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Chapter 1

Introduction

This file contains exercises written to help you understand the course “Applied Stochastic Processes”.
It also contains, in the second half of the file, some hints and solutions to many of those exercises.
We strongly recommend that you attempt the exercises first, then look at a hint if you cannot get
started, and only refer to the solutions to check whether your answers are correct. Please let us
know of any mistakes. Hints and solutions are not provided for all questions, for various reasons.
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Markov chains and reversibility

1. Show that a discrete-time Markov chain run backwards in time (from some time n and state
i) is again a Markov chain (until time n).

2. Suppose that px,y are transition probabilities for a discrete state-space Markov chain satisfying
detailed balance. Show that if the system of probabilities given by πx satisfy the detailed
balance equations then they must also satisfy the equilibrium equations.

3. Show that unconstrained simple symmetric random walk has period 2. Show that simple
symmetric random walk subject to “prohibition” boundary conditions must be aperiodic.

4. Solve the equilibrium equations πP = π for simple symmetric random walk on {0, 1, . . . , k}
subject to “prohibition” boundary conditions.

5. Suppose that X0, X1, . . . , is a simple symmetric random walk with “prohibition” boundary
conditions as above.

• Use the definition of conditional probability to compute

py,x = P (Xn−1 = x , Xn = y)
P (Xn = y) ,

• then show that
P (Xn−1 = x , Xn = y)

P (Xn = y) = P (Xn−1 = x) px,y

P (Xn = y) ,

• now substitute, using P (Xn = i) = 1
k+1 for all i so py,x = px,y.

• Use the symmetry of the kernel (px,y = py,x) to show that the backwards kernel py,x is
the same as the forwards kernel py,x = py,x.

6. Show that if X0, X1, . . . , is a simple asymmetric random walk with “prohibition” boundary
conditions, running in equilibrium, then it also has the same statistical behaviour as its
reversed chain (i.e. solve the detailed balance equations!).

7. Show that detailed balance doesn’t work for the 3-state chain with transition probabilities 1
3

for 0 → 1, 1 → 2, 2 → 0 and 2
3 for 2 → 1, 1 → 0, 0 → 2.

8. Work through the Random Chess example to compute the mean return time to a corner of
the chessboard.

9. Verify for the Ising model that

P
(

S = s(i)
∣∣∣∣S ∈ {s, s(i)}

)
=

exp
(
−J

∑
j:j∼i sisj

)
exp

(
J
∑

j:j∼i sisj

)
+ exp

(
−J

∑
j:j∼i sisj

) .

Determine how this changes in the presence of an external field. Confirm that detailed balance
holds for the heat-bath Markov chain.

10. Write down the transition probabilities for the Metropolis-Hastings sampler. Verify that it
has the desired probability distribution as an equilibrium distribution.
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Renewal processes and stationarity

1. Suppose that X is a simple symmetric random walk on Z, started from 0. Show that

T = inf{n ≥ 0 : Xn ∈ {−10, 10}}

is a stopping time (i.e. show that the event {T ≤ n} is determined by X0, X1, . . . , Xn). What
is the value of P (T < ∞)? What is the distribution of XT ?

2. For an irreducible recurrent Markov chain (Xn)n≥0 on a discrete state-space S, fix i ∈ S and
let H

(i)
0 = inf{n ≥ 0 : Xn = i}. For m ≥ 0, let

H
(i)
m+1 = inf{n > H(i)

m : Xn = i}.

Show that H
(i)
0 , H

(i)
1 , . . . is a sequence of stopping times.

3. Check that it follows from the strong Markov property that (H(i)
m+1 −H(i)

m , m ≥ 0) is a sequence
of i.i.d. random variables, independent of H

(i)
0 .

4. Suppose that (N(n))n≥0 is a delayed renewal process with inter-arrival times Z0, Z1, . . . where
Z0 is a non-negative random variable, independent of Z1, Z2, . . . which are i.i.d. strictly
positive random variables with common mean µ. Use the Strong Law of Large Numbers for
Tk = ∑k

i=0 Zi to show that
N(n)

n
→ 1

µ
a.s. as n → ∞.

Hint: note that TN(n) ≤ n < TN(n)+1 so that N(n)/n can be sandwiched between N(n)/TN(n)+1
and N(n)/TN(n). Use this and the fact that N(n) → ∞ as n → ∞.

5. Let (Y (n))n≥0 be the auxiliary Markov chain associated to a delayed renewal process (N(n))n≥0
i.e. Y (n) = TN(n−1) − n. Check that you agree with the transition probabilities given in the
lecture notes.

6. Let
νi = 1

µ
P (Z1 ≥ i + 1) , i ≥ 0.

Check that ν = (νi)i≥0 defines a probability mass function.
7. Suppose that Z∗ has the size-biased distribution associated with the distribution of Z1, defined

by
P (Z∗ = i) = iP (Z1 = i)

µ
, i ≥ 1.

(a) Verify that this is a probability mass function.
(b) Let L ∼ U{0, 1, . . . , Z∗ − 1}. Show that L ∼ ν.

Note that you can generate L starting from Z∗ by letting U ∼ U[0, 1] and then setting
L = ⌊UZ∗⌋.
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Applied Stochastic Processes APTS 2022: Week 2

(c) What is the size-biased distribution associated with Po(λ)?
8. Show that ν is stationary for Y .

Hint: Y is clearly not reversible, so there’s no point trying detailed balance!
9. Check that if P (Z1 = k) = (1 − p)k−1p, for k ≥ 1, the stationary distribution ν for the

time until the next renewal is νi = (1 − p)ip, for i ≥ 0. (In other words, if we flip a biased
coin with probability p of heads at times n = 0, 1, 2, . . . and let N(n) = #{0 ≤ k ≤ n :
we see a head at time k} then (N(n), n ≥ 0) is a stationary delayed renewal process.)
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Martingales and martingale convergence

1. Let X be a martingale. Use the tower property for conditional expectation to deduce that

E [Xn+k|Fn] = Xn , k = 0, 1, 2, . . . .

2. Recall Thackeray’s martingale: let Y1, Y2, . . . be a sequence of independent and identically
distributed random variables, with P (Y1 = 1) = P (Y1 = −1) = 1/2. Define the Markov chain
M by

M0 = 0; Mn =
1 − 2n if Y1 = Y2 = · · · = Yn = −1,

1 otherwise.

(a) Compute E [Mn] from first principles.
(b) What should be the value of E

[
M̃n

]
if M̃ is computed as for M but stopping play if M

hits level 1 − 2N?

3. Consider a branching process Y , where Y0 = 1 and Yn+1 is the sum Zn+1,1 + . . . + Zn+1,Yn of
Yn independent copies of a non-negative integer-valued family-size r.v. Z.

(a) Suppose E [Z] = µ < ∞. Show that Xn = Yn/µn is a martingale.
(b) Show that Y is itself a supermartingale if µ < 1 and a submartingale if µ > 1.
(c) Suppose E

[
sZ
]

= G(s). Let η be the smallest non-negative root of the equation G(s) = s.
Show that ηYn defines a martingale.

(d) Let Hn = Y0 + . . . + Yn be the total of all populations up to time n. Show that
sHn/(G(s)Hn−1) is a martingale.

(e) How should these three expressions be altered if Y0 = k ≥ 1?

4. Consider asymmetric simple random walk, stopped when it first returns to 0. Show that this
is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have
non-negative expectation (and therefore a martingale if jumps have zero expectation).

5. Consider Thackeray’s martingale based on asymmetric random walk. Show that this is a
supermartingale or submartingale depending on whether jumps have negative or positive
expectation.

6. Show, using the conditional form of Jensen’s inequality, that if X is a martingale then |X| is
a submartingale.

7. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and
cards are turned over one at a time. Let Bn denote the number of black cards left just before
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the nth card is turned over. Let

Yn = Bn

r + b − (n − 1) .

(So Yn equals the proportion of black cards left just before the nth card is revealed.) Show
that Y is a martingale.

8. Suppose N1, N2, . . . are independent identically distributed normal random variables of mean
0 and variance σ2, and put Sn = N1 + . . . + Nn.

(a) Show that S is a martingale.
(b) Show that Yn = exp

(
Sn − n

2 σ2
)

is a martingale.
(c) How should these expressions be altered if E [Ni] = µ ̸= 0?

9. Let X be a discrete-time Markov chain on a countable state-space S with transition probabil-
ities px,y. Let f : S → R be a bounded function. Let Fn contain all the information about
X0, X1, . . . , Xn. Show that

Mn = f(Xn) − f(X0) −
n−1∑
i=0

∑
y∈S

(f(y) − f(Xi))pXi,y

defines a martingale. (Hint: first note that E [f(Xi+1) − f(Xi)|Xi] = ∑
y∈S(f(y)−f(Xi))pXi,y.

Using this and the Markov property of X, check that E [Mn+1 − Mn|Fn] = 0.)

10. Let Y be a discrete-time birth-death process absorbed at zero:

pk,k+1 = λ

λ + µ
, pk,k−1 = µ

λ + µ
, for k > 0, with 0 < λ < µ.

(a) Show that Y is a supermartingale.
(b) Let T = inf{n : Yn = 0} (so T < ∞ a.s.), and define

Xn = Ymin{n,T } +
(

µ − λ

µ + λ

)
min{n, T} .

Show that X is a non-negative supermartingale, converging to

Z =
(

µ − λ

µ + λ

)
T .

(c) Deduce that

E [T |Y0 = y] ≤
(

µ + λ

µ − λ

)
y .

11. Let L(θ; X1, X2, . . . , Xn) be the likelihood of parameter θ given a sample of independent and
identically distributed random variables, X1, X2, . . . , Xn.

(a) Check that if the “true” value of θ is θ0 then the likelihood ratio

Mn = L(θ1; X1, X2, . . . , Xn)
L(θ0; X1, X2, . . . , Xn)

defines a martingale with E [Mn] = 1 for all n ≥ 1.

9



Applied Stochastic Processes APTS 2022: Week 2

(b) Using the strong law of large numbers and Jensen’s inequality, show that

1
n

log Mn → −c as n → ∞.

12. Let X be a simple symmetric random walk absorbed at boundaries a < b.

(a) Show that
f(x) = x − a

b − a
x ∈ [a, b]

is a bounded harmonic function.
(b) Use the martingale convergence theorem and optional stopping theorem to show that

f(x) = P (X hits b before a|X0 = x) .

10



Recurrence and rates of convergence

1. Recall that the total variation distance between two probability distributions µ and ν on X
is given by

distTV(µ, ν) = sup
A⊆X

{µ(A) − ν(A)} .

Show that this is equivalent to the distance (note the absolute value signs!)

sup
A⊆X

|µ(A) − ν(A)| .

2. Show that if X is discrete, then

distTV(µ, ν) = 1
2

∑
y∈X

|µ(y) − ν(y)| .

(Here we do need to use the absolute value on the RHS!)
Hint: consider A = {y : µ(y) > ν(y)}.

3. Suppose now that µ and ν are density functions on R. Show that

distTV(µ, ν) = 1 −
∫ ∞

−∞
min{µ(y), ν(y)}dy .

Hint: remember that |µ − ν| = µ + ν − 2 min{µ, ν}.

4. Consider a Markov chain X with continuous transition density kernel. Show that it possesses
many small sets of lag 1.

5. Consider a Vervaat perpetuity X, where

X0 = 0; Xn+1 = Un+1(Xn + 1) ,

and where U1, U2, . . . are independent Uniform(0, 1) (simulated below).
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Find a small set for this chain.

6. Recall the idea of regenerating when our chain hits a small set: suppose that C is a small set
for a ϕ-irreducible chain X, i.e. for x ∈ C,

P (X1 ∈ A|X0 = x) ≥ αν(A).

Suppose that Xn ∈ C. Then with probability α let Xn+1 ∼ ν, and otherwise let it have
transition distribution p(x,·)−αν(·)

1−α
.

(a) Check that the latter expression really gives a probability distribution.
(b) Check that Xn+1 constructed in this manner obeys the correct transition distribution

from Xn.
7. Define a reflected random walk as follows: Xn+1 = max{Xn + Zn+1, 0}, for Z1, Z2, . . . i.i.d.

with continuous density f(z),

E [Z1] < 0 and P (Z1 > 0) > 0 .

Show that the Foster-Lyapunov criterion for positive recurrence holds, using Λ(x) = x.
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Hints and solutions
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Markov chains and reversibility

You will get more from the exercises by trying them before looking at the solutions!

1. Show that a discrete-time Markov chain run backwards in time (from some time n and state
i) is again a Markov chain (until time n).

Hint: Given a Markov chain (Xj)j≥0, fix n and let Yj = Xn−j for j = 0, . . . , n. We want to show
that Y is a Markov chain up to time n, i.e. that for any j < n and y0, y1, . . . , yj, yj+1,

P (Yj+1 = yj+1|Y0 = y0, Y1 = y1, . . . , Yj = yj) = P (Yj+1 = yj+1|Yj = yj) .

Solution: We start with the left-hand side. We have

P (Yj+1 = yj+1|Y0 = y0, Y1 = y1, . . . , Yj = yj)
= P

(
Xn−(j+1) = yj+1|Xn = y0, Xn−1 = y1, . . . , Xn−j = yj

)
=

P
(
Xn−(j+1) = yj+1, Xn = y0, Xn−1 = y1, . . . , Xn−j = yj

)
P (Xn = y0, Xn−1 = y1, . . . , Xn−j = yj)

=
P
(
Xn−(j+1) = yj+1

)
pyj+1,yj

pyj ,yj−1 . . . py1,y0

P (Xn−j = yj) pyj ,yj−1pyj−1,yj−2 . . . py1,y0

=
P
(
Xn−(j+1) = yj+1

)
py,yj

P (Xn−j = yj)

=
P
(
Xn−(j+1) = yj+1, Xn−j = yj

)
P (Xn−j = yj)

= P (Yj+1 = yj+1|Yj = yj) .

2. Suppose that px,y are transition probabilities for a discrete state-space Markov chain satisfying
detailed balance. Show that if the system of probabilities given by πx satisfy the detailed
balance equations then they must also satisfy the equilibrium equations.

Hint: Start from the detailed balance equations πxpxy = πypyx and sum over x.

Solution: Doing as the hint suggests, for any y,∑
x

πxpxy =
∑

x

πypyx = πy

∑
x

pyx = πy

which is exactly the equilibrium equations πP = π.
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3. Show that unconstrained simple symmetric random walk has period 2. Show that simple
symmetric random walk subject to “prohibition” boundary conditions must be aperiodic.

Hint: “Unconstrained” means no boundary, i.e. on the whole of Z, whereas “prohibition” boundary
conditions means that the random walk moves on {0, 1, . . . , k} for some k, and when it reaches 0
or k, it stays where it is with probability 1/2 (rather than moving to −1 or k + 1).

Solution: If the unconstrained random walk starts on an even integer, then it will always be on
even integers at even times and odd integers at odd times; and vice versa if it starts on an odd
integer.

Now consider the “prohibition” random walk. For any sites x, y ∈ {0, 1, . . . , k} and any time
n > 2k, the random walk started from site x has positive probability of taking its first x steps in
the negative direction, then remaining at 0 for the next n − x − y steps, and then taking its last y
steps in the positive direction. (In fact it has probability 1/2n of doing so.) Thus the random walk
has positive probability of being at any of the k + 1 sites after n steps, so it is aperiodic.

4. Solve the equilibrium equations πP = π for simple symmetric random walk on {0, 1, . . . , k}
subject to “prohibition” boundary conditions.

Hint: Recall the equilibrium equations πP = π, i.e. ∑x πxpxy = πy for all y. You will also need to
use ∑x πx = 1.

Solution: When y = 0, then ∑
x πxpx0 = π0/2 + π1/2, so setting this equal to π0 we see that

π1 = π0. When y = 1, then ∑
x πxpx1 = π0/2 + π2/2, so setting this equal to π1 and using that

π0 = π1 we see that π2 = π1. Continuing in this way we get π0 = π1 = π2 = . . . = πk. Finally,∑
x πx = 1 implies that πx = 1/(k + 1) for all x.

5. Suppose that X0, X1, . . . , is a simple symmetric random walk with “prohibition” boundary
conditions as above.

• Use the definition of conditional probability to compute

py,x = P (Xn−1 = x , Xn = y)
P (Xn = y) ,

• then show that
P (Xn−1 = x , Xn = y)

P (Xn = y) = P (Xn−1 = x) px,y

P (Xn = y) ,

• now substitute, using P (Xn = i) = 1
k+1 for all i so py,x = px,y.

• Use the symmetry of the kernel (px,y = py,x) to show that the backwards kernel py,x is
the same as the forwards kernel py,x = py,x.

6. Show that if X0, X1, . . . , is a simple asymmetric random walk with “prohibition” boundary
conditions, running in equilibrium, then it also has the same statistical behaviour as its
reversed chain (i.e. solve the detailed balance equations!).

Hint: Recall that the detailed balance equations are πxpxy = πypyx for all x and y. Note that pxy

is zero unless x and y are neighbours. Start from x = 0 and y = 1 and work your way up.

Solution: Say we jump from x to x + 1 with probability p, and x + 1 to x with probability 1 − p.
For each x ∈ {0, . . . , k − 1} we have πxp = πx+1(1 − p) so, chaining together, πj = ( p

1−p
)jπ0. All

the other detailed balance equations are trivially satisfied since pxy = 0 whenever x ̸= y are not
neighbours.
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7. Show that detailed balance doesn’t work for the 3-state chain with transition probabilities 1
3

for 0 → 1, 1 → 2, 2 → 0 and 2
3 for 2 → 1, 1 → 0, 0 → 2.

Hint: Proceed as in the previous question, using detailed balance to get π1 in terms of π0 and
then π2 in terms of π1. But then since 2 is also a neighbour of 1, we have a third detailed balance
equation to get π0 in terms of π2. Show that these three equations have no non-trivial solution.

8. Work through the Random Chess example to compute the mean return time to a corner of
the chessboard.

The solution is in the lecture notes.

9. Verify for the Ising model that

P
(

S = s(i)
∣∣∣∣S ∈ {s, s(i)}

)
=

exp
(
−J

∑
j:j∼i sisj

)
exp

(
J
∑

j:j∼i sisj

)
+ exp

(
−J

∑
j:j∼i sisj

) .

Determine how this changes in the presence of an external field. Confirm that detailed balance
holds for the heat-bath Markov chain.

10. Write down the transition probabilities for the Metropolis-Hastings sampler. Verify that it
has the desired probability distribution as an equilibrium distribution.

Solution: For y ̸= x, the probability that we move from x to y is the probability that y is proposed
from x, and then that the proposal is accepted. That is, pxy = q(x, y)α(x, y). We then have
pxx = 1 −∑

y q(x, y)α(x, y) for each x.

To show that π is an equilibrium distribution for this chain, we check that it solves detailed balance.
Suppose first that π(y)q(y, x) ≤ π(x)q(x, y). Then from the above and the definition of α,

π(x)pxy = π(x)q(x, y)α(x, y)

= π(x)q(x, y) · π(y)q(y, x)
π(x)q(x, y)

= π(y)q(y, x)
= π(y)q(y, x)α(y, x)
= π(y)pyx

where for the fourth equality we used the fact that α(y, x) = 1.

If on the other hand π(y)q(y, x) > π(x)q(x, y), the same calculation works with x and y exchanged.
Thus detailed balance holds, and the desired probability distribution π is an equilibrium distribution
for this Markov chain.
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Renewal processes and stationarity

You will get more from the exercises by trying them before looking at the solutions!

1. Suppose that X is a simple symmetric random walk on Z, started from 0. Show that

T = inf{n ≥ 0 : Xn ∈ {−10, 10}}

is a stopping time (i.e. show that the event {T ≤ n} is determined by X0, X1, . . . , Xn). What
is the value of P (T < ∞)? What is the distribution of XT ?

Hint: It may be easier to describe {T > n} (why is this enough?). Will X eventually make 20
consecutive jumps to the right? For XT , think symmetry.

Solution: The event {T > n} = {X1 ̸∈ {−10, 10}, X2 ̸∈ {−10, 10}, . . . , Xn ̸∈ {−10, 10}} is clearly
determined by X1, X2, . . . , Xn, and therefore so is the complementary event {T ≤ n} = {T > n}c.
Since a simple symmetric random walk must eventually leave any bounded interval containing
its starting point, the stopping time is almost surely finite: P (T < ∞) = 1. To prove rigorously,
consider X walking on the whole of Z, and define events Ak = {jumps 20k + 1, 20k + 2, . . . , 20k +
20 are all to the right}, for k = 0, 1, . . .. Observe that: (i) the Ak are independent, (ii) if Ak occurs
then T < 20k + 20 (either X already left (−10, 10) by time 20k, or X20k ∈ (−10, 10) and the next
20 steps are to the right, meaning X20k+20 > 10), (iii) P (Ak) = 2−20 > 0. Hence the smallest k for
which Ak occurs is a Geometric random variable with positive success probability, which is almost
surely finite, and hence T is too. The distribution of XT follows from symmetry of the random
walk; since the walk starts at the mid point of the interval [−10, 10] is it equally likely to hit either
end first: P (XT = 10) = P (XT = −10) = 1/2.

2. For an irreducible recurrent Markov chain (Xn)n≥0 on a discrete state-space S, fix i ∈ S and
let H

(i)
0 = inf{n ≥ 0 : Xn = i}. For m ≥ 0, let

H
(i)
m+1 = inf{n > H(i)

m : Xn = i}.

Show that H
(i)
0 , H

(i)
1 , . . . is a sequence of stopping times.

Hint: You might find it helpful to view H(i)
m as the (m + 1)-th visit to state i.

Solution: Guided by the hint, observe that H
(i)
m+1 is the first time after H(i)

m that X visits state
i. Hence an induction argument shows that H(i)

m is the time of the (m + 1)-th visit to i. Then,
{H(i)

m ≤ n} is just the event that at least m + 1 of the random variables X0, X1, . . . , Xn are equal
to i, which is clearly determined by X0, . . . , Xn.

3. Check that it follows from the strong Markov property that (H(i)
m+1 −H(i)

m , m ≥ 0) is a sequence
of i.i.d. random variables, independent of H

(i)
0 .
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Hint: Use the strong Markov property at the times H
(i)
0 , H

(i)
1 , . . .. Use the fact that X

H
(i)
m

is (almost
surely) constant.

Solution: We apply the strong Markov property sequentially to the stopping times H
(i)
0 , H

(i)
1 , . . ..

First, we remark that H
(i)
0 is finite almost surely, since X is irreducible and recurrent. Moreover

X
H

(i)
0

≡ i almost surely, by definition. Hence the strong Markov property implies that (X
H

(i)
0 +n

)n≥0

has the same distribution as (Xn)n≥0 started from X0 = i, whatever the value of H
(i)
0 . This

implies that H
(i)
1 − H

(i)
0 is finite and has the same distribution as the first return time to state i of

the walk when started in state i, i.e., the distribution of Ri = inf{n > 0 : Xn = i} given X0 = i,
and H

(i)
1 −H

(i)
0 is independent of H

(i)
0 . Now, suppose that H(i)

m is finite; applying the Strong Markov
property to H(i)

m implies that (X
H

(i)
m +n

)n≥0 has the same distribution as (Xn)n≥0 started from X0 = i,
whatever the value of H(i)

m . So, as before, H
(i)
m+1 − H(i)

m is finite, has the same distribution as Ri

given X0 = i, and H
(i)
m+1 − H(i)

m is independent of H(i)
m . Moreover, the strong Markov property also

shows that (X
H

(i)
m +n

)n≥0 and (Xn)0≤n<H
(i)
m

are independent, so H
(i)
m+1 − H(i)

m is independent of H
(i)
k

for all k = 0, 1, . . . , m − 1. Hence, by induction the random variables H
(i)
m+1 − H(i)

m , m = 0, 1, . . .

are independent and identically distributed and also independent of H
(i)
0 .

4. Suppose that (N(n))n≥0 is a delayed renewal process with inter-arrival times Z0, Z1, . . . where
Z0 is a non-negative random variable, independent of Z1, Z2, . . . which are i.i.d. strictly
positive random variables with common mean µ. Use the Strong Law of Large Numbers for
Tk = ∑k

i=0 Zi to show that
N(n)

n
→ 1

µ
a.s. as n → ∞.

Hint: note that TN(n)−1 ≤ n < TN(n) so that N(n)/n can be sandwiched between N(n)/TN(n)
and N(n)/TN(n)−1. Use this and the fact that N(n) → ∞ as n → ∞.

Solution: Since N(n) = #{k ≥ 0 : Tk ≤ n}, the random variable N(n) takes values
in {1, 2, . . . } and N(n) = ℓ if and only if Tℓ−1 ≤ n < Tℓ, for all ℓ ≥ 1. In other words,
TN(n)−1 ≤ n < TN(n). This implies that N(n)/TN(n) < N(n)/n ≤ N(n)/TN(n)−1. Since Z1
is finite almost surely (since it has a finite mean), we have N(n) → ∞ almost surely as
n → ∞. Thus lim infn→∞(N(n)/n) ≥ lim infn→∞(N(n)/TN(n)) = lim infn→∞ n/Tn = 1/µ, and
lim supn→∞(N(n)/n) ≤ lim supn→∞

(
N(n)

N(n)−1
N(n)−1
TN(n)−1

)
≤ lim supn→∞(n/(n−1)) · lim supn→∞ n/Tn =

1/µ.

5. Let (Y (n))n≥0 be the auxiliary Markov chain associated to a delayed renewal process (N(n))n≥0
i.e. Y (n) = TN(n−1) − n. Check that you agree with the transition probabilities given in the
lecture notes.

Hint: Note that TN(n−1) agrees with the smallest sum Tj = ∑j
i=0 Zi that is greater than or equal

to n, because TN(n−1)−1 ≤ n − 1 < TN(n−1). (This interpretation also holds for n = 0, where
N(−1) ≡ 0.)

Solution: Suppose Y (n) = k ≥ 1, so that TN(n−1) = n + k ≥ n + 1. In other words, TN(n−1) is
greater than or equal to n + 1, and it must be the smallest such Tj , since TN(n−1)−1 ≤ n − 1 < n + 1.
Hence TN(n) = TN(n−1), and therefore Y (n + 1) = TN(n) − (n + 1) = TN(n−1) − n − 1 = Y (n) − 1,
with probability 1. Otherwise, if Y (n) = 0, then TN(n−1) = n, so TN(n−1) is strictly less than n + 1,
and TN(n−1)+1 = TN(n−1) + ZN(n−1)+1 is greater than or equal n + 1 (since ZN(n−1)+1 is strictly
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positive). Hence TN(n) = TN(n−1) + ZN(n−1)+1, and therefore Y (n + 1) = TN(n) − (n + 1) = TN(n−1) +
ZN(n−1)+1 − n − 1 = ZN(n−1)+1 − 1. This means that the probability P (Y (n + 1) = i | Y (n) = 0) is
equal to P

(
ZN(n−1)+1 = i + 1

)
= P (Z1 = i + 1).

6. Let
νi = 1

µ
P (Z1 ≥ i + 1) , i ≥ 0.

Check that ν = (νi)i≥0 defines a probability mass function.

Hint: Recall the “tail sum formula”” for expectation of a non-negative integer-valued random
variable.

Solution: Since Z1 is non-negative and integer valued, µ = E [Z1] = ∑
i≥0 P (Z1 > i) = ∑

i≥0 µνi

implying ∑i≥0 νi = 1.

7. Suppose that Z∗ has the size-biased distribution associated with the distribution of Z1, defined
by

P (Z∗ = i) = iP (Z1 = i)
µ

, i ≥ 1.

(a) Verify that this is a probability mass function.
(b) Let L ∼ U{0, 1, . . . , Z∗ − 1}. Show that L ∼ ν.

Note that you can generate L starting from Z∗ by letting U ∼ U[0, 1] and then setting
L = ⌊UZ∗⌋.

(c) What is the size-biased distribution associated with Po(λ)?

Hint:

(a) Use the usual definition of expectation of a non-negative integer-valued random variable.
(b) Find P (L = j) using the partition theorem/law of total probability (partitioning on the

possible values of Z∗).
(c) if Z ∼ Po(λ) then P (Z = i) = exp(−λ)λi/i!.

Solution:

(a) We have ∑i≥1 P (Z∗ = i) = 1
µ

∑
i≥1 iP (Z1 = i) = 1

µ

∑
i≥0 iP (Z1 = i) = E [Z1] /µ = 1.

(b) By the law of total probability P (L = j) = ∑
i≥1 P (L = j | Z∗ = i)P (Z∗ = i) =∑

i≥j+1
1
i

iP(Z1=i)
µ

= 1
µ
P (Z1 ≥ j + 1) = νj.

(c) If Z ∼ Po(λ) then µ = E [Z] = λ, and P (Z∗ = i) = i exp(−λ)λi/i!
λ

= exp(−λ)λi−1/(i − 1)! =
P (Z = i − 1). In other words, the size biased distribution Z∗ has the same distribution as
Z + 1.

8. Show that ν is stationary for Y .
Hint: Y is clearly not reversible, so there’s no point trying detailed balance!

Additional hint: Show that νP = ν for the transition matrix P for the chain Y .

Solution: Recall (from the lectures, or Exercise 5 above) that the non-zero entries of P are
Pk,k−1 = 1 for k ≥ 1 and P0,i = P (Z1 = i + 1) for i ≥ 0. Thus for all j ≥ 0, we have ∑i νiPi,j =
νj+1 + ν0 P (Z1 = j + 1) = 1

µ
(P (Z1 ≥ j + 2) + P (Z1 = j + 1)) = νj.

(In fact, it is not difficult to show uniqueness here: if π is a measure satisfying πj = ∑
i πiPi,j =

πj+1 + π0 P (Z1 = j + 1) then π is proportional to ν.)
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9. Check that if P (Z1 = k) = (1 − p)k−1p, for k ≥ 1, the stationary distribution ν for the
time until the next renewal is νi = (1 − p)ip, for i ≥ 0. (In other words, if we flip a biased
coin with probability p of heads at times n = 0, 1, 2, . . . and let N(n) = #{0 ≤ k ≤ n :
we see a head at time k} then (N(n), n ≥ 0) is a stationary delayed renewal process.)

Hint: Calculate P (Z1 ≥ i + 1) = P (Z1 > i) using a geometric series (or knowledge about Geometric
random variables).

Solution: For all i ≥ 0, P (Z1 ≥ i + 1) = ∑
k≥i+1(1 − p)k−1p = (1 − p)i∑

k≥1(1 − p)k−1p = (1 − p)i.
But µ = 1/p since Z1 is a Geometric random variable with success probability p. Hence νi =
1
µ
P (Z1 ≥ i + 1) = (1 − p)ip.
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Martingales and martingale convergence

You will get more from the exercises by trying them before looking at the solutions!

1. Let X be a martingale. Use the tower property for conditional expectation to deduce that

E [Xn+k|Fn] = Xn , k = 0, 1, 2, . . . .

Hint: Prove by induction on k, using the martingale property for the base case and both the
martingale and tower properties for the inductive step.

Solution: For k = 1, E [Xn+1|Fn] = Xn is exactly the martingale property. For k > 1, sup-
pose E [Xn+k−1|Fn] = Xn holds. The martingale and tower properties imply E [Xn+k|Fn] =
E [E [Xn+k|Fn+k−1] |Fn] = E [Xn+k−1|Fn], hence E [Xn+k|Fn] = Xn also holds.

2. Recall Thackeray’s martingale: let Y1, Y2, . . . be a sequence of independent and identically
distributed random variables, with P (Y1 = 1) = P (Y1 = −1) = 1/2. Define the Markov chain
M by

M0 = 0; Mn =
1 − 2n if Y1 = Y2 = · · · = Yn = −1,

1 otherwise.

(a) Compute E [Mn] from first principles.
(b) What should be the value of E

[
M̃n

]
if M̃ is computed as for M but stopping play if M

hits level 1 − 2N?

Hint:

(a) Just calculate the expectation!
(b) Consider n < N and n ≥ N separately.

Solution:

(a) By definition Mn takes value 1 − 2n with probability 2−n and value 1 with probability 1 − 2−n;
hence E [Mn] = 0.

(b) Check that if n < N we cannot have hit level 1 − 2N yet, so M̃n ≡ Mn; in contrast if n ≥ N
we must have either hit level 1−2N (because Y1 = Y2 = . . . YN = −1) or one of Y1, Y2, . . . , YN

equals 1, meaning M̃n = MN . (Formally speaking, M̃n is the stopped martingale Mmin{n,N}.)
Clearly, in either case E

[
M̃n

]
= 0 using (a).

3. Consider a branching process Y , where Y0 = 1 and Yn+1 is the sum Zn+1,1 + . . . + Zn+1,Yn of
Yn independent copies of a non-negative integer-valued family-size r.v. Z.
(a) Suppose E [Z] = µ < ∞. Show that Xn = Yn/µn is a martingale.
(b) Show that Y is itself a supermartingale if µ < 1 and a submartingale if µ > 1.
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(c) Suppose E
[
sZ
]

= G(s). Let η be the smallest non-negative root of the equation G(s) = s.
Show that ηYn defines a martingale.

(d) Let Hn = Y0 + . . . + Yn be the total of all populations up to time n. Show that
sHn/(G(s)Hn−1) is a martingale.

(e) How should these three expressions be altered if Y0 = k ≥ 1?

4. Consider asymmetric simple random walk, stopped when it first returns to 0. Show that this
is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have
non-negative expectation (and therefore a martingale if jumps have zero expectation).

Hint: The martingale property trivially holds if the walk has stopped (why?). Otherwise, consider
the conditional expectation E [Xn+1 − Xn|Xn] (where Xn is the position of the walk at time n).

Solution: If the walk X has not yet returned to 0, E [Xn+1 − Xn|Xn] is equal to the expectation
of the next jump. Hence, if this expectation is non-positive, then E [Xn+1] ≤ Xn, and if it is
non-negative, then E [Xn+1] ≥ Xn. If the walk has returned to 0 (so Xn = 0 for some n > 0), then
Xn+1 = 0 also, so E [Xn+1 − Xn|Xn] = 0. Hence the sub/supermartingale condition is satisfied for
all n.

5. Consider Thackeray’s martingale based on asymmetric random walk. Show that this is a
supermartingale or submartingale depending on whether jumps have negative or positive
expectation.

Hint: Again, consider E [Mn+1 − Mn|Mn] (where Mn is your fortune after n steps), and separate
the cases having already hit level 1 or not.

Solution: If at time n the Thackeray “martingale” M has hit level 1 (i.e., the asymmetric walk
has at least one jump to the right in the first n steps), then E [Mn+1 − Mn|Mn] = 0. Other-
wise, the asymmetric walk has made n left jumps (losing bets), and the wager is now 2n, and
E [Mn+1 − Mn|Mn] = 2np − 2n(1 − p) = 2n(2p − 1) where p is the probability that the asymmetric
walk jumps to the right.

6. Show, using the conditional form of Jensen’s inequality, that if X is a martingale then |X| is
a submartingale.

Hint: What is the convex function?

Solution: The function ϕ(x) = |x| is convex, so E [ϕ(Xn+1)|Fn] ≥ ϕ(E [Xn+1|Fn]) = ϕ(Xn).

7. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and
cards are turned over one at a time. Let Bn denote the number of black cards left just before
the nth card is turned over. Let

Yn = Bn

r + b − (n − 1) .

(So Yn equals the proportion of black cards left just before the nth card is revealed.) Show
that Y is a martingale.

8. Suppose N1, N2, . . . are independent identically distributed normal random variables of mean
0 and variance σ2, and put Sn = N1 + . . . + Nn.

(a) Show that S is a martingale.
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(b) Show that Yn = exp
(
Sn − n

2 σ2
)

is a martingale.
(c) How should these expressions be altered if E [Ni] = µ ̸= 0?

9. Let X be a discrete-time Markov chain on a countable state-space S with transition probabil-
ities px,y. Let f : S → R be a bounded function. Let Fn contain all the information about
X0, X1, . . . , Xn. Show that

Mn = f(Xn) − f(X0) −
n−1∑
i=0

∑
y∈S

(f(y) − f(Xi))pXi,y

defines a martingale. (Hint: first note that E [f(Xi+1) − f(Xi)|Xi] = ∑
y∈S(f(y)−f(Xi))pXi,y.

Using this and the Markov property of X, check that E [Mn+1 − Mn|Fn] = 0.)

Solution:

Guided by the hint, we observe that f(Xn+1) is an integrable random variable, and
E [f(Xn+1)|Xn = x] = ∑

y f(y)px,y; equivalently, E [f(Xn+1) − f(Xn)|Xn] = ∑
y(f(y)−f(Xn))pXn,y.

Therefore Mn+1 − Mn = f(Xn+1) − f(Xn) − E [f(Xn+1) − f(Xn)|Xn]. But, since X is a Markov
chain, the Markov property says that E [f(Xn+1) − f(Xn)|Xn] = E [f(Xn+1) − f(Xn)|Fn],
and therefore E [Mn+1 − Mn|Fn] = 0 (recall the property of conditional expectation that
E [Z|Fn] = E [E [Z|Fn] |Fn]).

10. Let Y be a discrete-time birth-death process absorbed at zero:

pk,k+1 = λ

λ + µ
, pk,k−1 = µ

λ + µ
, for k > 0, with 0 < λ < µ.

(a) Show that Y is a supermartingale.
(b) Let T = inf{n : Yn = 0} (so T < ∞ a.s.), and define

Xn = Ymin{n,T } +
(

µ − λ

µ + λ

)
min{n, T} .

Show that X is a non-negative supermartingale, converging to

Z =
(

µ − λ

µ + λ

)
T .

(c) Deduce that

E [T |Y0 = y] ≤
(

µ + λ

µ − λ

)
y .

Hint: Remember that p0,0 = 1.

Solution:

(a) If Yn = 0 then Yn+1 = 0 and E [Yn+1|Yn] = Yn. Otherwise, if Yn = k ̸= 0, then
E [Yn+1 − Yn|Yn] = λ

λ+µ
− µ

λ+µ
< 0.

(b) Observe, that if T ≤ n then T ≤ n + 1, so min{n, T} = min{n + 1, T} so Xn+1 − Xn = 0.
Otherwise, T > n and then T ≥ n+1, so Xn+1 −Xn = Yn+1 −Yn + µ−λ

µ+λ
. Then part (a) implies

E [Xn+1 − Xn|Fn] ≤ 0. (Formally, we used here that T is a stopping time so {T ≤ n} ∈ Fn.)
Martingale convergence then implies that X converges almost surely. Since T < ∞, a.s.,
min{n, T} → T a.s. as n → ∞, and therefore Xn converges to YT + Z = Z for Z defined in
the question.
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(c) The martingale convergence theorem also implies that E [Z|F0] ≤ X0 = Y0. In other words,
E
[(

µ−λ
µ+λ

)
T |Y0 = y

]
≤ y.

11. Let L(θ; X1, X2, . . . , Xn) be the likelihood of parameter θ given a sample of independent and
identically distributed random variables, X1, X2, . . . , Xn.
(a) Check that if the “true” value of θ is θ0 then the likelihood ratio

Mn = L(θ1; X1, X2, . . . , Xn)
L(θ0; X1, X2, . . . , Xn)

defines a martingale with E [Mn] = 1 for all n ≥ 1.
(b) Using the strong law of large numbers and Jensen’s inequality, show that

1
n

log Mn → −c as n → ∞.

Hint:

(a) Use independence to write L(θ; X1, X2, . . . , Xn) as a product of identically distributed terms,
each having mean 1.

Solution:

(a) Suppose that f(θ; x) is the common density of Xi. Then Mn = ∏n
i=1

f(θ1;Xi)
f(θ0;Xi) , and noting

that E
[

f(θ1;Xi)
f(θ0;Xi)

]
=
∫

f(θ0; x)f(θ1;x)
f(θ0;x)dx = 1 (computing expectations using θ = θ0), yields

E [Mn|Fn−1] = E
[
Mn−1

f(θ1;Xn)
f(θ0;Xn) |Fn−1

]
= Mn−1. Since M is a martingale, E [Mn] = E [M1] = 1.

12. Let X be a simple symmetric random walk absorbed at boundaries a < b.
(a) Show that

f(x) = x − a

b − a
x ∈ [a, b]

is a bounded harmonic function.
(b) Use the martingale convergence theorem and optional stopping theorem to show that

f(x) = P (X hits b before a|X0 = x) .

Hint:

(a) Find the non-zero values of px,y.

(b) This is the ‘same’ example as in the lectures, but on the interval [a, b] rather than [−a, b].

Solution:

(a) f(x) is increasing on [a, b], hence 0 = f(a) ≤ f(x) ≤ f(b) = 1. If x ∈ {a, b} then px,y = 1 if
and only if x = y (since walk is absorbed); hence ∑y f(y)px,y = f(x). Otherwise, px,x−1 =
px,x+1 = 1/2 and px,y = 0 for all y ̸∈ {x − 1, x + 1}; hence

∑
y

f(y)px,y = x − 1 − a

b − a

1
2 + x + 1 − a

b − a

1
2 = x − a

b − a
= f(x).

(b) Since f is bounded harmonic function, f(Xn) is a bounded martingale. Hence by the
martingale convergence theorem, f(Xn) converges a.s. to a limit Z and E [Z|F0] = f(X0).
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But Z equals f(b) = 1 if X hits b before a and equals f(a) = 0 otherwise; hence E [Z|F0] =
P (X hits b before a|X0). This can also be deduced from the optional stopping theorem, using
the stopping time T = min{n ≥ 0 : Xn ∈ {a, b}} which is a.s. finite. On the time interval
[0, T ] the martingale f(Xn) is bounded, hence E [f(XT )|F0] = f(X0).
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Recurrence and rates of convergence

You will get more from the exercises by trying them before looking at the solutions!

1. Recall that the total variation distance between two probability distributions µ and ν on X
is given by

distTV(µ, ν) = sup
A⊆X

{µ(A) − ν(A)} .

Show that this is equivalent to the distance (note the absolute value signs!)

sup
A⊆X

|µ(A) − ν(A)| .

Hint: Consider Ac.

Solution: If A ⊆ X then Ac ⊆ X . And if π(A) − ν(A) is negative, then π(Ac) − ν(Ac) is positive,
since

π(Ac) − ν(Ac) = 1 − π(A) − (1 − ν(A)) = ν(A) − π(A).

Thus the supremum of π(A) − ν(A) over all subsets A of X is always achieved when π(A) − ν(A)
is positive.

2. Show that if X is discrete, then

distTV(µ, ν) = 1
2

∑
y∈X

|µ(y) − ν(y)| .

(Here we do need to use the absolute value on the RHS!)
Hint: consider A = {y : µ(y) > ν(y)}.

Further hint: Show that for A as above and any B ⊆ X , we have µ(B) − ν(B) ≤ µ(A) − ν(A),
and ν(B) − µ(B) ≤ ν(Ac) − µ(Ac).

Solution: As in the hints, note that since µ(y) − ν(y) > 0 for all y ∈ A and ν(y) − µ(y) ≥ 0 for
all y ∈ Ac,

µ(B) − ν(B) =
∑
y∈B

(µ(y) − ν(y)) ≤
∑

y∈A∩B

(µ(y) − ν(y)) ≤
∑
y∈A

(µ(y) − ν(y)) = µ(A) − ν(A).

and similarly,
ν(B) − µ(B) ≤ ν(Ac) − µ(Ac).

Thus
sup
B⊆X

{µ(B) − ν(B)} = µ(A) − ν(A),
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and by question 1 above we also have

sup
B⊆X

{µ(B) − ν(B)} = sup
B⊆X

|µ(B) − ν(B)| = sup
B⊆X

{ν(B) − µ(B)} = ν(Ac) − µ(Ac).

Therefore, averaging the two lines above,

sup
B⊆X

{µ(B) − ν(B)} = 1
2(µ(A) − ν(A) + ν(Ac) − µ(Ac))

and since every y ∈ X is in exactly one of A or Ac, this equals

1
2
∑
y∈X

|µ(y) − ν(y)|.

3. Suppose now that µ and ν are density functions on R. Show that

distTV(µ, ν) = 1 −
∫ ∞

−∞
min{µ(y), ν(y)}dy .

Hint: remember that |µ − ν| = µ + ν − 2 min{µ, ν}.

4. Consider a Markov chain X with continuous transition density kernel. Show that it possesses
many small sets of lag 1.

Hint: Suppose the transition density kernel of X is p : R×R → [0, ∞). For any x ∈ R, there must
be some y ∈ R such that p(x, y) > 0, and then since p is continuous, there must be ε > 0 such that
p(x′, y′) > p(x, y)/2 for all x′ ∈ [x − ε, x + ε] and y′ ∈ [y − ε, y + ε]. Use these objects to create E,
α and ν.

Solution: Fix x ∈ R and then ε > 0 as in the hint. Let E = [x − ε, x + ε], and α = εp(x, y).
Finally let ν be uniform on [y − ε, y + ε].

For any x′ ∈ E and A ⊂ R,

P (X1 ∈ A|X0 = x′) =
∫

A
p(x′, y′)dy′ ≥

∫
A∩[y−ε,y+ε]

p(x′, y′)dy′

≥
∫

A∩[y−ε,y+ε]

p(x, y)
2 dy′

= εp(x, y)
∫

A∩[y−ε,y+ε]

1
2ε

dy′

= αν(A).

Thus E is a small set. Since we can do this for any x ∈ R, and we can choose ε > 0 arbitrarily
small, we can create arbitrarily many such small sets.

5. Consider a Vervaat perpetuity X, where

X0 = 0; Xn+1 = Un+1(Xn + 1) ,

and where U1, U2, . . . are independent Uniform(0, 1) (simulated below).
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Find a small set for this chain.

Solution: There are many possible answers. Here is one: let E = [0, 1], α = 1/2 and ν be uniform
on [0, 1]. Let U be a uniform random variable on [0, 1]. Then for any x ∈ E and A ⊂ [0, ∞),

P (X1 ∈ A|X0 = x) = P (U(x + 1) ∈ A) =
∫

A∩[0,x+1]

1
x + 1dy

≥ 1
2

∫
A∩[0,1]

dy = 1
2ν(A).

So E is small.

6. Recall the idea of regenerating when our chain hits a small set: suppose that C is a small set
for a ϕ-irreducible chain X, i.e. for x ∈ C,

P (X1 ∈ A|X0 = x) ≥ αν(A).

Suppose that Xn ∈ C. Then with probability α let Xn+1 ∼ ν, and otherwise let it have
transition distribution p(x,·)−αν(·)

1−α
.

(a) Check that the latter expression really gives a probability distribution.
(b) Check that Xn+1 constructed in this manner obeys the correct transition distribution

from Xn.
7. Define a reflected random walk as follows: Xn+1 = max{Xn + Zn+1, 0}, for Z1, Z2, . . . i.i.d.

with continuous density f(z),

E [Z1] < 0 and P (Z1 > 0) > 0 .

Show that the Foster-Lyapunov criterion for positive recurrence holds, using Λ(x) = x.

Hint: Choose c ∈ (0, ∞) such that P (Z1 ≤ −c) > 0 and E [Z1 1Z1>−c] < 0. (To see that there
exists such a c, let

c̃ = sup{x ∈ R : P (Z1 ≤ −x) > 0} ∈ (0, ∞].

Then since Z1 has a density, E [Z1 1Z1>−c̃] = E [Z1] < 0, so limx↑c̃ E [Z1 1Z1>−x] = E [Z1] < 0 and
P (Z1 ≤ −c) > 0 for all c < c̃.) Then show that {x : Λ(x) ≤ c} is small.
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Solution: Take c as in the hint. First we show that {x : Λ(x) ≤ c} = [0, c] is a small set. Let
ν = δ0, the delta mass at 0, and α = P (Z1 ≤ −c). Then for x ∈ [0, c],

P (X1 ∈ A|X0 = x) ≥ 10∈A P (X1 = 0|X0 = x) ≥ 10∈A P (Z1 ≤ −c) = αν(A),

so indeed [0, c] is small.

Then we have

E [Λ(Xn+1)|Fn] = E [Xn+1|Fn] =
∫ ∞

−Xn

(Xn + z)f(z)dz ≤ Xn +
∫ ∞

−Xn

zf(z)dz.

If Xn ̸∈ C, i.e. Xn > c, then this is smaller than Xn −
∫∞

−c zf(z)dz and we have chosen c such that∫∞
−c zf(z)dz = E [Z1 1Z1>−c] < 0. Thus we can set a = −E [Z1 1Z1>−c].

On the other hand, if Xn ∈ C, then

E [Λ(Xn+1)|Fn] ≤ Xn +
∫ ∞

−Xn

zf(z)dz ≤ Xn +
∫ ∞

0
zf(z)dz

so we can choose b = a +
∫∞

0 zf(z)dz. Thus we have shown that X satisfies the Foster-Lyapunov
criterion for positive recurrence.
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