

ADAPTED FOR OPEN BOOK ASSESSMENT

AUAPTED FOR OPEN BOOM			
Unit Code MA40189	Unit Title TOPICS IN BATESIAN STATISTICS		
Academic Year 2619/20	Examiner SINON SHAW		
Semester I	Question No.	Page) of 4	
Part		Mark	
(a) Lot To denote the c	lass of poior distributions.	Conjugacy means that	
(a) Let To denote the class of poior distributions. Conjugacy one and that, given the likelihood f (Q12), the posterior distribution will also be in			
Ac class To for all	х.	L	
(b) In order for a con	(b) In order for a conjugate family to exist the likelihood \$\$\$ f(21;10) must involve only a funite number of different functions of 21= (21,,21n)		
a staro sulovai terra	twite one of hill at h	$\frac{1}{1-1}$	
tor a arbitrarily lar	ye. Thus the likelihood much	rent of stations of	
of sufficient statistics	ye. Thus the likelihood rows a which irreplies lighter organities	with conditions) that the	
likelihood is a reven	sur of a regular reponention	l family. 3	
	J (, J	

Unit Title TOPICS IN BAYESIAN STATISTICS Unit Code MA40189 Academic Year 2019/20 Examiner SINON SHAW Semester J Page 2 Question No. of ١ Part Mark $f(x|a) = \frac{\pi}{1} \frac{1}{(2\pi)^2} \exp\left\{-\frac{1}{2\pi}(x_i - \mu)^2\right\}$ (c)= $(2\pi)^{\frac{n}{2}} \sqrt{\frac{n}{2}} e_{np} \int -\frac{1}{2\pi} \sum_{i=1}^{n} (x_i - \mu)^2$ Now $\sum_{i=1}^{n} \left[x_i - x_i \right]^2 = \sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) + \left(\overline{x} - x_i \right) \right)^2$ $= \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + n (\bar{x} - \mu)^{2} = (n - Ds^{2} + n (\bar{x} - \mu)^{2})^{2}$ $Thm_{j} f(x|0) = (2x)^{-\frac{1}{2}} \sqrt{\frac{1}{2}} mp \int_{-\frac{1}{2y}} \left[(n-1)s^{2} + n(x-m)^{2} \right]$ $\propto \sqrt{2} m_{p} = \frac{1}{2v} [\ln - 1)s^{2} + n(s_{1} - m)^{2}]$ $= g(0, \overline{x}, s^{2}).$ Hence, us $f(0|s_{1}) \propto f(s_{1}|0)f(0) \propto g(0, \overline{x}, s^{2})f(0)$, \overline{X} and S^{2} an sufficient for X for learning about 0. 3 (1)(i) fly, v lx) ~ v 2 enp 3 - 1 [(n-1)s2 + n (sz-m)2] 2 ~ " $= \sqrt{-\frac{(n+1)}{2}} \exp \left\{ -\frac{1}{2} \left[(n-1)s^{2} + n(x-m)^{2} \right] \right\}$ Total

ADIAPTED FOR OPEN BOOK ASSESSMENT

Unit Title TOPICS IN BAYESIAN STATISTICS Unit Code MA40189 Academic Year 201920 Examiner SIMON SHAW 3 Page Question No. Semester J ۱ ا Mark Part Thus, $f(v|s) \propto \int_{\infty}^{\infty} \sqrt{-\frac{(\frac{c}{2}+1)}{(\frac{c}{2}+1)}} e^{-\frac{1}{2v}} E(v-1)s^{2} + v(x-u)^{2}}$ $= \sqrt{\frac{n}{2}} \left\{ -\frac{1}{2n} \left(n - 1 \right) s^{2} \right\} \left\{ -\frac{1}{2n} \left(n - 1 \right) s^{2} \right\} \left\{ -\frac{1}{2n} \left(n \left(\bar{x} - \mu \right)^{2} \right) s^{2} \right\} d\mu$ We recognise the integrand as a turned of N(se, v/n) so that $f(v|s_{i}) \propto v^{-(\frac{r}{2}+1)} enp \left\{-\frac{1}{2}(n-1)s^{2}\right\} v^{\frac{1}{2}}$ $= \sqrt{\left(\frac{n}{2} - \frac{1}{2} + 1\right)} \exp \left\{-\frac{1}{2\nu} (n-1)s^{2}\right\} + \frac{1}{2\nu} \exp \left\{-\frac{1}{2\nu} (n-1)s^{2}\right\}$ We recognise this as a ternel of Inv-gamma (n-1)s2) and thus this is the distribution of vlse. (ii) Note that if Zer Inv-gamma (x, B) then Z'~ Gamma (x, B). Hunce, v-1 / se ~ Gamma (n-1, (n-1)s2) and, from the hint, (n-1) st v' low gamma (n-1, 1) which is the chi-squand This corresponds to the pivot (n-1) 52 used to construct confidence intervals in the classical model. Thus classical and Bayerian interence will coincide showing that the prior is noninformative.

ADAPTED FOR OPEN BOOK ASSESSMENT

Unit Code MA40189 Unit Title TOPICS IN BAYESIAN STATISTICS Academic Year 2019/20 Examiner SIMON SHAW Semester II Question No. Page 4 of Part Mark (e) $f(\mu, \nu) = f(\mu \mid \nu) f(\nu)$ $\sim \sqrt{\frac{1}{2}} \exp \left\{ -\frac{\lambda}{2\gamma} \left(\mu - \mu_0 \right)^2 \right\} \sqrt{\frac{(\alpha+1)}{2}} \exp \left\{ -\frac{\beta}{2\gamma} \right\}$ $= \sqrt{\left(\alpha + \frac{3}{2}\right)} \exp\left\{-\frac{1}{2\alpha_{1}}\left[\lambda\left(\mu - \mu_{0}\right)^{2} + 2\beta\right]\right\}$ $f(\mu_{1}\nu_{1}) \propto \nu^{-(\alpha+\frac{n}{2}+\frac{3}{2})} \exp\left\{-\frac{1}{2\nu}\left[\lambda(\mu-\mu_{0})^{2}+n(\mu-\bar{x})^{2}+2\beta+(n-1)s^{2}\right]\right\}$ Now, from the hint, $\lambda (\mu - \mu_0)^2 + n (\mu - \overline{\lambda})^2 = (\lambda + n) (\mu - \underline{\lambda} \mu_0 + n \overline{\lambda})^2$ $+ \frac{n\lambda}{\lambda + \pi} (\mu_0 - \overline{\lambda})^2$ so that $\int (\mu, \nu | \mathbf{x}) \propto \nu^{-(\alpha + \frac{n}{2} + \frac{3}{2})} e^{-\frac{1}{2\alpha \nu}} \int (\lambda + n) \left(\mu - \frac{\lambda \mu_0 + n \mathbf{x}}{\lambda + 2}\right)^2 + 2\beta$ + $\frac{(n-1)s^2}{2}$ + $\frac{n\lambda}{2(1+1)}$ $(Mo-\bar{x})^2$ which is if the same form as the prior giving conjugacy. $M_0 \rightarrow \frac{\lambda \mu_0 + n\bar{\chi}}{\lambda + n}$, $\beta \rightarrow \beta + \frac{(n-1)s^2}{2} + \frac{n\lambda}{2(\lambda + n)} (\mu_0 - \bar{\chi})^2$. 4

ADAPTED FOR OPEN BOOK ASSESSMENT

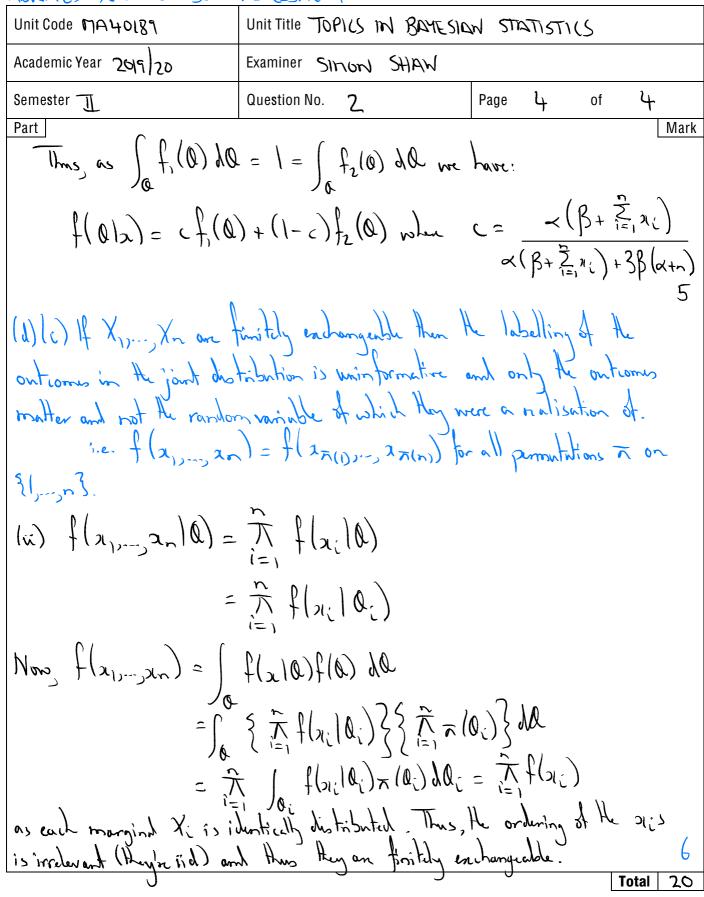
FOR OPEN BOOK ASSESSMENT NFTADOA Unit Code MAGOIR9 Unit Title TOPILS IN BAMESIAN STATISTILS Academic Year 2019/20 Examiner SINON SHAW Page) 4 Semester 🎵 Question No. of 7 Part Mark (a) $f(z|d) = \frac{\pi}{1-1} f(z_i|d) = \frac{\pi}{1-1} Q_{enp}(-z_i;d)$, Q > 0= 0 emp 3 - (2 x) 0 3 log f(x(Q) = n log Q - (Z) xc) Q $\frac{\partial}{\partial Q} \log f(x|Q) = \frac{n}{Q} - \frac{1}{\sum_{i=1}^{n} x_i}, \quad \frac{\partial^2}{\partial Q^2} \log f(x|Q) = -\frac{n}{Q^2}$ $\overline{\Box}(\emptyset) = -\overline{E}\left(-\frac{n}{\theta^2}\left|\emptyset\right) = \frac{n}{\theta^2}.$ The Jetterys prior is $f(a) \ll \sqrt{J(a)}$ ~ Q-' (the improper Gamman (0,0)) $f(0)_{2}) \sim f(2)(0)f(0)$ $\propto 0^{n} \exp\left\{-\left(\frac{r}{\sum_{i=1}^{n} r_{i}}\right)0\right\} 0^{-1}$ $= 0^{-1} \exp \left\{ - \left(\sum_{i=1}^{n} \lambda_{i} \right) 0 \right\}$ We recognise this as a terral of gamma (n, $\frac{\pi}{2}$, \varkappa_{i}) so that Olar Gamma (~, Br) when ~= n and Br = ZN:

ADAPTED FOR OPEN BOOK	ASSESSMENT		
Unit Code MAY0189	Unit Title TOPICS IN BAMES	IAN STATIST	ils
Academic Year 2019/20	Examiner SINON SHAW		
Semester T	Question No. 2	Page 2_	of 4
Part $E(Q X) = \frac{\pi}{B_n} = \frac{n}{\sum_{i=1}^{n} x_i}$ which is the maximum likelihood			rood
estimate of O. The posterior mean is this based solely on the data and the prior has no influence; it is moninformative.			
(b) As Zisenchangeable Alen ZON Exp(Q) and (XIIZ) 10. Thus,			
E(Z X) = E(E(Z Q) X) (using (X11Z) [Q)			
= $E(Q' X)$ (no zio ~ Exp(Q))			
$= \frac{\beta n}{\alpha n - 1} = \frac{\sum_{i=1}^{n} \lambda_i}{n - 1} \left[\alpha_s \left(\alpha_s \lambda_i \right) + \alpha_s \left(\alpha_n, \beta_n \right) \right]$			
Similarly		J	
$V_{ur}(Z X) = E(V_{ur}(Z Q) X) + V_{ur}(E(Z Q) X)$			
$= E(0^{-2} X) + V_{or}(0^{-1} X)$			
$= \frac{\beta_{n}^{2}}{(\alpha_{n}-1)(\alpha_{n}-2)} + \frac{\beta_{n}^{2}}{(\alpha_{n}-1)^{2}(\alpha_{n}-2)}$ $= \frac{\alpha_{n}\beta_{n}^{2}}{(\alpha_{n}-1)^{2}(\alpha_{n}-2)} = \frac{n(\frac{2}{(1-1)^{2}(n-2)})}{(n-1)^{2}(n-2)}$			
(both values well defin	where $n > 2$).		3

APADTED FOR OPEN BOOK	L ASSESSMENT	
Unit Code MA40189	Unit Title TOPICS IN	BAYESIAN STATISTICS
Academic Year 2019/20	Examiner SITION SH	JAW
Semester II	Question No. 2	Page 3 of 4
		$\frac{3\beta^{\alpha+1}}{4\Gamma(\alpha+1)} Q^{\alpha} enp(-\beta Q)$
a O ^{ati} er	$mp(-\beta 0) + 3\beta \alpha$	
$\propto \propto 0^{\alpha - 1} \exp(-\beta 0) + 3\beta 0^{\alpha} \exp(-\beta 0)$.		
$f(Q x) \propto f(x Q)f(Q)$ $\propto \alpha Q^{(\alpha+n)-1} enp(-(\beta+\tilde{I}_{1}x_{1})Q)$ $+ 3\beta Q^{(\alpha+1+n)-1} enp(-(\beta+\tilde{I}_{1}x_{1})Q)$		
He recognise kernels of Gamma (\$\alpha+n, \$B+ \$\vec{1}{2}, \$\vec{1}{1}\$) and Gamma (\$\alpha+1+n, \$B+ \$\vec{2}{2}, \$\vec{1}{1}\$) is this sum. Letting \$\vec{1}{1}\$, (0) be the pull of Gamma (\$\alpha+n, \$B+ \$\vec{2}{2}, \$\vec{1}{1}\$) and \$\vec{1}{2}\$, (0) He pull of Gamma (\$\alpha+1+n, \$B+ \$\vec{2}{1}\$, \$\vec{1}{2}\$) we have:		
$f(Q _{\mathcal{X}}) \propto \propto \frac{\Gamma(\alpha+n)}{(\beta+\tilde{z}_{i=1}^{\chi_{i}})^{\alpha+n}} f_{i}(Q) + \frac{3\beta\Gamma(\alpha+n+1)}{(\beta+\tilde{z}_{i=1}^{\chi_{i}})^{\alpha+n+1}} f_{2}(Q)$		
$\propto \chi f_{1}(0) + \frac{3\beta(\chi+n)}{(\beta+\tilde{I}_{1}x_{1})} f_{2}(0)$		
~ ~ (j	$3 + \sum_{i=1}^{n} n_i) f_i (0) + i$	$3\beta(\alpha+n)f_2(0)$

APAIDTED FOR OPEN BOOK ASSESSMENT

ADAPTED FOR OPEN BOOK ASSESSMENT



Unit Code MA40181 Unit Title TOPICS IN BAYESIAN STATISTICS SITTON SHAW Academic Year 2019/20 Examiner Question No. 3 <u>A5</u> Semester T Page L of Part Mark (a) As $X_i | Q \sim P_0(s_i Q_i)$ then $P(X_i = x_i | Q) = \frac{1}{2i!} (s_i Q_i)^{n_i} enp(-s_i Q_i)$ $\propto 0; enp(-s;0;)$ Hume, $f(x|0) = P(X_1 = x_1, ..., X_n = x_n|0) \propto \frac{\pi}{1} Q_i^{x_i} e_{i} p(-s_i Q_i)$ $= \left(\frac{\pi}{1} 0_{i}^{x_{i}} \right) \exp \left(- \frac{\pi}{1} s_{i} 0_{i} \right)$ $O_i | \phi \sim E_{xp}(\phi) = \frac{1}{100} \phi \exp(-\phi O_i) = \phi \exp(-\phi O_i) = \phi \exp(-\phi O_i)$ \$~ Gamma (~, B) so that f(\$) ~ \$\$ \$\$ and (-B\$) $\operatorname{Tm}_{f(0,\phi|n)} \propto f(n|0)f(0|\phi)f(\phi)$ $\propto \left(\frac{\hat{\pi}}{\sum_{i=1}^{n} \theta_{i}^{x_{i}}}\right) \not = \frac{\varphi}{\exp} \left\{ - \oint \left(\beta + \frac{\hat{\chi}}{\sum_{i=1}^{n} \theta_{i}}\right) - \frac{\hat{\chi}}{\sum_{i=1}^{n} s_{i} \theta_{i}}\right\}.$ 2 (b) Let Q_i = (Q_1,..., Q_n) / Q_i. $f(0; 10, i, \phi, x) = \frac{f(0, \phi|x)}{f(0, i, \phi|x)} \propto f(0, \phi|x)$ as a function of Q:

ADAPTED FOR OPEN BOOK ASSESSMENT

Unit Title TOPICS IN BAYESIAN STATISTICS Unit Code MA40189 Academic Year 2019 20 Examiner SINON SHAW 2 Semester T Question No. 3 Page of Part Mark Thus, $f(0; 10; \phi, x) \propto 0; \exp \{2 - (\phi + s; 0; \}$ We recognie this as a kernel of Gamma (xit), \$ +si) so $Q_i | Q_{-i} \phi_{j,si}$ Gamma $(s_i + 1, \phi + s_i)$. Similarly, $f(\phi|0,x) \propto f(0,\phi|x)$ (wrt ϕ) $\ll p^{\alpha + n-1} \exp \left\{ - \phi \left(B + \tilde{\Sigma}_{i} 0_{i} \right) \right\}$ We recogime this as a kernel of Jamma (at n, B+ EQ;) so \$ 10, se ~ Gamme (atn, B+ Za;). The Gibbs sumpler algorithmis: 1. Choose a starting value (0(0) \$(0)) for which f(0(0) \$(0) |x) > 0 2. At iteration & generate new volus (Q(t), \$(t)) as follows · drone Q(+) from Gamme (x,+1, \$(t-1)+1) · drow On from Gamma (xn+1, \$(t-1)+1) · drons \$ (t) from Gamma (x+n, B + 2 O(t)) 3. Repeat step 2.

ADAPTED FOR OPEN BOOK ASSESSMENT

ADAPTED FOR OPEN BOOK	ASSESSMENT	
Unit Code MA40181	Unit Title TOPILS IN BAMESI	AN STATISTICS
Academic Year 2014/20	Examiner Stron SHAW	
Semester I	Question No. 3	Page 3 of 5
Part The algorithm will produ	na a Markov chain with	stationary distribution
flo, pla). After a sul	tiventhy long time to allo	no for convergence, values
The algorithm will produce a Markov chain with stationary distribution f(0, \$\$(2). After a sufficiently long time to allow for convergence, values 2 0(12) \$\$(12) for t > b may be viewed as a sumple from \$1(0, \$12)		
(5 denstro the burn - in). 7		
(c) He wish to sumple from dil \$,0-i, x ~ Gamme (xi+1, \$+si) using		
the Metropolis-Hustings algorithm. At time to state Gibbs sumplum we sample from Guranna (2:+1, \$ 12-1) and thus own		
we save ple from Guresma (x;+1, \$ 12-1) and thus on		
twyt distribution is $\pi(0;) \propto 0; x_i \exp\left(-(\phi^{(t-i)} + s_i)\phi_i\right)$		
le 1-H algorithm is thus:		
D Choose an arbitrary starting point $d_i^{(0)}$ for which $\pi(d_i) > 0$.		
D) At the s		
a) Sample proposal Q' from q (Q: Q(s-1)), He proposal		
distribution.		
b) Calculate the acceptance probability		
$ = \min \left(1, -\pi \left(Q_{i}^{(s-1)} \mid Q_{i}^{*} \right) \right) $		
$ \chi \left(Q_{i}^{(s-1)}, Q_{i}^{*} \right) = \min \left(1, \frac{\pi \left(Q_{i}^{*} \right) q \left(Q_{i}^{(s-1)} \right) Q_{i}^{*} \right)}{\pi \left(Q_{i}^{(s-1)} \right) q \left(Q_{i}^{*} \right) Q_{i}^{(s-1)} } \right) $		
$= \min\left(1, \frac{Q_{i}^{*} \sup_{i} \left(-\left(\phi^{(t-1)} + s_{i}\right)\phi_{i}^{*}\right)q\left(Q_{i}^{(s-1)} Q_{i}^{*}\right)}{Q_{i}^{(s-1)x_{i}} \sup\left(-\left(\phi^{(t-1)} + s_{i}\right)\phi_{i}^{(s-1)}\right)q\left(Q_{i}^{*} Q_{i}^{(s-1)}\right)}\right)$		
	Q(51) Xi imp (-(\$	$+ s_{i} \left(\phi_{i}^{\dagger} s^{-1} \right) \left(\phi_{i}^{\dagger} \phi_{i}^{\dagger} \rangle \right)$
		- Total

TOPICS IN BAYESIAN STATISTICS Unit Code MA40185 Unit Title SIMON SHAW 2019/20 Academic Year Examiner Semester 1 Question No. Page \mathcal{S} of Part Mark c) Generate Un U(0,1) d) If $U \leq \langle 0_{i}^{(s-1)}, 0_{i}^{+} \rangle$ accept the proposal, $0_{i}^{(s)} = 0_{i}^{+}$. Otherwise rijent the proposal and set Q (5= Q(5-1) 3) Repeat step 2) The chain is own until convergence. After this observations are from $\pi(Q_i)$. Thus, if b denotes the length of the barn-in, $Q_i^{(b+1)}$ is a Sumple from F (Qi) and so, if the gibbs sumpler, set Q(1+) = Q(b+1) 4 (d) $P(0 > a | x) = \int f(a|_x) d0 = \int \overline{I}_{20 > a^3} f(a|_x) da$ $=\int_{-\infty}^{\infty} \frac{\overline{\Pi}_{20,20,3} f(0|x)}{q(0)} g(0) d0 = \overline{H}_{q} \left(\frac{\overline{\Pi}_{20,20,3} f(0|x)}{q(0)} \right)$ Draw a random sample $Q_{1,...,Q_N}$ from q(Q) and estimate P(Q > a | x)by $\hat{T} = \frac{1}{N} \sum_{i=1}^{N} \frac{II_{\{Q_i > a\}}f(Q_i | h_i)}{q(Q_i)}$ 3 $le) Vor \left(\widehat{I} | Q \sim q(Q) \right) = \frac{1}{N} Vor \left(\frac{g(Q)f(Q)X}{g(Q)} \right) \left(Q \sim q(Q) \right)$ as Q; iid from q(Q). Thus, $V_{or}(\hat{I}[0, \gamma[0]) = \frac{1}{N} \begin{cases} E\left(\frac{g^{2}(0)f^{2}(0|X)}{g^{2}(0)}\right) \int 0 \gamma_{q}(0) - E^{2}\left(\frac{g(0)f(0|X)}{g(0)}\right) \int 0 \gamma_{q}(0) \\ \frac{1}{N} \end{cases}$

ADAPTED FOR OPEN BOOK ASSESSMENT

ADAPTED FOR OPEN BO	DIL ASSESSMENT
Unit Code MA40189	Unit Title TOPICS IN BAMESIAN STATISTICS
Academic Year 2019/20	Examiner SIMON SHAW
Semester T	Question No. 3 Page $\overline{5}$ of $\overline{5}$
$\frac{Part}{N} = \frac{1}{N} \begin{cases} \frac{2}{2} \\ \frac{2}{2} \end{cases}$	$\frac{Mark}{(a)} = E^2(g(a) X) \ge by changing He}$
Thus, choosing g (0) to .	$minimise E\left(\frac{g^2(a)f(0 X)}{g(a)} X\right)$ will minimise
Vor (Î) Q ~ q(Q)) and an	ny g(a) doing so is optimal. 4

Unit Code MA40189 Unit Title TOPICS IN BAMESIAN STATISTICS Academic Year 2019/20 Examiner SINON SHAW Semester J Question No. 4 Page | of Part Mark (a) The risk of duisin dis $p(\pi, d) = E \sum_{q} (0)(0 - d)^{2} \qquad (wrf = (0))$ = E(q(0)0^{2}) - 2dE(q(0)0) + d^{2}E(q(0)) We choose & to minimise this: $\frac{\partial}{\partial \lambda} \rho(\pi, \lambda) = -2E(g(0)0) + 2\lambda E(g(0))$ so $d^* = \frac{E(q(0)O)}{F(q(0))}$ which is a minimum for g(0) > 0. The corresponding Bayes risk is $p^{*}(\pi) = p(\pi, d^{*}) = E(g(0)0^{*}) - 2 \frac{E^{2}(g(0)0)}{E(g(0))} + \frac{E^{2}(g(0)0)}{E(g(0))}$ = $E(g(0)O^2) - \frac{E^2(g(0)O)}{E(g(0))}$ When g(Q) = 1, $d^{**} = E(Q)$ (the mean) and $p^{*}(x) = Var(Q)$ (the variance). (He variance). In the change to the open book exam, this question was re-phrased to ask for the solution rather than to show that the solution was of a given form, As such, the model solution is unchanged-Total

ADAPTED FOR OPEN BOOK ASSESSMENT

Unit Title TOPICS IN BAYESIAN STATISTICS Unit Code MA40189 Examiner SINON SHAW Academic Year 2019 20 Semester II Page 2 Question No. of 4 Part Mark (b) We have $g(Q) = Q^{-3}$. For the instructive decision, the Bayes rule is $d^* = \frac{E(Q^{-2})}{E(Q^{-3})}$ Now as Q~ Gamma (x, B), $\overline{E}(Q^{-k}) = \int_{0}^{\infty} \frac{B^{\alpha}}{P(\alpha)} Q^{(\alpha-k)-1} e^{-BQ} dQ$ $= \frac{\beta^{k} \Gamma(\alpha - k)}{\Gamma(\alpha)} \int_{\alpha}^{\infty} \frac{\beta^{\alpha - k}}{\Gamma(\alpha - k)} O(\alpha - k) - 1 - \beta O dO$ = <u>Bk P(a-k)</u> provided that a > k. Hume, $E(0^{-3}) = \frac{B^{3} \Gamma(\alpha - 3)}{\Gamma(\alpha)}$, $E(0^{-2}) = \frac{B^{2} \Gamma(\alpha - 2)}{\Gamma(\alpha)}$ so that $\lambda^{+} = \frac{B^2 T(\alpha - 2)}{T(\alpha)} \times \frac{T(\alpha)}{B^3 T(\alpha - 3)} = \frac{\alpha - 3}{B}$. The Bays risk is $p^{+}(f(0)) = E(0^{-1}) - \frac{E^{2}(0^{-2})}{E(0^{-3})}$ $= \frac{\beta \Gamma(\alpha-1)}{\pi(\alpha)} - \beta^2 \frac{\Gamma(\alpha-2)}{\Gamma(\alpha)} \left(\frac{\alpha-3}{B}\right)$ $= \frac{B}{(\alpha - 1)(\alpha - 2)} = \frac{B}{(\alpha - 1)(\alpha - 2)}$ 5

ADAPTED FOR OPEN BOOK ASSESSMENT

Unit Code MA40189 Unit Title TOPILS IN BAMESIAN STATISTICS. 2019/20 Academic Year Examiner SIMON SHAW Semester Π Page Question No. 4 3 of Part Mark $(c) f(y_1|q) = \pi f(x_1|q) \propto q^2 \exp\left(-q \sum_{i=1}^{2} x_i^2\right)$ f(0) ~ 0~ - i enp (- B0) The f(Q(2) ~ Q(a+n)-1 enp(-Q(B+ 1= ni)) so that Qlu ~ Jamma (atn, B+ E, 2) He may emploit conjugacy to find $d^+(x) = \frac{\alpha + n - 3}{R + \sum x^2}$ with rish $\frac{B+\frac{1}{12}x_i}{1-1-1}$ 3 (d) With $\lambda = 1$, the risk of the sampling provedure is $E\left(\frac{B + \frac{1}{1 + 1} X_{1}}{1 + 1 + 1 + 1}\right)$ Now, $E(X_i) = E(E(X_i|0)) = E(0^{-1}) = \frac{\beta}{\beta}$ so that $\overline{E}\left(\frac{\beta+\frac{n}{1-1}X_{1}}{(\alpha+n-1)(\alpha+n-2)}\right) = \frac{\beta+\frac{n\beta}{\alpha-1}}{(\alpha+n-1)(\alpha+n-2)} = \frac{\beta}{(\alpha-1)(\alpha+n-2)}$ The total visit is Rn = nc + B Tx-11(x+n-2) Here, $\frac{dR_n}{I} = c - \frac{B}{(\alpha - 1)(\alpha + n - 2)^2}$

ADAPTED FOR OPEN BOOK ASSESSMENT

ADAPTED FOR OPEN BODIL ASSESSMENT Unit Title TOPICS IN BAMESIAN STATISTICS Unit Code MA40184 Examiner SINON SHAW Academic Year 2019/10 4 Page 4 of Question No. 4 Semester II. Mark Solving to O gives (x+n-2)2 = B Part $\Rightarrow n = \sqrt{\frac{\beta}{\alpha(\alpha-1)}} - (\alpha-2).$ (Sample if n > O other wise don't sample). 4. $(e) E(L_{1}(0,d)) = (0_{2}-0_{1}) + \int_{-\infty}^{0} \frac{2}{\sqrt{2}} (0,-0)_{\pi}(0) d0 + \int_{0}^{\infty} \frac{2}{\sqrt{2}} (0-0_{2})_{\pi}(0) d0$ $= (a_2 - a_1) + 2 a_1 P(a \le a_1) - 2 (a_1 a_2 + (a_1) b_2)$ + $\frac{2}{2} \left[E[0] - \int_{-\infty}^{\alpha_2} O_{\mathcal{T}}(\alpha) d\alpha \right] - \frac{2}{2} O_2 P(O_2 O_2)$ $\frac{\partial}{\partial Q} E(L_{1}(Q, d)) = -1 + \frac{2}{2} P(Q \leq Q_{1}) + \frac{2}{2} Q_{1} \times (Q_{1}) - \frac{2}{2} Q_{1} \times (Q_{1})$ Hund, $\frac{\partial}{\partial Q} E(L_1(Q,d)) = 0$ when $P(Q \neq Q_1) = \frac{\alpha}{2}$. $\frac{\partial}{\partial Q_{1}} E(L_{1}(Q, d)) = 1 - \frac{2}{\alpha} O_{1} \times (O_{1}) - \frac{2}{\alpha} P(Q_{2} O_{1}) + \frac{2}{\alpha} O_{1} \times (O_{1})$ Huma, $\frac{\partial}{\partial 0_1} E(L_1(0,d)) = 0$ when $1 - \frac{2}{2} P(0 = 0_2) = 0$ i.e. $P(Q_2Q_2) = \frac{\alpha}{2}$ Here, the Bayes while $d^* = (0^*, 0^*)$ when $P(0 \le 0^*) = \frac{1}{2} = P(0 \ge 0^*)$