Statistical Inference https://people.bath.ac.uk/masss/APTS/lecture7.pdf

Simon Shaw

University of Bath

Lecture Seven, 20 December 2019

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Yesterday's lecture

- Family of confidence procedures: occurs when C(X; α) is a level-(1 − α) confidence procedure, so P(θ ∈ C(X; α) | θ) ≥ 1 − α, for every α ∈ [0, 1].
- The random variable X is super-uniform exactly when it stochastically dominates a standard uniform random variable. That is $\mathbb{P}(X \le u) \le u$ for all $u \in [0, 1]$.
- p: X → ℝ is a significance procedure for θ₀ ∈ Θ exactly when p(X) is super-uniform under θ₀. If p(X) is uniform under θ₀, then p is an exact significance procedure for θ₀.
- For X = x, p(x) is a significance level or (observed) *p*-value for θ_0 exactly when *p* is a significance procedure for θ_0 .
- $p: \mathcal{X} \times \Theta \to \mathbb{R}$ is a family of significance procedures exactly when $p(x; \theta_0)$ is a significance procedure for θ_0 for every $\theta_0 \in \Theta$.

イロト 不得 トイラト イラト 一日

Families of significance procedures

- We now consider a very general way to construct a family of significance procedures.
- We will then show how to use simulation to compute the family.

Theorem

Let $t : \mathcal{X} \to \mathbb{R}$ be a statistic. For each $x \in \mathcal{X}$ and $\theta_0 \in \Theta$ define

 $p_t(x;\theta_0) := \mathbb{P}(t(X) \ge t(x) | \theta_0).$

Then p_t is a family of significance procedures. If the distribution function of t(X) is continuous, then p_t is exact.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof (Casella and Berger, 2002)

Now

$$p_t(x; \theta_0) = \mathbb{P}(t(X) \ge t(x) | \theta_0) = \mathbb{P}(-t(X) \le -t(x) | \theta_0).$$

- Let F denote the distribution function of Y(X) = -t(X) then $p_t(x;\theta_0) = F(-t(x) \mid \theta_0).$
- Assume that t(X) is continuous so that Y(X) = -t(X) is continuous. Using the Probability Integral Transform,

$$\begin{split} \mathbb{P}(p_t(X;\theta_0) \leq \alpha \,|\, \theta_0) &= \mathbb{P}(F(Y) \leq \alpha \,|\, \theta_0) \\ &= \mathbb{P}(Y \leq F^{-1}(\alpha) \,|\, \theta_0) = F(F^{-1}(\alpha)) = \alpha. \end{split}$$

Hence, p_t is uniform under θ_0 .

• It t(X) is not continuous then, via the Probability Integral Transform, $\mathbb{P}(F(Y) \leq \alpha \mid \theta_0) \leq \alpha$ and so $p_t(X; \theta_0)$ is super-uniform under θ_0 .

3

- So there is a family of significance procedures for each possible function *t* : *X* → ℝ.
- Clearly only a tiny fraction of these can be useful functions, and the rest must be useless.
- Some, like t(x) = c for some constant c, are always useless. Others, like $t(x) = \sin(x)$ might sometimes be a little bit useful, while others, like $t(x) = \sum_i x_i$ might be quite useful but it all depends on the circumstances.
- Some additional criteria are required to separate out good from poor choices of the test statistic *t*, when using the construction in the theorem.

イロト 不得 トイラト イラト 一日

The most pertinent criterion is:

• Select a test statistic for which t(X) which will tend to be larger for decision-relevant departures from θ_0 .

Example

For the likelihood ratio, $\lambda(x)$, small observed values of $\lambda(x)$ support departures from θ_0 . Thus, $t(X) = -2 \log \lambda(X)$, is a test statistic for which large values support departures from θ_0 .

- Large values of t(X) will correspond to small values of the *p*-value, supporting the hypothesis that H_1 is true.
- This criterion ensures that p_t(X; θ₀) will tend to be smaller under decision-relevant departures from θ₀; small p-values are more interesting, precisely because significance procedures are super-uniform under θ₀.

イロト 不得 トイラト イラト 一日

Computing p-values

Only in very special cases will it be possible to find a closed-form expression for p_t from which we can compute the *p*-value $p_t(x; \theta_0)$.

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X_0, X_1, \ldots, X_m , define the rank of X_0 in the sequence as

$$R := \sum_{i=1}^{m} 1_{\{X_i \leq X_0\}}.$$

If X_0, X_1, \ldots, X_m are exchangeable^{*a*} then *R* has a discrete uniform distribution on the integers $\{0, 1, \ldots, m\}$, and (R + 1)/(m + 1) has a super-uniform distribution.

^aIf X_0, X_1, \ldots, X_m are exchangeable then their joint density function satisfies $f(x_0, \ldots, x_m) = f(x_{\pi(0)}, \ldots, x_{\pi(m)})$ for all permutations π defined on the set $\{0, \ldots, m\}$.

Proof

By exchangeability, X_0 has the same probability of having rank r as any of the other X_i s, for any r, and therefore

$$\mathbb{P}(R=r) = rac{1}{m+1}$$

for $r \in \{0, 1, \dots, m\}$ and zero otherwise, proving the first claim. For the second claim,

$$\mathbb{P}\left(\frac{R+1}{m+1} \leq u\right) = \mathbb{P}(R+1 \leq u(m+1)) = \mathbb{P}(R+1 \leq \lfloor u(m+1) \rfloor)$$

since R is an integer and $\lfloor x \rfloor$ denotes the largest integer no larger than x.

イロト イポト イヨト イヨト 二日

Proof continued Hence,

$$\mathbb{P}\left(\frac{R+1}{m+1} \le u\right) = \sum_{r=0}^{\lfloor u(m+1) \rfloor - 1} \mathbb{P}(R=r)$$
(1)
$$= \sum_{r=0}^{\lfloor u(m+1) \rfloor - 1} \frac{1}{m+1}$$
(2)
$$= \frac{\lfloor u(m+1) \rfloor}{m+1} \le u,$$

as required where equation (2) follows from (1) by exchangeability.

Simon Shaw (University of Bath)

3

イロト イポト イヨト イヨト

- We utilise this result to compute the *p*-value *p_t(x; θ₀)* corresponding to the test statistic *t(X)* at *θ₀*.
- Fix the test statistic t(x) and define $T_i = t(X_i)$ where X_1, \ldots, X_m are independent and identically distributed random variables with density $f_X(\cdot | \theta_0)$.
- Typically, we may have to use simulation to obtain the sample and we'll need to specify θ_0 for this.
- Notice that $t(X), T_1, \ldots, T_m$ are exchangeable and thus $-t(X), -T_1, \ldots, -T_m$ are exchangeable.
- Let

$$R_t(x;\theta_0) := \sum_{i=1}^m \mathbb{1}_{\{-T_i \leq -t(x)\}} = \sum_{i=1}^m \mathbb{1}_{\{T_i \geq t(x)\}},$$

then the previous theorem implies that

$$P_t(x;\theta_0) := \frac{R_t(x;\theta_0)+1}{m+1}$$

has a super-uniform distribution under $X \sim f_X(\cdot | \theta_0)$.

- Note that $\mathbb{P}(T \ge t(x) | \theta_0) = \mathbb{E}(\mathbb{1}_{\{T \ge t(x)\}}).$
- Hence, the Weak Law of Large Numbers (WLLN) implies that

$$\lim_{m \to \infty} P_t(x; \theta_0) = \lim_{m \to \infty} \frac{R_t(x; \theta_0) + 1}{m + 1}$$
$$= \lim_{m \to \infty} \frac{R_t(x; \theta_0)}{m}$$
$$= \lim_{m \to \infty} \frac{\sum_{i=1}^m 1_{\{T_i \ge t(x)\}}}{m}$$
$$= \mathbb{P}(T \ge t(x) | \theta_0) = p_t(x; \theta_0)$$

- Therefore, not only is $P_t(x; \theta_0)$ super-uniform under θ_0 , so that P_t is a family of significance procedures for every *m*, but the limiting value of $P_t(x; \theta_0)$ as *m* becomes large is $p_t(x; \theta_0)$.
- In summary, if you can simulate from your model under θ_0 then you can produce a *p*-value for any test statistic *t*, namely $P_t(x; \theta_0)$, and if you can simulate cheaply, so that the number of simulations m is large, then $P_t(x; \theta_0) \approx p_t(x; \theta_0)$.

Simon Shaw (University of Bath)

- However, this simulation-based approach is not well-adapted to constructing confidence sets.
- Let *C_t* be the family of confidence procedures induced by *p_t* using duality.
- With one set of *m* simulations, we can answer "Is $\theta_0 \in C_t(x; \alpha)$?"
 - These simulations give a value $P_t(x; \theta_0)$ which is either larger or not larger than α .
 - If $P_t(x; \theta_0) > \alpha$ then $\theta_0 \in C_t(x; \alpha)$, and otherwise it is not.
- However, this is not an effective way to enumerate all of the points in $C_t(x; \alpha)$ since we would need to do *m* simulations for each point in Θ .
- We'll omit the section looking at generalisations, including marginalisation.

Concluding remarks

- It is a very common observation, made repeatedly over the last 50 years see, for example, Rubin (1984), that clients think more like Bayesians than classicists.
- For example, P(θ ∈ C(X; α) | θ) ≥ 1 − α is often interpreted as a probability over θ for the observed C(x; α).
- Classical statisticians thus have to wrestle with the issue that their clients will likely misinterpret their results.
- This can be potentially disastrous for *p*-values.
 - A p-value p(x; θ₀) refers only to θ₀, making no reference at all to other hypotheses about θ.
 - A posterior probability $\pi(\theta_0 | x)$ contrasts θ_0 with the other values in Θ which θ might have taken.
 - The two outcomes can be radically different, as first captured in Lindley's paradox (Lindley, 1957).