

1. (a) For a likelihood $f(x|\theta)$ it is proposed to use a conjugate prior. Briefly explain what this means for a Bayesian analysis. [2]

(b) Explain the link between regular exponential families, sufficient statistics and conjugate priors. [3]

Let X_1, \dots, X_n be exchangeable so that the X_i are conditionally independent given a parameter θ . Let $\theta = (\mu, \nu)$ and suppose that each $X_i|\theta \sim N(\mu, \nu)$.

(c) Show that

$$f(x|\theta) = (2\pi)^{-n/2} \nu^{-n/2} \exp \left\{ -\frac{1}{2\nu} [(n-1)s^2 + n(\bar{x} - \mu)^2] \right\}$$

where $x = (x_1, \dots, x_n)$ and \bar{x} , $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ are respectively the sample mean and variance. Hence, or otherwise, explain why \bar{X} and S^2 are sufficient for $X = (X_1, \dots, X_n)$ for learning about θ . [3]

(d) It is judged that the improper joint prior distribution $f(\mu, \nu) \propto \nu^{-1}$ is appropriate.

(i) By first deriving the posterior distribution $\mu, \nu | x$ where $x = (x_1, \dots, x_n)$, or otherwise, show that $\nu | x \sim \text{Inv-gamma}((n-1)/2, (n-1)s^2/2)$.

(ii) Let $Y = (n-1)s^2/\nu$. Using the result of part (d)(i), or otherwise, show that $Y | x \sim \chi_{n-1}^2$, the chi-squared distribution with $n-1$ degrees of freedom. Comment on why this result suggests that the prior $f(\mu, \nu) \propto \nu^{-1}$ may be viewed as noninformative.

(Hint: You may use, without proof, the property that if $A \sim \text{Gamma}(a, b)$ then $cA \sim \text{Gamma}(a, b/c)$ for any constant $c > 0$. You should clearly state any further properties of the Gamma distribution you use.)

[8]

(e) Suppose now that the prior for θ is given hierarchically and it is judged that $\mu | \nu \sim N(\mu_0, \nu/\lambda)$, where μ_0 and λ are known constants, and $\nu \sim \text{Inv-gamma}(\alpha, \beta)$ for known constants α and β . Show that, with respect to the normal likelihood given in part (c), the prior distribution for $\theta = (\mu, \nu)$ is a conjugate prior.

(Hint: You may use, without proof, the result that for all μ ,

$$a(\mu - b)^2 + c(\mu - d)^2 = (a+c) \left(\mu - \frac{ab+cd}{a+c} \right)^2 + \left(\frac{ac}{a+c} \right) (b-d)^2$$

for any $a, b, c, d \in \mathbb{R}$ with $a \neq -c$.)

[4]

2. Let X_1, \dots, X_n be exchangeable so that the X_i are conditionally independent given a parameter θ . Suppose that $X_i | \theta \sim \text{Exp}(\theta)$ so that $E(X_i | \theta) = 1/\theta$.

- (a) Find the Jeffreys prior for θ and show that the posterior distribution for θ given $x = (x_1, \dots, x_n)$ is $\text{Gamma}(\alpha_n, \beta_n)$, stating the values of α_n and β_n . Briefly explain how, in this case, the Jeffreys prior can be viewed as noninformative. [6]
- (b) Consider a further observation Z which is exchangeable with $X = (X_1, \dots, X_n)$ where $n > 2$. Without calculating the predictive distribution of Z given $X = x$, find $E(Z | X)$ and $\text{Var}(Z | X)$. [3]
- (c) Suppose now that the prior for θ is instead given by the probability density function

$$f(\theta) = \frac{\beta^\alpha}{4\Gamma(\alpha)} \theta^{\alpha-1} \exp(-\beta\theta) + \frac{3\beta^{\alpha+1}}{4\Gamma(\alpha+1)} \theta^\alpha \exp(-\beta\theta).$$

for known constants $\alpha, \beta > 0$. Show that the posterior probability density function can be written as

$$f(\theta | x) = cf_1(\theta) + (1 - c)f_2(\theta)$$

where

$$c = \frac{\alpha(\beta + \sum_{i=1}^n x_i)}{\alpha(\beta + \sum_{i=1}^n x_i) + 3\beta(\alpha + n)}$$

and $f_1(\theta)$ and $f_2(\theta)$ are probability density functions. [5]

- (d) Now consider a generic collection of random variables, X_1, \dots, X_n .
 - (i) If X_1, \dots, X_n are finitely exchangeable, briefly interpret the consequence of this for their joint distribution.
 - (ii) Let X_1, \dots, X_n be conditionally independent given a parameter $\theta = (\theta_1, \dots, \theta_n)$ and suppose that each $X_i | \theta$ is from the same family of distributions with likelihood $f(x_i | \theta) = f(x_i | \theta_i)$. It is judged that $\theta_1, \dots, \theta_n$ are independent and identically distributed with each θ_i having probability density function $\pi(\theta_i)$. Show that X_1, \dots, X_n are finitely exchangeable.

[6]

3. Let X_1, \dots, X_n be conditionally independent given a parameter $\theta = (\theta_1, \dots, \theta_n)$ and suppose that $X_i | \theta \sim \text{Po}(s_i \theta_i)$ where each s_i is known. It is judged that $\theta_1, \dots, \theta_n$ are conditionally independent given ϕ with $\theta_i | \phi \sim \text{Exp}(\phi)$, so that $E(\theta_i | \phi) = 1/\phi$, and $\phi \sim \text{Gamma}(\alpha, \beta)$, where α and β are known.

(a) Show that the posterior density $f(\theta_1, \dots, \theta_n, \phi | x)$, where $x = (x_1, \dots, x_n)$, can be expressed as

$$f(\theta_1, \dots, \theta_n, \phi | x) \propto \left(\prod_{i=1}^n \theta_i^{x_i} \right) \phi^{\alpha+n-1} \exp \left\{ -\phi \left(\beta + \sum_{i=1}^n \theta_i \right) - \sum_{i=1}^n s_i \theta_i \right\}.$$

[2]

(b) Describe how to use the Gibbs sampler to sample from the posterior distribution of $\theta_1, \dots, \theta_n, \phi | x$, deriving any required conditional distributions. [7]

(c) For a given i , we wish to use the Metropolis-Hastings algorithm to sample from the posterior distribution of $\theta_i | \phi, \theta_{-i}, x$ where $\theta_{-i} = \theta \setminus \theta_i$. Letting $q(\theta_i | \theta_i^{t-1})$ denote the proposal distribution when the current state is θ_i^{t-1} , describe how the algorithm works in this case. [4]

Consider a general problem in which we will observe data X , where the distribution of X depends upon an unknown parameter $\theta \in \mathbb{R}$, and we wish to make inference about θ . Let $f(\theta | x)$ denote the posterior distribution and that we sample from the distribution $q(\theta)$.

(d) Explain how to use the method of importance sampling to estimate $P(\theta > a | x)$ for some constant a . [3]

(e) Let \hat{I} denote the corresponding importance sampling estimator of $E(g(\theta) | X)$ for some function $g(\theta)$. By considering the variance of \hat{I} with respect to the distribution $q(\theta)$, or otherwise, explain why a sensible choice of $q(\theta)$ is that which minimises $E \left(\frac{g^2(\theta) f(\theta | x)}{q(\theta)} \mid X \right)$. [4]

4. Consider a statistical decision problem $[\Theta, \mathcal{D}, \pi(\theta), L(\theta, d)]$ for a univariate parameter θ and loss function

$$L(\theta, d) = g(\theta)(\theta - d)^2$$

where $g(\theta) > 0$ and d is a point estimate of θ .

(a) Derive the solution to this statistical decision problem, interpreting the results for the case when $g(\theta) = 1$. [4]

Let X_1, \dots, X_n be exchangeable so that the X_i are conditionally independent given a parameter θ . Suppose that the probability density function for $X_i | \theta$ is

$$f(x_i | \theta) = \begin{cases} \theta \lambda x_i^{\lambda-1} \exp(-\theta x_i^\lambda) & 0 < x_i < \infty \\ 0 & \text{otherwise,} \end{cases}$$

for known $\lambda > 0$ and unknown $\theta > 0$ where $\theta \sim \text{Gamma}(\alpha, \beta)$ where $\alpha > 3$ and β are known. We wish to produce a point estimate d for θ , with loss function

$$L(\theta, d) = \frac{(\theta - d)^2}{\theta^3}.$$

(b) Find the Bayes rule and Bayes risk of an immediate decision. [5]
 (c) Find the Bayes rule and Bayes risk after observing $x = (x_1, \dots, x_n)$. [3]
 (d) Suppose that $\lambda = 1$ so that $X_i | \theta \sim \text{Exp}(\theta)$. If each observation costs a fixed amount c then R_n , the total risk of a sample of size n , is the sum of the sample cost and the Bayes risk of the sampling procedure. Find R_n and thus the optimal choice of n . [4]

Let $\theta \in \mathbb{R}$ be a continuous univariate random variable with finite expectation. We wish to construct an interval estimate $d = (\theta_1, \theta_2)$, where $\theta_1 \leq \theta_2$, for θ . Let \mathcal{D}_1 denote the set of all such intervals d . Consider the loss function

$$L_1(\theta, d) = \theta_2 - \theta_1 + \begin{cases} \frac{2}{\alpha}(\theta_1 - \theta) & \text{if } \theta < \theta_1 \\ 0 & \text{if } \theta_1 \leq \theta < \theta_2 \\ \frac{2}{\alpha}(\theta - \theta_2) & \text{if } \theta_2 < \theta. \end{cases}$$

(e) By considering derivatives of the expected loss with respect to θ_1 and θ_2 , or otherwise, show that, for the decision problem $[\Theta, \mathcal{D}_1, \pi(\theta), L_1(\theta, d)]$, the Bayes rule is $d^* = (\theta_1^*, \theta_2^*)$ where $P(\theta \leq \theta_1^*) = \alpha/2 = P(\theta \geq \theta_2^*)$. [4]