
MA40189 - Question Sheet Eight

Simon Shaw, s.shaw@bath.ac.uk
https://people.bath.ac.uk/masss/ma40189.html

2021/22 Semester II

Set: Problems Class, Thursday 7th April 2022.
Due in: Lecture 21, Thursday 28th April 2022. Paper copies may be submitted in the
problems class or directly to me either in lectures or my office, 4W4.10. Pdf copies may be
submitted to the portal available on the Moodle page.
Task: Attempt questions 1-3; questions 4-5 are extra questions which may be discussed in
the problems class.

1. Let X1, . . . , Xn be exchangeable so that the Xi are conditionally independent given a
parameter θ. Suppose that Xi | θ ∼ Inv-gamma(α, θ), where α is known, and we judge
that θ ∼ Gamma(α0, β0), where α0 and β0 are known.

(a) Show that θ |x ∼ Gamma(αn, βn) where αn = α0 + nα, βn = β0 +
∑n
i=1

1
xi

, and
x = (x1, . . . , xn).

(b) We wish to use the Metropolis-Hastings algorithm to sample from the posterior
distribution θ |x using a normal distribution with mean θ and chosen variance σ2

as the symmetric proposal distribution.

i. Suppose that, at time t, the proposed value θ∗ ≤ 0. Briefly explain why the
corresponding acceptance probability is zero for such a θ∗ and thus that the
sequence of values generated by the algorithm are never less than zero.

ii. Describe how the Metropolis-Hastings algorithm works for this example, giv-
ing the acceptance probability in its simplest form.

2. Suppose that X | θ ∼ N(θ, σ2) and Y | θ, δ ∼ N(θ−δ, σ2), where σ2 is a known constant
and X and Y are conditionally independent given θ and δ. It is judged that the
improper noninformative joint prior distribution f(θ, δ) ∝ 1 is appropriate.

(a) Show that the joint posterior distribution of θ and δ given x and y is bivariate
normal with mean vector µ and variance matrix Σ where

µ =

(
E(θ |X,Y )
E(δ |X,Y )

)
=

(
x

x− y

)
; Σ =

(
σ2 σ2

σ2 2σ2

)
.

(b) Describe how the Gibbs sampler may be used to sample from the posterior dis-
tribution θ, δ |x, y, deriving all required conditional distributions.

(c) Suppose that x = 2, y = 1 and σ2 = 1. Sketch the contours of the joint posterior
distribution. Starting from the origin, add to your sketch the first four steps of a
typical Gibbs sampler path.
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(d) Suppose, instead, that we consider sampling from the posterior distribution using
the Metropolis-Hastings algorithm where the proposal distribution is the bivariate
normal with mean vector µ̃(t−1) = (θ(t−1), δ(t−1))T and known variance matrix
Σ̃. Explain the Metropolis-Hastings algorithm for this case, explicitly stating the
acceptance probability.

3. Let X1, . . . , Xn be exchangeable so that the Xi are conditionally independent given a
parameter θ = (µ, λ). Suppose that Xi | θ ∼ N(µ, 1/λ) so that µ is the mean and λ
the precision of the distribution. Suppose that we judge that µ and λ are independent
with µ ∼ N(µ0, 1/τ), where µ0 and τ are known, and λ ∼ Gamma(α, β), where α and
β are known.

(a) Show that the posterior density f(µ, λ |x), where x = (x1, . . . , xn), can be ex-
pressed as

f(µ, λ |x) ∝ λα+ n
2 −1 exp

{
−λ

2

n∑
i=1

(xi − µ)2 − τ

2
µ2 + τµ0µ− βλ

}
.

(b) Hence show that

λ |µ, x ∼ Gamma

(
α+

n

2
, β +

1

2

n∑
i=1

(xi − µ)2

)
.

(c) Given that µ |λ, x ∼ N( τµ0+nλx̄
τ+nλ , 1

τ+nλ ), where x̄ = 1
n

∑n
i=1 xi, describe how the

Gibbs sampler may be used to sample from the posterior distribution µ, λ |x. Give
a sensible estimate of V ar(λ |x).

4. Consider a Poisson hierarchical model. At the first stage we have observations sj which
are Poisson with mean tjλj for j = 1, . . . , p where each tj is known. We assume that
that the λj are independent and identically distributed with Gamma(α, β) prior dis-
tributions. The parameter α is known but β is unknown and is given a Gamma(γ, δ)
distribution where γ and δ are known. The sj are assumed to be conditionally inde-
pendent given the unknown parameters.

(a) Find, up to a constant of integration, the joint posterior distribution of the un-
known parameters given s = (s1, . . . , sp).

(b) Describe how the Gibbs sampler may be used to sample from the posterior dis-
tribution, deriving all required conditional distributions.

(c) Let {λ(t)
1 , . . . , λ

(t)
p , β(t); t = 1, . . . , N}, with N large, be a realisation of the Gibbs

sampler described above. Give sensible estimates of E(λj | s), V ar(β | s) and
E(λj | a ≤ β ≤ b, s) where 0 < a < b are given constants.

5. Show that the Gibbs sampler for sampling from a distribution π(θ) where θ = (θ1, . . . , θd)
can be viewed as a special case of the Metropolis-Hastings algorithm where each iter-
ation t consists of d Metropolis-Hastings steps each with an acceptance probability of
1.
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