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Principles for Statistical Inference Introduction

Introduction
We wish to consider inferences about a parameter θ given a
parametric model

E = {X ,Θ, fX (x | θ)}.

We assume that the model is true so that only θ ∈ Θ is unknown. We
wish to learn about θ from observations x (typically, vector valued) so
that E represents a model for this experiment.

Smith (2010) considers that there are three players in an inference
problem:

1 Client: person with the problem

2 Statistician: employed by the client to help solve the problem

3 Auditor: hired by the client to check the statistician’s work

The statistician is thus responsible for explaining the rationale behind the
choice of inference in a compelling way.
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Principles for Statistical Inference Reasoning about inferences

Reasoning about inferences

We consider a series of statistical principles to guide the way to learn
about θ. The principles are meant to be either self-evident or logical
implications of principles which are self-evident.
We shall assume that X is finite: Basu (1975) argues that “infinite and
continuous models are to be looked upon as mere approximations to the
finite realities.”

Inspiration of Allan Birnbaum (1923-1976) to see how to construct
and reason about statistical principles given “evidence” from data.

The model E = {X ,Θ, fX (x | θ)} is accepted as a working hypothesis.

How the statistician chooses her inference statements about the true
value θ is entirely down to her and her client.

◮ as a point or a set in Θ;
◮ as a choice among alternative sets or actions;
◮ or maybe as some more complicated, not ruling out visualisations.
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Principles for Statistical Inference Reasoning about inferences

Following Dawid (1977), consider that the statistician defines, a
priori, a set of possible inferences about θ

Task is to choose an element of this set based on E and x .

The statistician should see herself as a function Ev: a mapping from
(E , x) into a predefined set of inferences about θ.

(E , x) ✤
statistician, Ev

// Inference about θ.

For example, Ev(E , x) might be:
◮ the maximum likelihood estimator of θ
◮ a 95% confidence interval for θ

Birnbaum called E the experiment, x the outcome, and Ev the
evidence.
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Principles for Statistical Inference Reasoning about inferences

Note:

1 There can be different experiments with the same θ.

2 Under some outcomes, we would agree that it is self-evident that
these different experiments provide the same evidence about θ.

Example

Consider two experiments with the same θ.

1 X ∼ Bin(n, θ), so we observe x successes in n trials.

2 Y ∼ NBin(r , θ), so we observe the r th success in the y th trial.

If we observe x = r and y = n, do we make the same inference about θ in
each case?
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Principles for Statistical Inference Reasoning about inferences

Consider two experiments E1 = {X1,Θ, fX1
(x1 | θ)} and

E2 = {X2,Θ, fX2
(x2 | θ)}.

Equivalence of evidence (Basu, 1975)

The equality or equivalence of Ev(E1, x1) and Ev(E2, x2) means that:

1 E1 and E2 are related to the same parameter θ.

2 Everything else being equal, the outcome x1 from E1 warrants the
same inference about θ as does the outcomes x2 from E2.

We now consider constructing statistical principles and demonstrate
how these principles imply other principles.

These principles all have the same form: under such and such
conditions, the evidence about θ should be the same.

Thus they serve only to rule out inferences that satisfy the conditions
but have different evidences. They do not tell us how to do an
inference, only what to avoid.
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Principles for Statistical Inference The principle of indifference

The principle of indifference

Principle 1: Weak Indifference Principle, WIP

Let E = {X ,Θ, fX (x | θ)}. If fX (x | θ) = fX (x
′ | θ) for all θ ∈ Θ then

Ev(E , x) = Ev(E , x ′).

We are indifferent between two models of evidence if they differ only
in the manner of the labelling of sample points.

If X = (X1, . . . ,Xn) where the Xis are a series of independent
Bernoulli trials with parameter θ then fX (x | θ) = fX (x

′ | θ) if x and x ′

contain the same number of successes.
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Principles for Statistical Inference The principle of indifference

Principle 2: Distribution Principle, DP

If E = E ′, then Ev(E , x) = Ev(E ′, x).

Informally, (Dawid, 1977), only aspects of an experiment which are
relevant to inference are the sample space and the family of
distributions over it.

Principle 3: Transformation Principle, TP

Let E = {X ,Θ, fX (x | θ)}. For the bijective g : X → Y, let
Eg = {Y,Θ, fY (y | θ)}, the same experiment as E but expressed in terms
of Y = g(X ), rather than X . Then Ev(E , x) = Ev(Eg , g(x)).

Inferences should not depend on the way in which the sample space is
labelled, for example, X or X−1.
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Principles for Statistical Inference The principle of indifference

Theorem

(DP ∧ TP ) → WIP.

Proof

Fix E , and suppose that x , x ′ ∈ X satisfy fX (x | θ) = fX (x
′ | θ) for all

θ ∈ Θ, as in the condition of the WIP.
Let g : X → X be the function which switches x for x ′, but leaves all of
the other elements of X unchanged. Then E = Eg and

Ev(E , x ′) = Ev(Eg , x ′) [by the DP]

= Ev(Eg , g(x))

= Ev(E , x), [by the TP]

which gives the WIP. ✷
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The Likelihood Principle
Consider experiments Ei = {Xi ,Θ, fXi

(xi | θ)}, i = 1, 2, . . ., where the
parameter space Θ is the same for each experiment.

Let p1, p2, . . . be a set of known probabilities so that pi ≥ 0 and
∑

i pi = 1.

Mixture experiment

The mixture E∗ of the experiments E1, E2, . . . according to mixture
probabilities p1, p2, . . . is the two-stage experiment

1 A random selection of one of the experiments: Ei is selected with
probability pi .

2 The experiment selected in stage 1. is performed.

Thus, each outcome of the experiment E∗ is a pair (i , xi ), where
i = 1, 2, . . . and xi ∈ Xi , and family of distributions

f ∗((i , xi ) | θ) = pi fXi
(xi | θ).
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Principles for Statistical Inference The Likelihood Principle

Principle 4: Weak Conditionality Principle, WCP

Let E∗ be the mixture of the experiments E1, E2 according to mixture
probabilities p1, p2 = 1− p1. Then Ev (E∗, (i , xi )) = Ev(Ei , xi ).

The WCP says that inferences for θ depend only on the experiment
performed and not which experiments could have been performed.

Suppose that Ei is randomly chosen with probability pi and xi is
observed.

The WCP states that the same evidence about θ would have been
obtained if it was decided non-randomly to perform Ei from the
beginning and xi is observed.
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Principles for Statistical Inference The Likelihood Principle

Principle 5: Strong Likelihood Principle, SLP

Let E1 and E2 be two experiments which have the same parameter θ. If
x1 ∈ X1 and x2 ∈ X2 satisfy fX1

(x1 | θ) = c(x1, x2)fX2
(x2 | θ), that is

LX1
(θ; x1) = c(x1, x2)LX2

(θ; x2)

for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

The SLP states that if two likelihood functions for the same
parameter have the same shape, then the evidence is the same.

A corollary of the SLP, obtained by setting E1 = E2 = E , is that
Ev(E , x) should depend on E and x only through LX (θ; x).
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Principles for Statistical Inference The Likelihood Principle

Many classical statistical procedures violate the SLP and the following
result was something of the bombshell, when it first emerged in the 1960s.
The following form is due to Birnbaum (1972) and Basu (1975)

Birnbaum’s Theorem

(WIP ∧WCP ) ↔ SLP.

Proof

Both SLP → WIP and SLP → WCP are straightforward. The trick is to
prove (WIP ∧WCP ) → SLP.
Let E1 and E2 be two experiments which have the same parameter, and
suppose that x1 ∈ X1 and x2 ∈ X2 satisfy fX1

(x1 | θ) = c(x1, x2)fX2
(x2 | θ)

where the function c > 0. As the value c is known (as the data has been
observed) then consider the mixture experiment with p1 = 1/(1 + c) and
p2 = c/(1 + c).
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Principles for Statistical Inference The Likelihood Principle

Proof continued

f ∗((1, x1) | θ) =
1

1 + c
fX1

(x1 | θ) =
c

1 + c
fX2

(x2 | θ) = f ∗((2, x2) | θ)

Then the WIP implies that

Ev (E∗, (1, x1)) = Ev (E∗, (2, x2)) .

Applying the WCP to each side we infer that

Ev(E1, x1) = Ev(E2, x2),

as required. ✷

Thus, either I accept the SLP, or I explain which of the two principles,
WIP and WCP, I refute. Methods, which include many classical
procedures, which violate the SLP face exactly this challenge.
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Principles for Statistical Inference The Sufficiency Principle

The Sufficiency Principle

Recall the idea of sufficiency: if S = s(X ) is sufficient for θ then

fX (x | θ) = fX |S(x | s, θ)fS(s | θ)

where fX |S(x | s, θ) does not depend upon θ.

Consequently, consider the experiment ES = {s(X ),Θ, fS (s | θ)}.

Principle 6: Strong Sufficiency Principle, SSP

If S = s(X ) is a sufficient statistic for E = {X ,Θ, fX (x | θ)} then
Ev(E , x) = Ev(ES , s(x)).

Principle 7: Weak Sufficiency Principle, WSP

If S = s(X ) is a sufficient statistic for E = {X ,Θ, fX (x | θ)} and
s(x) = s(x ′) then Ev(E , x) = Ev(E , x ′).
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Principles for Statistical Inference The Sufficiency Principle

Theorem

SLP → SSP → WSP → WIP.

Proof

As s is sufficient, fX (x | θ) = cfS (s | θ) where c = fX |S(x | s, θ) does not
depend on θ. Applying the SLP, Ev(E , x) = Ev(ES , s(x)) which is the SSP.
Note, that from the SSP,

Ev(E , x) = Ev(ES , s(x)) (by the SSP)

= Ev(ES , s(x ′)) (as s(x) = s(x ′))

= Ev(E , x ′) (by the SSP)

We thus have the WSP. Finally, if fX (x | θ) = fX (x
′ | θ) as in the statement

of WIP then s(x) = x ′ is sufficient for x . Hence, from the WSP,
Ev(E , x) = Ev(E , x ′) giving the WIP. ✷
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Principles for Statistical Inference The Sufficiency Principle

If we put together the last two theorems, we get the following corollary.

Corollary

(WIP ∧WCP) → SSP.

Proof

From Birnbaum’s theorem, (WIP ∧WCP) ↔ SLP and from the previous
theorem, SLP → SSP. ✷

Birnbaum’s (1962) original result combined sufficiency and
conditionality for the likelihood but he revised this to the WIP and
WCP in later work.

One advantage of this is that it reduces the dependency on
sufficiency: Pitman-Koopman-Darmois Theorem states that
sufficiency more-or-less characterises the exponential family.

Simon Shaw (University of Bath) Statistical Inference APTS, 16-20 December 2019 17 / 95



Principles for Statistical Inference Stopping rules

Stopping rules

Consider observing a sequence of random variables X1,X2, . . . where
the number of observations is not fixed in advance but depends on
the values seen so far.

◮ At time j , the decision to observe Xj+1 can be modelled by a
probability pj(x1, . . . , xj).

◮ We assume, resources being finite, that the experiment must stop at
specified time m, if it has not stopped already, hence
pm(x1, . . . , xm) = 0.

The stopping rule may then be denoted as τ = (p1, . . . , pm). This
gives an experiment Eτ with, for n = 1, 2, . . ., fn(x1, . . . , xn | θ) where
consistency requires that

fn(x1, . . . , xn | θ) =
∑

xn+1

· · ·
∑

xm

fm(x1, . . . , xn, xn+1, . . . xm | θ).
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Principles for Statistical Inference Stopping rules

Motivation for the stopping rule principle (Basu, 1975)

Consider four different coin-tossing experiments (with some finite
limit on the number of tosses).

E1 Toss the coin exactly 10 times;
E2 Continue tossing until 6 heads appear;
E3 Continue tossing until 3 consecutive heads appear;
E4 Continue tossing until the accumulated number of heads exceeds that

of tails by exactly 2.

Suppose that all four experiments have the same outcome
x = (T,H,T,T,H,H,T,H,H,H).

We may feel that the evidence for θ, the probability of heads, is the
same in every case.

◮ Once the sequence of heads and tails is known, the intentions of the
original experimenter (i.e. the experiment she was doing) are
immaterial to inference about the probability of heads.

◮ The simplest experiment E1 can be used for inference.
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Principles for Statistical Inference Stopping rules

Principle 8: Stopping Rule Principle, SRP
a In a sequential experiment Eτ , Ev (Eτ , (x1, . . . , xn)) does not depend on
the stopping rule τ .

aBasu (1975) claims the SRP is due to George Barnard (1915-2002)

If it is accepted, the SRP is nothing short of revolutionary.

It implies that the intentions of the experimenter, represented by τ ,
are irrelevant for making inferences about θ, once the observations
(x1, . . . , xn) are known.

Once the data is observed, we can ignore the sampling plan.

The statistician could proceed as though the simplest possible
stopping rule were in effect, which is p1 = · · · = pn−1 = 1 and pn = 0,
an experiment with n fixed in advance, En = {X1:n,Θ, fn(x1:n | θ)}.
Can the SRP possibly be justified? Indeed it can.
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Principles for Statistical Inference Stopping rules

Theorem

SLP → SRP.

Proof

Let τ be an arbitrary stopping rule, and consider the outcome (x1, . . . , xn),
which we will denote as x1:n.

We take the first observation with probability one.

For j = 1, . . . , n − 1, the (j + 1)th observation is taken with
probability pj(x1:j).

We stop after the nth observation with probability 1− pn(x1:n).

Consequently, the probability of this outcome under τ is

fτ (x1:n | θ) = f1(x1 | θ)







n−1
∏

j=1

pj(x1:j) fj+1(xj+1 | x1:j , θ)







(1− pn(x1:n))
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Principles for Statistical Inference Stopping rules

Proof continued

fτ (x1:n | θ) =







n−1
∏

j=1

pj(x1:j)







(1− pn(x1:n)) f1(x1 | θ)
n
∏

j=2

fj(xj | x1:(j−1), θ)

=







n−1
∏

j=1

pj(x1:j)







(1− pn(x1:n))fn(x1:n | θ).

Now observe that this equation has the form

fτ (x1:n | θ) = c(x1:n)fn(x1:n | θ) (1)

where c(x1:n) > 0. Thus the SLP implies that Ev(Eτ , x1:n) = Ev(En, x1:n)
where En = {X1:n,Θ, fn(x1:n | θ)}. Since the choice of stopping rule was
arbitrary, equation (1) holds for all stopping rules, showing that the choice
of stopping rule is irrelevant. ✷
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A comment from Leonard Jimmie Savage (1917-1971), one of the great
statisticians of the Twentieth Century, captured the revolutionary and
transformative nature of the SRP.

May I digress to say publicly that I learned the stopping rule prin-
ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, I then thought it a scandal that anyone in the pro-
fession could advance an idea so patently wrong, even as today
I can scarcely believe that some people resist an idea so patently
right. (Savage et al., 1962, p76)

We’ll omit the section ”A stronger form of the WCP” which looks at
an extension of the WCP.
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The Likelihood Principle in practice

We consider whether there is any inferential approach which respects
the SLP? Or do all inferential approaches respect it?

A Bayesian statistical model is the collection

EB = {X ,Θ, fX (x | θ), π(θ)}.

The posterior distribution is π(θ | x) = c(x)fX (x | θ)π(θ) where c(x) is the
normalising constant,

c(x) =

{
∫

Θ
fX (x | θ)π(θ) dθ

}−1

.

All knowledge about θ given the data x are represented by π(θ | x).
Any inferences made about θ are derived from this distribution.
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Principles for Statistical Inference The Likelihood Principle in practice

Consider two Bayesian models with the same prior distribution,
EB,1 = {X1,Θ, fX1

(x1 | θ), π(θ)} and EB,2 = {X2,Θ, fX2
(x2 | θ), π(θ)}

Suppose that fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ). Then

π(θ | x1) = c(x1)fX1
(x1 | θ)π(θ) = c(x1)c(x1, x2)fX2

(x2 | θ)π(θ)
= π(θ | x2)

Hence, the posterior distributions are the same. Consequently, the
same inferences are drawn from either model and so the Bayesian
approach satisfies the SLP.

This assumes that π(θ) does not depend upon the form of the data.

Some methods for making default choices for π(θ) depend on
fX (x | θ), notably Jeffreys priors and reference priors. These methods
violate the SLP.
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The classical approach typically violates the SLP.

Inference techniques depend upon the sampling distribution and so
they depend on the whole sample space X and not just the observed
x ∈ X .

Sampling distribution depends on values of fX other than
L(θ; x) = fX (x | θ).

Theorem

Suppose that Ev(E , x) depends on the value of fX (x
′ | θ) for some x ′ 6= x .

Then Ev does not respect the SLP.

Proof

Let E = {X ,Θ, fX (x | θ)} and let x̃ 6= x , x ′. Define E1 = {X ,Θ, f1(x | θ)}
where f1(x

′ | θ) = fX (x̃ | θ) and f1(x̃ | θ) = fX (x
′ | θ), and f1 = fX elsewhere.

Then fX (x | θ) = f1(x | θ) but fX (x ′ | θ) 6= f1(x
′ | θ) and so

Ev(E , x) 6= Ev(E1, x) violating the SLP. ✷
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The two main difficulties with violating the SLP are:

1 To reject the SLP is to reject at least one of the WIP and the WCP.
Yet both of these principles seem self-evident. Therefore violating the
SLP is either illogical or obtuse.

2 In their everyday practice, statisticians use the SRP (ignoring the
intentions of the experimenter) which is not self-evident, but is
implied by the SLP. If the SLP is violated, it needs an alternative
justification which has not yet been forthcoming.
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Reflections

This chapter does not explain how to choose Ev but instead describes
desirable properties of Ev.

What is evaluated is the algorithm, the method by which (E , x) is
turned into an inference about the parameter θ.

It is quite possible that statisticians of quite different persuasions will
produce effectively identical inferences from different algorithms.

A Bayesian statistician might produce a 95% High Density Region,
and a classical statistician a 95% confidence set, but they might be
effectively the same set.

Primary concern for the auditor is why the particular inference
method was chosen and they might also ask if the statistician is
worried about the SLP.

Classical statistician might argue a long-run frequency property but
the client might wonder about their interval.
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Introduction

Statistical Decision Theory allows us to consider ways to construct
the Ev’ function that reflects our needs, which will vary from
application to application, and which assesses the consequences of
making a good or bad inference.

The set of possible inferences, or decisions, is termed the decision
space, denoted D.

For each d ∈ D, we want a way to assess the consequence of how
good or bad the choice of decision d was under the event θ.

Definition (Loss function)

A loss function is any function L from Θ×D to [0,∞).

The loss function measures the penalty or error, L(θ, d) of the
decision d when the parameter takes the value θ.

Thus, larger values indicate worse consequences.

Simon Shaw (University of Bath) Statistical Inference APTS, 16-20 December 2019 29 / 95



Statistical Decision Theory Introduction

The three main types of inference about θ are

1 point estimation,

2 set estimation,

3 hypothesis testing.

It is a great conceptual and practical simplification that Statistical
Decision Theory distinguishes between these three types simply according
to their decision spaces.

Type of inference Decision space D
Point estimation The parameter space, Θ.

Set estimation A set of subsets of Θ.

Hypothesis testing A specified partition of Θ, denoted H.
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Bayesian statistical decision theory

In a Bayesian approach, a statistical decision problem [Θ,D, π(θ), L(θ, d)]
has the following ingredients.

1 The possible values of the parameter: Θ, the parameter space.

2 The set of possible decisions: D, the decision space.
3 The probability distribution on Θ, π(θ). For example,

1 this could be a prior distribution, π(θ) = f (θ).
2 this could be a posterior distribution, π(θ) = f (θ | x) following the

receipt of some data x .
3 this could be a posterior distribution π(θ) = f (θ | x , y) following the

receipt of some data x ,y .

4 The loss function L(θ, d).

In this setting, only θ is random and we can calculate the expected loss, or
risk.
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Statistical Decision Theory Bayesian statistical decision theory

Definition (Risk)

The risk of decision d ∈ D under the distribution π(θ) is

ρ(π(θ), d) =

∫

θ
L(θ, d)π(θ) dθ.

We choose d to minimise this risk.

Definition (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a
Bayes rule against π(θ).

The Bayes rule may not be unique, and in weird cases it might not exist.
We solve [Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss

Suppose that Θ ⊂ R and we wish to find a point estimate for θ. We
consider the loss function L(θ, d) = (θ − d)2.

The risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)} = E(π){(θ − d)2}
= E(π)(θ

2)− 2dE(π)(θ) + d2,

where E(π)(·) denotes the expectation with respect to π(θ).

Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d .

So, the Bayes rule is d∗ = E(π)(θ).
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss (continued)

The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ
2)− 2d∗

E(π)(θ) + (d∗)2

= Var(π)(θ) + (d∗ − E(π)(θ))
2

= Var(π)(θ)

where Var(π)(θ) is the variance of θ computed with respect to π(θ).

1 If π(θ) = f (θ), a prior for θ, then the Bayes rule of an immediate
decision is d∗ = E(θ) with corresponding Bayes risk ρ∗ = Var(θ).

2 If we observe sample data x then the Bayes rule given this sample
information is d∗ = E(θ |X ) with corresponding Bayes risk
ρ∗ = Var(θ |X ) as π(θ) = f (θ | x).
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Statistical Decision Theory Bayesian statistical decision theory

Typically we solve:
1 [Θ,D, f (θ), L(θ, d)], the immediate decision problem,
2 [Θ,D, f (θ | x), L(θ, d)], the decision problem after sample information.

We may also want to consider the risk of the sampling procedure,
before observing the sample, to decide whether or not to sample.

We now consider both θ and X as random.

For each possible sample, we need to specify which decision to make.

Definition (Decision rule)

A decision rule δ(x) is a function from X into D,

δ : X → D.

If X = x is the observed value of the sample information then δ(x) is the
decision that will be taken. The collection of all decision rules is denoted
by ∆ so that δ ∈ ∆ ⇒ δ(x) ∈ D ∀x ∈ X .
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We wish to solve the problem [Θ,∆, f (θ, x), L(θ, δ(x))].

Definition (Bayes (decision) rule and risk of the sampling procedure)

The decision rule δ∗ is a Bayes (decision) rule exactly when

E{L(θ, δ∗(X ))} ≤ E{L(θ, δ(X ))}

for all δ(x) ∈ D. The corresponding risk ρ∗ = E{L(θ, δ∗(X ))} is termed
the risk of the sampling procedure.

If the sample information consists of X = (X1, . . . ,Xn) then ρ∗ will be
a function of n and so can be used to help determine sample size
choice.
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Bayes rule theorem, BRT

Suppose that a Bayes rule exists for [Θ,D, f (θ | x), L(θ, d)]. Then

δ∗(x) = argmin
d∈D

E(L(θ, d) |X = x).

Proof

Let δ be arbitrary. Then

E{L(θ, δ(X ))} =

∫

x

∫

θ
L(θ, δ(x))f (θ, x) dθdx

=

∫

x

∫

θ
L(θ, δ(x))f (θ | x)f (x) dθdx

=

∫

x

{
∫

θ
L(θ, δ(x))f (θ | x) dθ

}

f (x) dx

=

∫

x

E{L(θ, δ(x)) |X}f (x) dx
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Proof continued

Now, as f (x) > 0, the δ∗ ∈ ∆ which minimises E{L(θ, δ(X ))} may
equivalently be found as the δ∗ which satisfies

ρ(f (θ), δ∗) = inf
δ(x)∈D

E{L(θ, δ(x)) |X},

giving the result. ✷

The minimisation of expected loss over the space of all functions from
X to D can be achieved by the pointwise minimisation over D of the
expected loss conditional on X = x .

The risk of the sampling procedure is ρ∗ = E[E{L(θ, δ∗(x)) |X}].

Example - quadratic loss

We have δ∗ = E(θ |X ) and ρ∗ = E{Var(θ |X )}.
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We could consider ∆, the set of decision rules, to be our possible set of
inferences about θ when the sample is observed so that Ev(E , x) is δ∗(x).
We thus have the following result.

Theorem

The Bayes rule for the posterior decision respects the strong likelihood
principle.

Proof

If we have two Bayesian models with the same prior distribution then if
fX1

(x1 | θ) = c(x1, x2)fX2
(x2 | θ) the corresponding posterior distributions

are the same and so the corresponding Bayes rule (and risk) is the same. ✷
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Admissible rules

Bayes rules rely upon a prior distribution for θ: the risk is a function
of d only.

In classical statistics, there is no distribution for θ and so another
approach is needed.

Definition (The classical risk)

For a decision rule δ(x), the classical risk for the model
E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫

X

L(θ, δ(x))fX (x | θ) dx .

The classical risk is thus, for each δ, a function of θ.
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Example

Let X = (X1, . . . ,Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that
L(θ, d) = (θ − d)2 and consider a conjugate prior θ ∼ N(µ0, σ

2
0). Possible

decision functions include:

1 δ1(x) = x , the sample mean.

2 δ2(x) = med{x1, . . . , xn} = x̃ , the sample median.

3 δ3(x) = µ0, the prior mean.

4 δ4(x) = µn, the posterior mean where

µn =

(

1

σ2
0

+
n

σ2

)−1(µ0

σ2
0

+
nx

σ2

)

,

the weighted average of the prior and sample mean accorded to their
respective precisions.
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Example - continued

The respective classical risks are

1 R(θ, δ1) =
σ2

n
, a constant for θ, since X ∼ N(θ, σ2/n).

2 R(θ, δ2) =
πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n)
(approximately).

3 R(θ, δ3) = (θ − µ0)
2 = σ2

n

(

θ−µ0

σ/
√
n

)2
.

4 R(θ, δ4) =
(

1
σ2
0
+ n

σ2

)−2
{

1
σ2
0

(

θ−µ0

σ0

)2
+ n

σ2

}

.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all
θ ∈ Θ but other comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set
of possible decision rules by ruling out those that are obviously bad.
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Definition (Admissible decision rule)

A decision rule δ0 is inadmissible if there exists a decision rule δ1 which
dominates it, that is

R(θ, δ1) ≤ R(θ, δ0)

for all θ ∈ Θ with R(θ, δ1) < R(θ, δ0) for at least one value θ0 ∈ Θ. If no
such δ1 exists then δ0 is admissible.

If δ0 is dominated by δ1 then the classical risk of δ0 is never smaller
than that of δ1 and δ1 has a smaller risk for θ0.

Thus, you would never want to use δ0.
1

The accepted approach is to reduce the set of possible decision rules
under consideration by only using admissible rules.

1Here I am assuming that all other considerations are the same in the two cases: e.g.
for all x ∈ X , δ1(x) and δ0(x) take about the same amount of resource to compute.
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We now show that admissible rules can be related to a Bayes rule δ∗

for a prior distribution π(θ).

Theorem

If a prior distribution π(θ) is strictly positive for all Θ with finite Bayes risk
and the classical risk, R(θ, δ), is a continuous function of θ for all δ, then
the Bayes rule δ∗ is admissible.

Proof (Robert, 2007)

Letting f (θ, x) = fX (x | θ)π(θ) we have

E{L(θ, δ(X ))} =

∫

x

∫

θ
L(θ, δ(x))f (θ, x) dθdx

=

∫

θ

{
∫

x

L(θ, δ(x))fX (x | θ) dx
}

π(θ) dθ

=

∫

θ
R(θ, δ)π(θ) dθ
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Proof continued

Suppose that the Bayes rule δ∗ is inadmissible and dominated by δ1.

Thus, in an open set C of θ, R(θ, δ1) < R(θ, δ∗) with
R(θ, δ1) ≤ R(θ, δ∗) elsewhere.

Consequently, E{L(θ, δ1(X ))} < E{L(θ, δ∗(X ))} which is a
contradiction to δ∗ being the Bayes rule. ✷

The relationship between a Bayes rule with prior π(θ) and an
admissible decision rule is even stronger.

The following result was derived by Abraham Wald (1902-1950)

Wald’s Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space X are finite, a
decision rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π(θ) with strictly positive values.
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An illuminating blackboard proof of this result can be found in Cox
and Hinkley (1974, Section 11.6).

There are generalisations of this theorem to non-finite decision sets,
parameter spaces, and sample spaces but the results are highly
technical.

We’ll proceed assuming the more general result, which is that a
decision rule is admissible if and only if it is a Bayes rule for some
prior distribution π(θ), which holds for practical purposes.

So what does the CCT say?

1 Admissible decision rules respect the SLP. This follows from the fact
that admissible rules are Bayes rules which respect the SLP. This
provides support for using admissible decision rules.

2 If you select a Bayes rule according to some positive prior distribution
π(θ) then you cannot ever choose an inadmissible decision rule.
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Point estimation

We now look at possible choices of loss functions for different types of
inference.

For point estimation the decision space is D = Θ, and the loss
function L(θ, d) represents the (negative) consequence of choosing d
as a point estimate of θ.

It will not be often that an obvious loss function L : Θ×Θ → R

presents itself. There is a need for a generic loss function which is
acceptable over a wide range of applications.

Suppose that Θ is a convex subset of Rp. A natural choice is a convex loss
function,

L(θ, d) = h(d − θ)

where h : Rp → R is a smooth non-negative convex function with
h(0) = 0.
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This type of loss function asserts that small errors are much more
tolerable than large ones.

One possible further restriction is that h is an even function,
h(d − θ) = h(θ − d).

In this case, L(θ, θ + ǫ) = L(θ, θ − ǫ) so that under-estimation incurs
the same loss as over-estimation.

There are many situations where this is not appropriate and the loss
function should be asymmetric and a generic loss function should be
replaced by a more specific one.

For Θ ⊂ R, the absolute loss function L(θ, d) = |θ − d | gives a Bayes
rule of the median of π(θ).

We saw previously, that for quadratic loss Θ ⊂ R, L(θ, d) = (θ − d)2,
the Bayes rule was the expectation of π(θ). This attractive feature
can be extended to more dimensions.
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Example

If Θ ∈ R
p, the Bayes rule δ∗ associated with the prior distribution π(θ)

and the quadratic loss

L(θ, d) = (d − θ)TQ (d − θ)

is the posterior expectation E(θ |X ) for every positive-definite symmetric
p × p matrix Q.

Example (Robert, 2007), Q = Σ−1

Suppose X ∼ Np(θ,Σ) where the known variance matrix Σ is diagonal
with elements σ2

i for each i . Then D = R
p. A possible loss function is

L(θ, d) =

p
∑

i=1

(

di − θi
σi

)2

so that the total loss is the sum of the squared componentwise errors.
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As the Bayes rule for L(θ, d) = (d − θ)TQ (d − θ) does not depend
upon Q, it is the same for an uncountably large class of loss functions.

If we apply the Complete Class Theorem to this result we see that for
quadratic loss, a point estimator for θ is admissible if and only if it is
the conditional expectation with respect to some positive prior
distribution π(θ).

The value, and interpretability, of the quadratic loss can be further
observed by noting that, from a Taylor series expansion, an even,
differentiable and strictly convex loss function can be approximated by
a quadratic loss function.
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Set estimation

For set estimation the decision space is a set of subsets of Θ so that
each d ⊂ Θ.

There are two contradictory requirements for set estimators of Θ.
1 We want the sets to be small.
2 We also want them to contain θ.

A simple way to represent these two requirements is to consider the
loss function

L(θ, d) = |d |+ κ(1 − 1θ∈d )

for some κ > 0 where |d | is the volume of d .

The value of κ controls the trade-off between the two requirements.
◮ If κ ↓ 0 then minimising the expected loss will always produce the

empty set.
◮ If κ ↑ ∞ then minimising the expected loss will always produce Θ.
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For loss functions of the form L(θ, d) = |d |+ κ(1− 1θ∈d ) we’ll show
there is a a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set d ⊂ Θ is a level set of the posterior distribution exactly when
d = {θ : π(θ | x) ≥ k} for some k .

Theorem (Level set property, LSP)

If δ∗ is a Bayes rule for L(θ, d) = |d |+ κ(1− 1θ∈d ) then it is a level set
of the posterior distribution.

Proof

Note that

E{L(θ, d) |X} = |d |+ κ(1− E(1θ∈d |X ))

= |d |+ κP(θ /∈ d |X ).
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Proof continued

For fixed x , we show that if d is not a level set of the posterior
distribution then there is a d ′ 6= d which has a smaller expected loss
so that δ∗(x) 6= d .

Suppose that d is not a level set of π(θ | x). Then there is a θ ∈ d
and θ′ /∈ d for which π(θ′ | x) > π(θ | x).
Let d ′ = d ∪ dθ′ \ dθ where dθ is the tiny region of Θ around θ and
dθ′ is the tiny region of Θ around θ′ for which |dθ| = |dθ′|.
Then |d ′| = |d | but

P(θ /∈ d ′ |X ) < P(θ /∈ d |X )

Thus, E{L(θ, d ′) |X} < E{L(θ, d) |X} showing that δ∗(x) 6= d . ✷

Simon Shaw (University of Bath) Statistical Inference APTS, 16-20 December 2019 53 / 95



Statistical Decision Theory Set estimation

The Level Set Property Theorem states that δ having the level set
property is necessary for δ to be a Bayes rule for loss functions of the
form L(θ, d) = |d |+ κ(1 − 1θ∈d ).

The Complete Class Theorem states that being a Bayes rule is a
necessary condition for δ to be admissible.

Being a level set of a posterior distribution for some prior distribution
π(θ) is a necessary condition for being admissible for loss functions of
this form.

Bayesian HPD regions satisfy the necessary condition for being a set
estimator.

Classical set estimators achieve a similar outcome if they are level sets
of the likelihood function, because the posterior is proportional to the
likelihood under a uniform prior distribution.2

2In the case where Θ is unbounded, this prior distribution may have to be truncated
to be proper.
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Hypothesis tests

For hypothesis tests, the decision space is a partition of Θ, denoted

H := {H0,H1, . . . ,Hd}.

Each element of H is termed a hypothesis.

The loss function L(θ,Hi ) represents the (negative) consequences of
choosing element Hi , when the true value of the parameter is θ.

It would be usual for the loss function to satisfy

θ ∈ Hi =⇒ L(θ,Hi ) = min
j

L(θ,Hj)

on the grounds that an incorrect choice of element should never incur
a smaller loss than the correct choice.
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A generic loss function for hypothesis tests is the 0-1 (’zero-one’) loss
function

L(θ,Hi ) = 1− 1{θ∈Hi } .

i.e., zero if θ ∈ Hi , and one if it is not.

The corresponding Bayes rule is to select the hypothesis with the
largest posterior probability.

The drawback is that this loss function is hard to defend as being
realistic.

An alternative approach is to co-opt the theory of set estimators.

The statistician can use her set estimator δ to make at least some
distinctions between the members of H:

◮ Accept Hi exactly when δ(x) ⊂ Hi ,
◮ Reject Hi exactly when δ(x) ∩ Hi = ∅,
◮ Undecided about Hi otherwise.
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Confidence procedures and confidence sets

We consider interval estimation, or more generally set estimation.

Under the model E = {X ,Θ, fX (x | θ)}, for given data X = x , we
wish to construct a set C = C (x) ⊂ Θ and the inference is the
statement that θ ∈ C .

If θ ∈ R then the set estimate is typically an interval.

Definition (Confidence procedure)

A random set C (X ) is a level-(1 − α) confidence procedure exactly when

P(θ ∈ C (X ) | θ) ≥ 1− α

for all θ ∈ Θ. C is an exact level-(1− α) confidence procedure if the
probability equals (1− α) for all θ.
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The value P(θ ∈ C (X ) | θ) is termed the coverage of C at θ.

Exact is a special case: typically P(θ ∈ C (X ) | θ) will depend upon θ.

The procedure is thus conservative: for a given θ0 the coverage may
be much higher than (1− α) .

Uniform example

Let X1, . . . ,Xn be independent and identically distributed Unif(0, θ)
random variables where θ > 0. Let Y = max{X1, . . . ,Xn}.
We consider two possible sets: (aY , bY ) where 1 ≤ a < b and
(Y + c ,Y + d) where 0 ≤ c < d .

1 P(θ ∈ (aY , bY ) | θ) =
(

1
a

)n −
(

1
b

)n
. Thus, the coverage probability of

the interval does not depend upon θ.
2 P(θ ∈ (Y + c ,Y + d) | θ) =

(

1− c
θ

)n −
(

1− d
θ

)n
. In this case, the

coverage probability of the interval does depend upon θ.
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We distinguish between the confidence procedure C , which is a
random interval and so a function for each possible x , and the result
when C is evaluated at the observation x , which is a set in Θ.

Definition (Confidence set)

The observed C (x) is a level-(1− α) confidence set exactly when the
random C (X ) is a level-(1 − α) confidence procedure.

If Θ ⊂ R and C (x) is convex, i.e. an interval, then a confidence set
(interval) is represented by a lower and upper value.

The challenge with confidence procedures is to construct one with a
specified level: to do this we start with the level and then construct a
C guaranteed to have this level.
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Definition (Family of confidence procedures)

C (X ;α) is a family of confidence procedures exactly when C (X ;α) is
a level-(1− α) confidence procedure for every α ∈ [0, 1].

C is a nesting family exactly when α < α′ implies that
C (x ;α′) ⊂ C (x ;α).

If we start with a family of confidence procedures for a specified
model, then we can compute a confidence set for any level we choose.
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Constructing confidence procedures

The general approach to construct a confidence procedure is to invert
a test statistic.

In the Uniform example, the coverage of the procedure (aY , bY ) does
not depend upon θ because the coverage probability could be
expressed in terms of T = Y /θ where the distribution of T did not
depend upon θ.

◮ T is an example of a pivot and confidence procedures are
straightforward to compute from a pivot.

◮ However, a drawback to this approach in general is that there is no
hard and fast method for finding a pivot.

An alternate method which does work generally is to exploit the
property that every confidence procedure corresponds to a hypothesis
test and vice versa.
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Consider a hypothesis test where we have to decide either to accept that
an hypothesis H0 is true or to reject H0 in favour of an alternative
hypothesis H1 based on a sample x ∈ X .

The set of x for which H0 is rejected is called the rejection region.

The complement, where H0 is accepted, is the acceptance region.

A hypothesis test can be constructed from any statistic T = T (X ).

Definition (Likelihood Ratio Test, LRT)

The likelihood ratio test (LRT) statistic for testing H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θc

0, where Θ0 ∪Θc

0 = Θ, is

λ(x) =
supθ∈Θ0

LX (θ; x)

supθ∈Θ LX (θ; x)
.

A LRT at significance level α has a rejection region of the form
{x : λ(x) ≤ c} where 0 ≤ c ≤ 1 is chosen so that P(Reject H0 | θ) ≤ α
for all θ ∈ Θ0.
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Example

Let X = (X1, . . . ,Xn) and suppose that the Xi are independent and
identically distributed N(θ, σ2) random variables where σ2 is known.

Consider the likelihood ratio test for H0 : θ = θ0 versus H1 : θ 6= θ0.
Then, as the maximum likelihood estimate (mle) of θ is x ,

λ(x) =
LX (θ0; x)

LX (x ; x)
= exp

{

− 1

2σ2

n
∑

i=1

(

(xi − θ0)
2 − (xi − x)2

)

}

= exp

{

− 1

2σ2
n(x − θ0)

2

}

.

Notice that, under H0,
√
n(X−θ0)

σ ∼ N(0, 1) so that

−2 log λ(X ) =
n(X − θ0)

2

σ2
∼ χ2

1,

the chi-squared distribution with one degree of freedom.

Simon Shaw (University of Bath) Statistical Inference APTS, 16-20 December 2019 63 / 95



Confidence sets and p-values Constructing confidence procedures

Example continued

The rejection region is {x : λ(x) ≤ c} = {x : −2 log λ(x) ≥ k}.
Setting k = χ2

1,α, where P(χ2
1 ≥ χ2

1,α) = α, gives a test at the exact
significance level α.

The acceptance region of this test is {x : −2 log λ(x) < χ2
1,α} where

P

(

n(X − θ0)
2

σ2
< χ2

1,α

∣

∣

∣

∣

θ = θ0

)

= 1− α.

This holds for all θ0 and so, additionally rearranging,

P

(

X −
√

χ2
1,α

σ√
n
< θ < X +

√

χ2
1,α

σ√
n

∣

∣

∣

∣

θ

)

= 1− α.

Thus, C (X ) = (X −
√

χ2
1,α

σ√
n
,X +

√

χ2
1,α

σ√
n
) is an exact level-(1 − α)

confidence procedure with C (x) the corresponding confidence set.
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Note that we obtained the level-(1− α) confidence procedure by
inverting the acceptance region of the level α significance test.

This correspondence, or duality, between acceptance regions of tests
and confidence sets is a general property.

Theorem (Duality of Acceptance Regions and Confidence Sets)

1 For each θ0 ∈ Θ, let A(θ0) be the acceptance region of a test of
H0 : θ = θ0 at significance level α. For each x ∈ X , define
C (x) = {θ0 : x ∈ A(θ0)}. Then C (X ) is a level-(1− α) confidence
procedure.

2 Let C (X ) be a level-(1 − α) confidence procedure and, for any
θ0 ∈ Θ, define A(θ0) = {x : θ0 ∈ C (x)}. Then A(θ0) is the
acceptance region of a test of H0 : θ = θ0 at significance level α.
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Proof
1 As we have a level α test for each θ0 ∈ Θ then

P(X ∈ A(θ0) | θ = θ0) ≥ 1− α. Since θ0 is arbitrary we may write θ
instead of θ0 and so, for all θ ∈ Θ,

P(θ ∈ C (X ) | θ) = P(X ∈ A(θ) | θ) ≥ 1− α.

Hence, C (X ) is a level-(1 − α) confidence procedure.

2 For a test of H0 : θ = θ0, the probability of a Type I error (rejecting
H0 when it is true) is

P(X /∈ A(θ0) | θ = θ0) = P(θ0 /∈ C (X ), | θ = θ0) ≤ α

since C (X ) is a level-(1− α) confidence procedure. Hence, we have a
test at significance level α. ✷
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A possibly easier way to understand the relationship between significance
tests and confidence sets is by defining the set {(x , θ) : (x , θ) ∈ C̃} in the
space X ×Θ where C̃ is also a set in X ×Θ.

For fixed x , define the confidence set as C (x) = {θ : (x , θ) ∈ C̃}.
For fixed θ, define the acceptance region as A(θ) = {x : (x , θ) ∈ C̃}.

Example revisited

Letting x = (x1, . . . , xn), with z2α/2 = χ2
1,α, define the set

{(x , θ) : (x , θ) ∈ C̃} =
{

(x , θ) : −zα/2σ/
√
n < x − θ < zα/2σ/

√
n
}

.

The confidence set is then

C (x) =
{

θ : x − zα/2σ/
√
n < θ < x + zα/2σ/

√
n
}

and acceptance region

A(θ) =
{

x : θ − zα/2σ/
√
n < x < θ + zα/2σ/

√
n
}

.
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Good choices of confidence procedures
In the previous chapter, we showed that, under the generic loss
L(θ, d) = |d |+ κ(1− 1θ∈d ), a necessary condition for admissibility
was that d was a level set of the posterior distribution.

We now proceed by consider confidence procedures that satisfy a level
set property for the likelihood LX (θ; x) = fX (x | θ).

Definition (Level set property, LSP)

A confidence procedure C has the level set property exactly when

C (x) = {θ : fX (x | θ) > g(x)}

for some g : X → R.

We now show that we can construct a family of confidence procedures
with the LSP. The result has pedagogic value, because it can be used to
generate an uncountable number of families of confidence procedures,
each with the level set property.
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Theorem

Let h be any probability density function for X . Then

Ch(x ;α) := {θ ∈ Θ : fX (x | θ) > αh(x)}

is a family of confidence procedures, with the LSP.

Proof

First notice that if we let X (θ) := {x ∈ X : fX (x ; θ) > 0} then

E(h(X )/fX (X | θ) | θ) =

∫

x∈X (θ)

h(x)

fX (x | θ)
fX (x | θ) dx

=

∫

x∈X (θ)
h(x) ≤ 1

because h is a probability density function.
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Proof continued

Now,

P(fX (X | θ)/h(X ) ≤ u | θ) = P(h(X )/fX (X | θ) ≥ 1/u | θ) (2)

≤ E(h(X )/fX (X | θ) | θ)
1/u

(3)

≤ 1

1/u
= u

where (3) follows from (2) by Markov’s inequality.a ✷

aIf X is a nonnegative random variable and a > 0 then P(X ≥ a) ≤ E(X )/a.

If we let g(x ; θ) = fX (x | θ)/h(x), which may be infinite, then
P(g(X ; θ) ≤ u | θ) ≤ u.

We will see later that this implies that g(x ; θ) is super-uniform.
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Among the interesting choices for h, one possibility is
h(x) = fX (x | θ0), for some θ0 ∈ Θ.

As fX (x | θ0) > αfX (x | θ0) we can construct a level-(1− α) confidence
procedure whose confidence sets will always contain θ0.

This suggests an issue with confidence procedures: two statisticians
may come to two different conclusions about H0 : θ = θ0 depending
on the intervals they construct.

This illustrates why it is important to be able to account for the
choices you make as a statistician.

The theorem utilises Markov’s Inequality which is a very slack result.
It is likely that the coverage of the corresponding family of confidence
procedures will be much larger than (1− α) .

A more desirable strategy would be to use an exact family of
confidence procedures which satisfy the LSP, if one existed.
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The linear model

We’ll briefly discuss the linear model and construct an exact family of
confidence procedures which satisfy the LSP.

Let Y = (Y1, . . . ,Yn) be an n-vector of observables with Y = Xθ+ ǫ.

◮ X is an (n × p) matrix3 of regressors,
◮ θ is a p-vector of regression coefficients,
◮ ǫ is an n-vector of residuals.

Assume that ǫ ∼ Nn(0, σ
2In), the n-dimensional multivariate normal

distribution, where σ2 is known and In is the (n × n) identity matrix.

From properties of the multivariate normal distribution, it follows that
Y ∼ Nn(Xθ, σ2In).

3We typically use X to denote a generic random variable and so it is not ideal to use
it here for a specified matrix but this is the standard notation for linear models.
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Now,

LY (θ; y) =
(

2πσ2
)− n

2 exp

{

− 1

2σ2
(y − Xθ)T (y − Xθ)

}

.

Let θ̂ = θ̂(y) =
(

XTX
)−1

XT y then

(y − Xθ)T (y − Xθ) = (y − X θ̂ + X θ̂ − Xθ)T (y − X θ̂ + X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (X θ̂ − Xθ)T (X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (θ̂ − θ)TXTX (θ̂ − θ).

Thus, (y − Xθ)T (y − Xθ) is minimised when θ = θ̂ and so,

θ̂ =
(

XTX
)−1

XT y is the mle of θ. The likelihood ratio is

λ(y) =
LY (θ; y)

LY (θ̂; y)

= exp

{

− 1

2σ2

[

(y − Xθ)T (y − Xθ)− (y − X θ̂)T (y − X θ̂)
]

}

= exp

{

− 1

2σ2
(θ̂ − θ)TXTX (θ̂ − θ)

}
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Thus, −2 log λ(y) = 1
σ2 (θ̂ − θ)TXTX (θ̂ − θ).

As θ̂(Y ) =
(

XTX
)−1

XTY then, as Y ∼ Nn(Xθ, σ2In),

θ̂(Y ) ∼ Np

(

θ, σ2
(

XTX
)−1

)

Consequently, −2 log λ(Y ) ∼ χ2
p.

Hence, with P(χ2
p ≥ χ2

p,α) = α,

C (y ;α) =

{

θ ∈ R
p : −2 log λ(y) = −2 log

fY (y | θ, σ2)

fY (y | θ̂, σ2)
< χ2

p,α

}

=

{

θ ∈ R
p : fY (y | θ, σ2) > exp

(

−
χ2
p,α

2

)

fY (y | θ̂, σ2)

}

is a family of exact confidence procedures for θ which has the LSP.
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Wilks confidence procedures

This outcome, where we can find a family of exact confidence
procedures with the LSP, is more-or-less unique to the regression
parameters of the linear model.

It is however found, approximately, in the large n behaviour of a
much wider class of models.

Wilks’ Theorem

Let X = (X1, . . . ,Xn) where each Xi is independent and identically
distributed, Xi ∼ f (xi | θ), where f is a regular model and the parameter
space Θ is an open convex subset of Rp (and invariant to n). The
distribution of the statistic −2 log λ(X ) converges to a chi-squared
distribution with p degrees of freedom as n → ∞.

A working guideline to regular model is that f must be smooth and
differentiable in θ; in particular, the support must not depend on θ.
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The result dates back to Wilks (1938) and, as such, the resultant
confidence procedures are often termed Wilks confidence procedures.

Thus, if the conditions of Wilks’ Theorem are met,

C (x ;α) =

{

θ ∈ R
p : fX (x | θ) > exp

(

−
χ2
p,α

2

)

fX (x | θ̂)
}

is a family of approximately exact confidence procedures which satisfy
the LSP.

For a given model, the pertinent question is whether or not the
approximation is a good one.

We are thus interested in the level error, the difference between the
nominal level, typically (1− α) everywhere, and the actual level, the
actual minimum coverage everywhere,

level error = nominal level− actual level.

Methods, such as bootstrap calibration, described in DiCiccio and
Efron (1996), exist which attempt to correct for the level error.

Simon Shaw (University of Bath) Statistical Inference APTS, 16-20 December 2019 76 / 95



Confidence sets and p-values Significance procedures and duality

Significance procedures and duality

A hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0, where
Θ0∪Θc

0 = Θ, at significance level of 5% (or any other specified value)
returns one bit of information, either we accept H0 or reject H0.

We do not know whether the decision was borderline or nearly
conclusive; i.e. whether, for rejection, H0 and C (x ; 0.05) were close,
or well-separated.

Of more interest is to consider the smallest value of α for which
C (x ;α) does not intersect H0. This value is termed the p-value.

Definition (p-value)

A p-value p(X ) is a statistic satisfying p(x) ∈ [0, 1] for every x ∈ X .
Small values of p(x) support the hypothesis that H1 is true. A p-value is
valid if, for every θ ∈ Θ0 and every α ∈ [0, 1],

P(p(X ) ≤ α | θ) ≤ α.
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If p(X ) is a valid p-value then a significance test that rejects H0 if
and only if p(X ) ≤ α is a test with significance level α.

In this part we introduce the idea of significance procedure at level α,
deriving a duality between it and a level 1− α confidence procedure.

Let X and Y be two scalar random variables. Then X stochastically
dominates Y exactly when P(X ≤ v) ≤ P(Y ≤ v) for all v ∈ R.

If U ∼ Unif(0, 1) then P(U ≤ u) = u for u ∈ [0, 1]. With this in mind,
we make the following definition.

Definition (Super-uniform)

The random variable X is super-uniform exactly when it stochastically
dominates a standard uniform random variable. That is

P(X ≤ u) ≤ u

for all u ∈ [0, 1].

Thus, for θ ∈ Θ0, the p-value p(X ) is super-uniform.
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We now define a significance procedure. Note the similarities with the
definitions of a confidence procedure which are not coincidental.

Definition (Significance procedure)

1 p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X )
is super-uniform under θ0. If p(X ) is uniform under θ0, then p is an
exact significance procedure for θ0.

2 For X = x , p(x) is a significance level or (observed) p-value for θ0
exactly when p is a significance procedure for θ0.

3 p : X ×Θ → R is a family of significance procedures exactly when
p(x ; θ0) is a significance procedure for θ0 for every θ0 ∈ Θ.

We now show that there is a duality between significance procedures
and confidence procedures.
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Duality Theorem

1 Let p be a family of significance procedures. Then

C (x ;α) := {θ ∈ Θ : p(x ; θ) > α}

is a nesting family of confidence procedures.

2 Conversely, let C be a nesting family of confidence procedures. Then

p(x ; θ0) := inf{α : θ0 /∈ C (x ;α)}

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof

If p is a family of significance procedures then for any θ ∈ Θ,

P(θ ∈ C (X ;α) | θ) = P(p(X ; θ) > α | θ) = 1− P(p(X ; θ) ≤ α | θ).
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Proof continued

Now, as p is super-uniform for θ then P(p(X ; θ) ≤ α | θ) ≤ α. Thus,
P(θ ∈ C (X ;α) | θ) ≥ 1− α. Hence, C (X ;α) is a level-(1− α)
confidence procedure.

If α′ > α then if θ ∈ C (X ;α′) we have p(x ; θ) > α′ > α and so
θ ∈ C (X ;α) and so C is nesting.

If p is exact then the inequalities can be replaced by equalities and so
C is also exact.

We thus have 1.

Now, if C is a nesting family of confidence procedures thena

inf{α : θ0 /∈ C (x ;α)} ≤ u ⇐⇒ θ0 /∈ C (x ; u).

aHere we’re finessing the issue of the boundary of C by assuming that if
α∗ := inf{α : θ0 /∈ C(x ;α)} then θ0 /∈ C(x ;α∗).
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Proof continued

Let θ0 and u ∈ [0, 1] be arbitrary. Then,

P(p(X ; θ0) ≤ u | θ0) = P(θ0 /∈ C (X ; u) | θ0) ≤ u

as C (X ; u) is a level-(1 − u) confidence procedure. Thus, p is
super-uniform.

If C is exact, then the inequality is replaced by an equality, and hence
p is exact as well. ✷
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Families of significance procedures

We now consider a very general way to construct a family of
significance procedures.

We will then show how to use simulation to compute the family.

Theorem

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures. If the distribution function
of t(X ) is continuous, then pt is exact.
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Proof (Casella and Berger, 2002)

Now

pt(x ; θ0) = P(t(X ) ≥ t(x) | θ0) = P(−t(X ) ≤ −t(x) | θ0).

Let F denote the distribution function of Y (X ) = −t(X ) then
pt(x ; θ0) = F (−t(x) | θ0).
Assume that t(X ) is continuous so that Y (X ) = −t(X ) is
continuous. Using the Probability Integral Transform,

P(pt(X ; θ0) ≤ α | θ0) = P(F (Y ) ≤ α | θ0)
= P(Y ≤ F−1(α) | θ0) = F (F−1(α))= α.

Hence, pt is uniform under θ0.

It t(X ) is not continuous then, via the Probability Integral Transform,
P(F (Y ) ≤ α | θ0) ≤ α and so pt(X ; θ0) is super-uniform under θ0. ✷
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So there is a family of significance procedures for each possible
function t : X → R.

Clearly only a tiny fraction of these can be useful functions, and the
rest must be useless.

Some, like t(x) = c for some constant c , are always useless. Others,
like t(x) = sin(x) might sometimes be a little bit useful, while others,
like t(x) =

∑

i xi might be quite useful - but it all depends on the
circumstances.

Some additional criteria are required to separate out good from poor
choices of the test statistic t, when using the construction in the
theorem.
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The most pertinent criterion is:

Select a test statistic for which t(X ) which will tend to be larger for
decision-relevant departures from θ0.

Example

For the likelihood ratio, λ(x), small observed values of λ(x) support
departures from θ0. Thus, t(X ) = −2 log λ(X ), is a test statistic for which
large values support departures from θ0.

Large values of t(X ) will correspond to small values of the p-value,
supporting the hypothesis that H1 is true.

This criterion ensures that pt(X ; θ0) will tend to be smaller under
decision-relevant departures from θ0; small p-values are more
interesting, precisely because significance procedures are
super-uniform under θ0.
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Computing p-values
Only in very special cases will it be possible to find a closed-form
expression for pt from which we can compute the p-value pt(x ; θ0).

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X0,X1, . . . ,Xm, define
the rank of X0 in the sequence as

R :=

m
∑

i=1

1{Xi≤X0}.

If X0,X1, . . . ,Xm are exchangeablea then R has a discrete uniform
distribution on the integers {0, 1, . . . ,m}, and (R + 1)/(m + 1) has a
super-uniform distribution.

aIf X0,X1, . . . ,Xm are exchangeable then their joint density function satisfies
f (x0, . . . , xm) = f (x

π(0), . . . , xπ(m)) for all permutations π defined on the set
{0, . . . ,m}.
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Proof

By exchangeability, X0 has the same probability of having rank r as any of
the other Xi s, for any r , and therefore

P(R = r) =
1

m + 1

for r ∈ {0, 1, . . . ,m} and zero otherwise, proving the first claim. For the
second claim,

P

(

R + 1

m + 1
≤ u

)

= P(R + 1 ≤ u(m + 1)) = P(R + 1 ≤ ⌊u(m + 1)⌋)

since R is an integer and ⌊x⌋ denotes the largest integer no larger than x .
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Proof continued

Hence,

P

(

R + 1

m + 1
≤ u

)

=

⌊u(m+1)⌋−1
∑

r=0

P(R = r) (4)

=

⌊u(m+1)⌋−1
∑

r=0

1

m + 1
(5)

=
⌊u(m + 1)⌋

m + 1
≤ u,

as required where equation (5) follows from (4) by exchangeability. ✷
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We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.

Fix the test statistic t(x) and define Ti = t(Xi) where X1, . . . ,Xm are
independent and identically distributed random variables with density
fX (· | θ0).
Typically, we may have to use simulation to obtain the sample and
we’ll need to specify θ0 for this.

Notice that t(X ),T1, . . . ,Tm are exchangeable and thus
−t(X ),−T1, . . . ,−Tm are exchangeable.

Let

Rt(x ; θ0) :=

m
∑

i=1

1{−Ti≤−t(x)} =

m
∑

i=1

1{Ti≥t(x)},

then the previous theorem implies that

Pt(x ; θ0) :=
Rt(x ; θ0) + 1

m + 1

has a super-uniform distribution under X ∼ fX (· | θ0).
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Note that P(T ≥ t(x) | θ0) = E(1{T≥t(x)}).

Hence, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x ; θ0) = lim
m→∞

Rt(x ; θ0) + 1

m + 1

= lim
m→∞

Rt(x ; θ0)

m

= lim
m→∞

∑m
i=1 1{Ti≥t(x)}

m
= P(T ≥ t(x) | θ0) = pt(x ; θ0).

Therefore, not only is Pt(x ; θ0) super-uniform under θ0, so that Pt is
a family of significance procedures for every m, but the limiting value
of Pt(x ; θ0) as m becomes large is pt(x ; θ0).

In summary, if you can simulate from your model under θ0 then you
can produce a p-value for any test statistic t, namely Pt(x ; θ0), and if
you can simulate cheaply, so that the number of simulations m is
large, then Pt(x ; θ0) ≈ pt(x ; θ0).
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However, this simulation-based approach is not well-adapted to
constructing confidence sets.

Let Ct be the family of confidence procedures induced by pt using
duality.

With one set of m simulations, we can answer ”Is θ0 ∈ Ct(x ;α)?”
◮ These simulations give a value Pt(x ; θ0) which is either larger or not

larger than α.
◮ If Pt(x ; θ0) > α then θ0 ∈ Ct(x ;α), and otherwise it is not.

However, this is not an effective way to enumerate all of the points in
Ct(x ;α) since we would need to do m simulations for each point in Θ.

We’ll omit the section looking at generalisations, including
marginalisation.
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Concluding remarks

It is a very common observation, made repeatedly over the last 50
years see, for example, Rubin (1984), that clients think more like
Bayesians than classicists.

For example, P(θ ∈ C (X ;α) | θ) ≥ 1− α is often interpreted as a
probability over θ for the observed C (x ;α).

Classical statisticians thus have to wrestle with the issue that their
clients will likely misinterpret their results.

This can be potentially disastrous for p-values.
◮ A p-value p(x ; θ0) refers only to θ0, making no reference at all to other

hypotheses about θ.
◮ A posterior probability π(θ0 | x) contrasts θ0 with the other values in Θ

which θ might have taken.
◮ The two outcomes can be radically different, as first captured in

Lindley’s paradox (Lindley, 1957).
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