
1. (a) For a likelihood f(x | θ) it is proposed to use a conjugate prior. Briefly explain what
this means for a Bayesian analysis. [2]

(b) Explain the link between regular exponential families, sufficient statistics and
conjugate priors. [3]

Let X1, . . . , Xn be exchangeable so that the Xi are conditionally independent given a
parameter θ. Let θ = (µ, ν) and suppose that each Xi | θ ∼ N(µ, ν).

(c) Show that

f(x | θ) = (2π)−n/2ν−n/2 exp

{
− 1

2ν

[
(n− 1)s2 + n(x− µ)2

]}
where x = (x1, . . . , xn) and x, s2 = 1

n−1

∑n
i=1(xi − x)2 are respectively the sample

mean and variance. Hence, or otherwise, explain why X and S2 are sufficient for
X = (X1, . . . , Xn) for learning about θ. [3]

(d) It is judged that the improper joint prior distribution f(µ, ν) ∝ ν−1 is appropriate.

(i) By first deriving the posterior distribution µ, ν |x where x = (x1, . . . , xn), or
otherwise, show that ν |x ∼ Inv-gamma((n− 1)/2, (n− 1)s2/2).

(ii) Let Y = (n − 1)s2/ν. Using the result of part (d)(i), or otherwise, show
that Y |x ∼ χ2

n−1, the chi-squared distribution with n− 1 degrees of freedom.
Comment on why this result suggests that the prior f(µ, ν) ∝ ν−1 may be
viewed as noninformative.
(Hint: You may use, without proof, the property that if A ∼ Gamma(a, b)
then cA ∼ Gamma(a, b/c) for any constant c > 0. You should clearly state any
further properties of the Gamma distribution you use.)

[8]

(e) Suppose now that the prior for θ is given hierarchically and it is judged that
µ | ν ∼ N(µ0, ν/λ), where µ0 and λ are known constants, and ν ∼ Inv-gamma(α, β)
for known constants α and β. Show that, with respect to the normal likelihood
given in part (c), the prior distribution for θ = (µ, ν) is a conjugate prior.
(Hint: You may use, without proof, the result that for all µ,

a(µ− b)2 + c(µ− d)2 = (a+ c)

(
µ− ab+ cd

a+ c

)2

+

(
ac

a+ c

)
(b− d)2

for any a, b, c, d ∈ R with a 6= −c.) [4]
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2. Let X1, . . . , Xn be exchangeable so that the Xi are conditionally independent given a
parameter θ. Suppose that Xi | θ ∼ Exp(θ) so that E(Xi | θ) = 1/θ.

(a) Find the Jeffreys prior for θ and show that the posterior distribution for θ given
x = (x1, . . . , xn) is Gamma(αn, βn), stating the values of αn and βn. Briefly explain
how, in this case, the Jeffreys prior can be viewed as noninformative. [6]

(b) Consider a further observation Z which is exchangeable with X = (X1, . . . , Xn)
where n > 2. Without calculating the predictive distribution of Z given X = x, find
E(Z |X) and V ar(Z |X). [3]

(c) Suppose now that the prior for θ is instead given by the probability density function

f(θ) =
βα

4Γ(α)
θα−1 exp (−βθ) +

3βα+1

4Γ(α+ 1)
θα exp (−βθ) .

for known constants α, β > 0. Show that the posterior probability density function
can be written as

f(θ |x) = cf1(θ) + (1− c)f2(θ)

where

c =
α (β +

∑n
i=1 xi)

α (β +
∑n

i=1 xi) + 3β (α+ n)

and f1(θ) and f2(θ) are probability density functions. [5]

(d) Now consider a generic collection of random variables, X1, . . . , Xn.

(i) If X1, . . . , Xn are finitely exchangeable, briefly interpret the consequence of
this for their joint distribution.

(ii) LetX1, . . . , Xn be conditionally independent given a parameter θ = (θ1, . . . , θn)
and suppose that each Xi | θ is from the same family of distributions with
likelihood f(xi | θ) = f(xi | θi). It is judged that θ1, . . . , θn are independent and
identically distributed with each θi having probability density function π(θi).
Show that X1, . . . , Xn are finitely exchangeable.

[6]
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3. Let X1, . . . , Xn be conditionally independent given a parameter θ = (θ1, . . . , θn) and
suppose that Xi | θ ∼ Po(siθi) where each si is known. It is judged that θ1, . . . , θn are
conditionally independent given φ with θi |φ ∼ Exp(φ), so that E(θi |φ) = 1/φ, and
φ ∼ Gamma(α, β), where α and β are known.

(a) Show that the posterior density f(θ1, . . . , θn, φ |x), where x = (x1, . . . , xn), can be
expressed as

f(θ1, . . . , θn, φ |x) ∝

(
n∏
i=1

θxii

)
φα+n−1 exp

{
−φ

(
β +

n∑
i=1

θi

)
−

n∑
i=1

siθi

}
.

[2]

(b) Describe how to use the Gibbs sampler to sample from the posterior distribution of
θ1, . . . , θn, φ |x, deriving any required conditional distributions. [7]

(c) For a given i, we wish to use the Metropolis-Hastings algorithm to sample from the
posterior distribution of θi |φ, θ−i, x where θ−i = θ \ θi. Letting q(θi | θt−1

i ) denote
the proposal distribution when the current state is θt−1

i , describe how the algorithm
works in this case. [4]

Consider a general problem in which we will observe data X, where the distribution of X
depends upon an unknown parameter θ ∈ R, and we wish to make inference about θ. Let
f(θ |x) denote the posterior distribution and that we sample from the distribution q(θ).

(d) Explain how to use the method of importance sampling to estimate P (θ > a |x) for
some constant a. [3]

(e) Let Î denote the corresponding importance sampling estimator of E(g(θ) |X) for
some function g(θ). By considering the variance of Î with respect to the distribution
q(θ), or otherwise, explain why a sensible choice of q(θ) is that which minimises

E

(
g2(θ)f(θ |x)

q(θ)

∣∣∣∣X). [4]
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4. Consider a statistical decision problem [Θ,D, π(θ), L(θ, d)] for a univariate parameter θ
and loss function

L(θ, d) = g(θ)(θ − d)2

where g(θ) > 0 and d is a point estimate of θ.

(a) Derive the solution to this statistical decision problem, interpreting the results for
the case when g(θ) = 1. [4]

Let X1, . . . , Xn be exchangeable so that the Xi are conditionally independent given a
parameter θ. Suppose that the probability density function for Xi | θ is

f(xi | θ) =

{
θλxλ−1

i exp
(
−θxλi

)
0 < xi <∞

0 otherwise,

for known λ > 0 and unknown θ > 0 where θ ∼ Gamma(α, β) where α > 3 and β are
known. We wish to produce a point estimate d for θ, with loss function

L(θ, d) =
(θ − d)2

θ3
.

(b) Find the Bayes rule and Bayes risk of an immediate decision. [5]

(c) Find the Bayes rule and Bayes risk after observing x = (x1, . . . , xn). [3]

(d) Suppose that λ = 1 so that Xi | θ ∼ Exp(θ). If each observation costs a fixed amount
c then Rn, the total risk of a sample of size n, is the sum of the sample cost and
the Bayes risk of the sampling procedure. Find Rn and thus the optimal choice of
n. [4]

Let θ ∈ R be a continuous univariate random variable with finite expectation. We wish
to construct an interval estimate d = (θ1, θ2), where θ1 ≤ θ2, for θ. Let D1 denote the set
of all such intervals d. Consider the loss function

L1(θ, d) = θ2 − θ1 +


2
α(θ1 − θ) if θ < θ1
0 if θ1 ≤ θ < θ2
2
α(θ − θ2) if θ2 < θ.

(e) By considering derivatives of the expected loss with respect to θ1 and θ2, or
otherwise, show that, for the decision problem [Θ,D1, π(θ), L1(θ, d)], the Bayes rule
is d∗ = (θ∗1, θ

∗
2) where P (θ ≤ θ∗1) = α/2 = P (θ ≥ θ∗2). [4]

SS Page 5 of 5 MA40189


