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Confidence sets and p-values Yesterday’s lecture

Yesterday’s lecture

Family of confidence procedures: occurs when C (X ;α) is a
level-(1− α) confidence procedure, so P(θ ∈ C (X ;α) | θ) ≥ 1− α,
for every α ∈ [0, 1].

The random variable X is super-uniform exactly when it stochastically
dominates a standard uniform random variable. That is
P(X ≤ u) ≤ u for all u ∈ [0, 1].

p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X )
is super-uniform under θ0. If p(X ) is uniform under θ0, then p is an
exact significance procedure for θ0.

For X = x , p(x) is a significance level or (observed) p-value for θ0
exactly when p is a significance procedure for θ0.

p : X ×Θ → R is a family of significance procedures exactly when
p(x ; θ0) is a significance procedure for θ0 for every θ0 ∈ Θ.
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Families of significance procedures

We now consider a very general way to construct a family of
significance procedures.

We will then show how to use simulation to compute the family.

Theorem

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures. If the distribution function
of t(X ) is continuous, then pt is exact.
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Proof (Casella and Berger, 2002)

Now

pt(x ; θ0) = P(t(X ) ≥ t(x) | θ0) = P(−t(X ) ≤ −t(x) | θ0).

Let F denote the distribution function of Y (X ) = −t(X ) then
pt(x ; θ0) = F (−t(x) | θ0).

Assume that t(X ) is continuous so that Y (X ) = −t(X ) is
continuous. Using the Probability Integral Transform,

P(pt(X ; θ0) ≤ α | θ0) = P(F (Y ) ≤ α | θ0)

= P(Y ≤ F−1(α) | θ0) = F (F−1(α))= α.

Hence, pt is uniform under θ0.

It t(X ) is not continuous then, via the Probability Integral Transform,
P(F (Y ) ≤ α | θ0) ≤ α and so pt(X ; θ0) is super-uniform under θ0. ✷
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So there is a family of significance procedures for each possible
function t : X → R.

Clearly only a tiny fraction of these can be useful functions, and the
rest must be useless.

Some, like t(x) = c for some constant c , are always useless. Others,
like t(x) = sin(x) might sometimes be a little bit useful, while others,
like t(x) =

∑

i
xi might be quite useful - but it all depends on the

circumstances.

Some additional criteria are required to separate out good from poor
choices of the test statistic t, when using the construction in the
theorem.
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The most pertinent criterion is:

Select a test statistic for which t(X ) which will tend to be larger for
decision-relevant departures from θ0.

Example

For the likelihood ratio, λ(x), small observed values of λ(x) support
departures from θ0. Thus, t(X ) = −2 log λ(X ), is a test statistic for which
large values support departures from θ0.

Large values of t(X ) will correspond to small values of the p-value,
supporting the hypothesis that H1 is true.

This criterion ensures that pt(X ; θ0) will tend to be smaller under
decision-relevant departures from θ0; small p-values are more
interesting, precisely because significance procedures are
super-uniform under θ0.
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Computing p-values
Only in very special cases will it be possible to find a closed-form
expression for pt from which we can compute the p-value pt(x ; θ0).

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X0,X1, . . . ,Xm, define
the rank of X0 in the sequence as

R :=

m
∑

i=1

1{Xi≤X0}.

If X0,X1, . . . ,Xm are exchangeablea then R has a discrete uniform
distribution on the integers {0, 1, . . . ,m}, and (R + 1)/(m + 1) has a
super-uniform distribution.

aIf X0,X1, . . . ,Xm are exchangeable then their joint density function satisfies
f (x0, . . . , xm) = f (x

π(0), . . . , xπ(m)) for all permutations π defined on the set
{0, . . . ,m}.

Simon Shaw (University of Bath) Statistical Inference Lecture Seven, 20 December 2019 7 / 13
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Proof

By exchangeability, X0 has the same probability of having rank r as any of
the other Xi s, for any r , and therefore

P(R = r) =
1

m + 1

for r ∈ {0, 1, . . . ,m} and zero otherwise, proving the first claim. For the
second claim,

P

(

R + 1

m + 1
≤ u

)

= P(R + 1 ≤ u(m + 1)) = P(R + 1 ≤ ⌊u(m + 1)⌋)

since R is an integer and ⌊x⌋ denotes the largest integer no larger than x .

Simon Shaw (University of Bath) Statistical Inference Lecture Seven, 20 December 2019 8 / 13
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Proof continued

Hence,

P

(

R + 1

m + 1
≤ u

)

=

⌊u(m+1)⌋−1
∑

r=0

P(R = r) (1)

=

⌊u(m+1)⌋−1
∑

r=0

1

m + 1
(2)

=
⌊u(m + 1)⌋

m + 1
≤ u,

as required where equation (2) follows from (1) by exchangeability. ✷
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We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.

Fix the test statistic t(x) and define Ti = t(Xi) where X1, . . . ,Xm are
independent and identically distributed random variables with density
fX (· | θ0).

Typically, we may have to use simulation to obtain the sample and
we’ll need to specify θ0 for this.

Notice that t(X ),T1, . . . ,Tm are exchangeable and thus
−t(X ),−T1, . . . ,−Tm are exchangeable.

Let

Rt(x ; θ0) :=

m
∑

i=1

1{−Ti≤−t(x)} =

m
∑

i=1

1{Ti≥t(x)},

then the previous theorem implies that

Pt(x ; θ0) :=
Rt(x ; θ0) + 1

m + 1

has a super-uniform distribution under X ∼ fX (· | θ0).
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Note that P(T ≥ t(x) | θ0) = E(1{T≥t(x)}).

Hence, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x ; θ0) = lim
m→∞

Rt(x ; θ0) + 1

m + 1

= lim
m→∞

Rt(x ; θ0)

m

= lim
m→∞

∑

m

i=1 1{Ti≥t(x)}

m
= P(T ≥ t(x) | θ0) = pt(x ; θ0).

Therefore, not only is Pt(x ; θ0) super-uniform under θ0, so that Pt is
a family of significance procedures for every m, but the limiting value
of Pt(x ; θ0) as m becomes large is pt(x ; θ0).

In summary, if you can simulate from your model under θ0 then you
can produce a p-value for any test statistic t, namely Pt(x ; θ0), and if
you can simulate cheaply, so that the number of simulations m is
large, then Pt(x ; θ0) ≈ pt(x ; θ0).
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However, this simulation-based approach is not well-adapted to
constructing confidence sets.

Let Ct be the family of confidence procedures induced by pt using
duality.

With one set of m simulations, we can answer ”Is θ0 ∈ Ct(x ;α)?”
◮ These simulations give a value Pt(x ; θ0) which is either larger or not

larger than α.
◮ If Pt(x ; θ0) > α then θ0 ∈ Ct(x ;α), and otherwise it is not.

However, this is not an effective way to enumerate all of the points in
Ct(x ;α) since we would need to do m simulations for each point in Θ.

We’ll omit the section looking at generalisations, including
marginalisation.
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Concluding remarks

It is a very common observation, made repeatedly over the last 50
years see, for example, Rubin (1984), that clients think more like
Bayesians than classicists.

For example, P(θ ∈ C (X ;α) | θ) ≥ 1− α is often interpreted as a
probability over θ for the observed C (x ;α).

Classical statisticians thus have to wrestle with the issue that their
clients will likely misinterpret their results.

This can be potentially disastrous for p-values.
◮ A p-value p(x ; θ0) refers only to θ0, making no reference at all to other

hypotheses about θ.
◮ A posterior probability π(θ0 | x) contrasts θ0 with the other values in Θ

which θ might have taken.
◮ The two outcomes can be radically different, as first captured in

Lindley’s paradox (Lindley, 1957).
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