time in looking
over (for example) chapter 6 of Grimmett and Stirzaker [2001].

3.1 Basic properties for discrete time and space case
• Markov chain X = {X0, X1, X2, . . .}: we say that X at time t is in state Xt.

• X must have the Markov property:

pxy = p(x, y) = P (Xt+1 = y | Xt = x, Xt−1, . . .)

must depend only on x, y, not on rest of past. (Our chains will be time-homogeneous, meaning
no t dependence either.)

15
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• View states x as integers. More general countable discrete state-spaces can always
be indexed by integers.

• We will soon see an example, “Markov’s other chain”, showing that we need to
insist on the possibility of conditioning by further past Xt−1, . . . in the definition.

• Chain behaviour is specified by (a) initial state X0 (could be random) and (b) table of
transition probabilities pxy.

• Important matrix structure: if pxy are arranged in a matrix P then (i, j)th entry of P n =
P × . . . × P (n times) is p

(n)
ij = P (Xn = j|X0 = i).

Equivalent: Chapman-Kolmogorov equations

p
(n+m)
ij =

∑
k

p
(n)
ik p

(m)
kj .

• Note ∑y pxy = 1 by “law of total probability”.
• Test understanding: show how the Chapman-Kolmogorov equations follow

from considerations of conditional probability and the Markov property.

3.2 Example: Models for language following Markov

How to generate “random English” as a Markov chain:

• Take a large book in electronic form, for example Tolstoy’s “War and Peace” (English
translation).

• Use it to build a table of digram frequencies (digram = pair of consecutive letters).

• Convert frequencies into conditional probabilities of one letter following another, and use
these to form a Markov chain to generate “random English”.

It is an amusing if substantial exercise to use this as a prior for Bayesian decoding of simple
substitution codes.
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• To find a large book, try Project Gutenberg.
• Skill is required in deciding which characters to use: should one use all, or some,

punctuation? Certainly need to use spaces.
• Trigrams would be more impressive than digrams. Indeed, one needs to work at

the level of words to simulate something like English. Here is example output
based on a children’s fable:

It was able to the end of great daring but which when Rapunzel was a
guardian has enjoined on a time, after a faked morning departure more
directly; over its days in a stratagem, which supported her hair into
the risk of endless figures on supplanted sorrow. The prince’s directive,
to clamber down would come up easily, and perceived a grudge against
humans for a convincing simulation of a nearby robotic despot. But then
a computer typing in a convincing simulation of the traditional manner.
However they settled in quality, and the prince thought for Rapunzel made
its ward’s face, that as she then a mere girl.

• Here are some word transition probabilities from the source used for the above
example:

P (round|all) = P (contact|all) = 0.50

P (hearing|ocean,) = P (first,|go) = 1.00

P (As|up.) = P (Every|day.) = 1.00

P (woman|young) = P (prince.|young) = P (man|young) = 0.33.

3.3 (Counter)example: Markov’s other chain
Conditional probability can be subtle. Consider:

• Independent Bernoulli X0, X2, X4, . . . such that P (X2n = ±1) = 1
2 ;

• Define X2n+1 = X2nX2n+2 for n = 0, 1, . . .; these also form an independent identically
distributed sequence.

• P (Xn+1 = ±1|Xn) = 1
2 for any n ≥ 1.

• Chapman-Kolmogorov equations hold for any 0 ≤ k ≤ n + k:

P (Xn+k = ±1|X0) =
∑

y=±1
P (Xn+k = ±1|Xk = y)P (Xk = y|X0) .

• Nevertheless, P (X2 = ±1|X1 = 1, X0 = u) depends on u = ±1, so Markov property fails for
X

17
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This example is taken from Grimmett and Stirzaker [2001].
Note that, although X0, X2, X4, . . . are independent and X1, X3, X5, . . . are indepen-
dent, the entire sequence of random variables X0, X1, X2, . . . are most certainly not
independent!
Test understanding by checking the calculations above.
It is usual in stochastic modelling to start by specifying that a given random process
X = {X0, X1, X2, . . .} is Markov, so this kind of issue is not often encountered in
practice. However it is good to be aware of it: conditioning is a subtle concept and
should be treated with respect!

3.4 Irreducibility and aperiodicity
• A discrete Markov chain is irreducible if for all i and j it has a positive chance of visiting j at

some positive time, if it is started at i.

Consider the word game: change “good” to “evil” through other English words by
altering just one letter at a time. Illustrative question (compare Gardner [1996]): does
your vocabulary of 4-letter English words form an irreducible Markov chain under
moves which attempt random changes of letters? You can find an algorithmic approach
to this question in Knuth [1993].

• It is aperiodic if one cannot divide state-space into non-empty subsets such that the chain
progresses through the subsets in a periodic way. Simple symmetric walk (jumps ±1) is not
aperiodic.

Equivalent definition: an irreducible chain X is aperiodic if its “independent double”
{(X0, Y0), (X1, Y1), . . .} (for Y an independent copy of X) is irreducible.

• If the chain is not irreducible, then we can compute the chance of it getting from one state to
another using first passage equations: if

fij = P (Xn = j for some positive n|X0 = i)

then solve linear equations for the fij

Because of the connection with matrices noted above, this can be cast in terms of rather
basic linear algebra. First passage equations are still helpful in analyzing irreducible
chains: for example the chance of visiting j before k is the same as computing fij for
the modified chain which stops on hitting k.

3.5 Example: Markov tennis
How does probability of win by B depend on p = P (B wins point)?

18
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Use first passage equations, then solve linear equations for the fij, noting in particular

f Game to A,Game to B = 0 , f Game to B,Game to B = 1 .

I obtain
f Love-All,Game to B = p4(15−34p+28p2−8p3)

1−2p+2p2 ,

graphed against p below:

3.6 Transience and recurrence
• Is it possible for a Markov chain X never to return to a starting state i ? If so then that state

is said to be transient.

• Otherwise the state is said to be recurrent.
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• Moreover if the return time T has finite mean then the state is said to be positive-recurrent.

• Recurrent states which are not positive-recurrent are called null-recurrent.

• States of an irreducible Markov chain are all recurrent if one is, all positive-recurrent if one is.

Because of this last fact, we often talk about recurrent chains and transient chains
rather than recurrent states and transient states.

• Asymmetric simple random walk (jumps ±1 with prob ̸= 1/2 of +1) is an example
of a transient Markov chain: see Cox and Miller [1965] for a pretty explanation
using strong law of large numbers.

• Symmetric simple random walk (jumps ±1 with prob 1/2 each) is an example of
a (null-)recurrent Markov chain.

• We will see later that there exist infinite positive-recurrent chains.
• Terminology is motivated by the limiting behaviour of probability of being found

in that state at large time. Asymptotically zero if null-recurrent or transient;
tends to 1/E [T ] if aperiodic positive-recurrent.

• The fact that either all states are recurrent or all states are transient is based on
the criterion for recurrence of state i,∑

n

p
(n)
ii = ∞,

which in turn arises from an application of generating functions. The criterion
amounts to asserting, the chain is sure to return to a state i exactly when the
mean number of returns is infinite.

3.7 Recurrence/transience for random walks on Z
Let X be a random walk on Z which takes steps of size 1 with probability p and minus one with
probability q = 1 − p. Define T0,1 to be the first time at which X hits 1, if it starts at 0.

Note that it’s certainly possible to have P (T0,1 < ∞) < 1, that is, for the random
variable T0,1 to take the value ∞!

The probability generating function for this random variable satisfies

G(z) = E
[
zT0,1

]
= zp + zqG(z)2

Solving this (and noting that we need to take the negative root!) we see that

G(z) = 1 −
√

1 − 4pqz2

2qz
,

and so P (T0,1 < ∞) = limz→1 G(z) = min{p/q, 1}. Thus if p < 1/2 there is a positive chance that
X never reaches state 1; by symmetry, X is recurrent iff p = 1/2.

20



Applied Stochastic Processes APTS 2022: Week 2

• Test understanding: Show that the quadratic formula for G(z) holds by
considering what can happen at time 1: argue that if X1 = −1 the time taken to
get from −1 to 1 has the same distribution as the time taken to get from −1 to
0 plus the time to get from 0 to 1; these random variables are independent, and
so the pgf of the sum is easy to work with. . .

• If we take the positive root then G(z) → ∞ as z → 0, rather than to 0!
• Here we are using the fact that, since our state space is irreducible, state i is

recurrent iff P (Ti,j < ∞) = 1 for all states j, where Ti,j is the first time that X
hits j when started from i.

3.8 Equilibrium of Markov chains

• If X is irreducible and positive-recurrent then it has a unique equilibrium distribution π: if
X0 is random with distribution given by P (X0 = i) = πi then P (Xn = i) = πi for any n.

In general the chain continues moving, it is just that the marginal probabilities at time
n do not change.

• Moreover the equilibrium distribution viewed as a row vector solves the equilibrium equations:

πP = π , or πj =
∑

i

πipij .

Test understanding: Show that the 2-state Markov chain with transition probability
matrix (

0.1 0.9
0.8 0.2

)
has equilibrium distribution

π = (0.470588 . . . , 0.529412 . . .).

Note that you need to use the fact that π1 + π2 = 1: this is always an important extra
fact to use in determining a Markov chain’s equilibrium distribution!

• If in addition X is aperiodic then the equilibrium distribution is also the limiting distribution
(for any X0):

P (Xn = i) → πi as n → ∞ .
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This limiting result is of great importance in MCMC. If aperiodicity fails then it is
always possible to sub-sample to convert to the aperiodic case on a subset of state-
space.
The note at the end of the previous section shows the possibility of computing mean
recurrence time using matrix arithmetic.
NB: πi can also be interpreted as “mean time in state i”.

3.9 Sums of limits and limits of sums
• Finite state-space discrete Markov chains have a useful simplifying property: they are always

positive-recurrent if they are irreducible.

• This can be proved by using a result, that for null-recurrent or transient states j we find
p

(n)
ij → 0 as n → ∞, for all other states i. If there were null-recurrent or transient states in a

finite state-space discrete Markov chain, this would give a contradiction:∑
j

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j

p
(n)
ij

and the right-hand sum equals 1 from “law of total probability”, while left-hand sum equals∑ 0 = 0 by null-recurrence.

• This argument doesn’t give a contradiction for infinite state-space chains as it is incorrect
arbitrarily to exchange infinite limiting operations: lim∑ ̸= ∑ lim in general.

• Some argue that all Markov chains met in practice are finite, since we work on
finite computers with finite floating point arithmetic. Do you find this argument
convincing or not?

• Recall from the “Limits versus expectations” section the principal theorems
which deliver checkable conditions as to when one can swap limits and sums.

3.10 Continuous-time countable state-space Markov chains
(a rough guide)

This is a very rough guide, and much of what we will talk about in the course will
be in discrete time. However, sometimes the easiest examples in Markov chains are
in continuous-time. The important point to grasp is that if we know the transition
rates q(x, y) then we can write down differential equations to define the transition
probabilities and so the chain. We don’t necessarily try to solve the equations. . .

• Definition of continuous-time (countable) discrete state-space (time-homogeneous) Markov
chain X = {Xt : t ≥ 0}: for s, t > 0

pt(x, y) = P (Xs+t = y|Xs = x, Xu for various u ≤ s)
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depends only on x, y, t, not on rest of past.

• Organize pt(x, y) into matrices P (t) = {pt(x, y) : states x, y}; as in discrete case P (t) ·P (s) =
P (t + s) and P (0) is identity matrix.

• (Try to) compute time derivative: Q = (d/dt)P (t)|t=0 is matrix of transition rates q(x, y).

• For short, we can write

pt(x, y) = P (Xs+t = y|Xs = x, Fs)

where Fs represents all possible information about the past at time s.
• From here on we omit many “under sufficient regularity” statements. Norris

[1998] gives a careful treatment.
• The row-sums of P (t) all equal 1 (“law of total probability”). Hence the row sums

of Q ought to be 0 with non-positive diagonal entries q(x, x) = −q(x) measuring
rate of leaving x.

• For suitably regular continuous-time countable state-space Markov chains, we can use the
Q-matrix Q to simulate the chain as follows:

– rate of leaving state x is q(x) = ∑
y ̸=x q(x, y) (since row sums of Q should be zero). Time

till departure is Exponential(q(x));

– on departure from x, go straight to state y ̸= x with probability q(x, y)/q(x).

Why an exponential distribution? Because an effect of the Markov property is to
require the holding time until the first transition to have a memory-less property –
which characterizes Exponential distributions.
Here it is relevant to note that “minimum of independent Exponential random variables
is Exponential”.
Note that there are two strong limitations of continuous-time Markov chains as
stochastic models: the Exponential distribution of holding times may be unrealistic;
and the state to which a transition is made does not depend on actual length of holding
time (this also follows rather directly from the Markov property). Of course, people
have worked on generalizations (keyword: semi-Markov processes).

• Compute the s-derivative of P (s) · P (t) = P (s + t). This yields the famous Kolmogorov
backwards equations:

Q · P (t) = P (t)′ .

The other way round yields the Kolmogorov forwards equations:

P (t) · Q = P (t)′ .

23



Applied Stochastic Processes APTS 2022: Week 2

Test understanding: use calculus to derive

∑
z

ps(x, z)pt(z, y) = ps+t(x, y) gives
∑

z

q(x, z)pt(z, y) = ∂

∂t
pt(x, y) ,

∑
z

pt(x, z)ps(z, y) = pt+s(x, y) gives
∑

z

pt(x, z)q(z, y) = ∂

∂t
pt(x, y) .

Note the shameless exchange of differentiation and summation over potentially infinite
state-space. . .

• If statistical equilibrium holds then the transition probabilities should converge to limiting
values as t → ∞: applying this to the forwards equation we expect the equilibrium distribution
π to solve

π · Q = 0 .

Test understanding: applying this idea to the backwards equation gets us nothing,
as a consequence of the vanishing of row sums of Q.
In extended form π · Q = 0 yields the important equilibrium equations∑

z

π(z)q(z, y) = 0 .

3.11 Example: the Poisson process
We use the above theory to define chains by specifying the non-zero rates. Consider the case when
X counts the number of people arriving at random at constant rate:

1. Stipulate that the number Xt of people in system at time t forms a Markov chain.

2. Transition rates: people arrive one-at-a-time at constant rate, so q(x, x + 1) = λ.

One can solve the Kolmogorov differential equations in this case:

P (Xt = n|X0 = 0) = (λt)n

n! e−λt .

For most Markov chains one makes progress without solving the differential equations.
The interplay between the simulation method above and the distributional information
here is exactly the interplay between viewing the Poisson process as a counting process
(“Poisson counts”) and a sequence of inter-arrival times (“Exponential gaps”). The
classic relationships between Exponential, Poisson, Gamma and Geometric distributions
are all embedded in this one process.
Two significant extra facts are

• superposition: independent sum of Poisson processes is Poisson;
• thinning: if arrivals are censored i.i.d. at random then result is Poisson.
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3.12 Example: the M/M/1 queue
Consider a queue in which people arrive and are served (in order) at constant rates by a single
server.

1. Stipulate that the number Xt of people in system at time t forms a Markov chain.

2. Transition rates (I): people arrive one-at-a-time at constant rate, so q(x, x + 1) = λ.

3. Transition rates (II): people are served in order at constant rate, so q(x, x − 1) = µ if x > 0.

One can solve the equilibrium equations to deduce: the equilibrium distribution of X exists and is
Geometric if and only if λ < µ.

Don’t try to solve the equilibrium equations at home (unless you enjoy that sort of
thing). In this case it is do-able, but during the module we’ll discuss a much quicker
way to find the equilibrium distribution in favourable cases.
Here is the equilibrium distribution in more explicit form: in equilibrium

P (X = x) = (1 − ρ)ρx for x = 0, 1, 2, . . .

where ρ = λ/µ ∈ (0, 1) (the traffic intensity).
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Chapter 4

Some useful texts

At increasing levels of mathematical sophistication:

• Häggström [2002] “Finite Markov chains and algorithmic applications”.
Delightful introduction to finite state-space discrete-time Markov chains, from point of view
of computer algorithms.

• Grimmett and Stirzaker [2001] “Probability and random processes”.
Standard undergraduate text on mathematical probability. If you are going to buy one book
on probability, this is a good choice because it contains so much material.

• Norris [1998] “Markov chains”.
Markov chains at a more graduate level of sophistication, revealing what I have concealed,
namely the full gory story about Q-matrices.

• Williams [1991] “Probability with martingales”.
Excellent graduate text for theory of martingales: mathematically demanding.

4.1 Free on the web
• Doyle and Snell [1984] “Random walks and electric networks”

Available on the web at http://arxiv.org/abs/math/0001057.
Lays out (in simple and accessible terms) an important approach to Markov chains using
relationship to resistance in electrical networks.

• Kindermann and Snell [1980] “Markov random fields and their applications”
Available on the web at http://www.ams.org/online_bks/conm1/
Sublimely accessible treatment of Markov random fields (Markov property, but in space not
time).

• Meyn and Tweedie [1993] “Markov chains and stochastic stability”
Available on the web at http://probability.ca/MT/.
The place to go if you need to get informed about theoretical results on rates of convergence
for Markov chains (e.g. because you are doing MCMC).

• Aldous and Fill [2001] “Reversible Markov Chains and Random Walks on Graphs”
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Only available on the web at http://www.stat.berkeley.edu/~aldous/RWG/book.html
The best unfinished book on Markov chains known to us.

4.2 Going deeper
• Kingman [1993] “Poisson processes”.

Very good introduction to the wide circle of ideas surrounding the Poisson process.

• Kelly [1979] “Reversibility and stochastic networks”.
We’ll cover reversibility briefly in the lectures, but this shows just how powerful the technique
is.

• Lindvall [1992] “Lectures on the coupling method”.
We’ll also talk briefly about the beautiful concept of coupling for Markov chains; this book
gives a very nice introduction.

• Steele [2004] “The Cauchy-Schwarz master class”.
The book to read if you decide you need to know more about (mathematical) inequality.

• Aldous [1989] “Probability approximations via the Poisson clumping heuristic”.
See www.stat.berkeley.edu/~aldous/Research/research80.html.
A book full of what ought to be true; hence good for stimulating research problems and also
for ways of computing heuristic answers.

• Øksendal [2003] “Stochastic differential equations”.
An accessible introduction to Brownian motion and stochastic calculus, which we do not
cover at all.

• Stoyan et al. [1987] “Stochastic geometry and its applications”.
Discusses a range of techniques used to handle probability in geometric contexts.
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