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Confidence sets and p-values This morning’s lecture

This morning’s lecture

Confidence procedure: A random set C (X ) ⊂ Θ is a
level-(1− α) confidence procedure exactly when
P(θ ∈ C (X ) | θ) ≥ 1− α.

Family of confidence procedures: occurs when C (X ;α) is a
level-(1− α) confidence procedure for every α ∈ [0, 1].

C is a nesting family if α < α′ implies that C (x ;α′) ⊂ C (x ;α).

The general approach to construct a confidence procedure is to invert
a test statistic.

Consider the likelihood ratio test (LRT) statistic

λ(x) =
supθ∈Θ0

LX (θ; x)

supθ∈Θ LX (θ; x)
.

Level set property, LSP: present for a confidence procedure C when
C (x) = {θ : fX (x | θ) > g(x)} for some g : X → R.

Simon Shaw (University of Bath) Statistical Inference Lecture Six, 19 December 2019 2 / 16
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Theorem

Let h be any probability density function for X . Then

Ch(x ;α) := {θ ∈ Θ : fX (x | θ) > αh(x)}

is a family of confidence procedures, with the LSP.

Proof

First notice that if we let X (θ) := {x ∈ X : fX (x ; θ) > 0} then

E(h(X )/fX (X | θ) | θ) =

∫

x∈X (θ)

h(x)

fX (x | θ)
fX (x | θ) dx

=

∫

x∈X (θ)
h(x) ≤ 1

because h is a probability density function.
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Proof continued

Now,

P(fX (X | θ)/h(X ) ≤ u | θ) = P(h(X )/fX (X | θ) ≥ 1/u | θ) (1)

≤
E(h(X )/fX (X | θ) | θ)

1/u
(2)

≤
1

1/u
= u

where (2) follows from (1) by Markov’s inequality.a ✷

aIf X is a nonnegative random variable and a > 0 then P(X ≥ a) ≤ E(X )/a.

If we let g(x ; θ) = fX (x | θ)/h(x), which may be infinite, then
P(g(X ; θ) ≤ u | θ) ≤ u.

We will see later that this implies that g(x ; θ) is super-uniform.
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Among the interesting choices for h, one possibility is
h(x) = fX (x | θ0), for some θ0 ∈ Θ.

As fX (x | θ0) > αfX (x | θ0) we can construct a level-(1− α) confidence
procedure whose confidence sets will always contain θ0.

This suggests an issue with confidence procedures: two statisticians
may come to two different conclusions about H0 : θ = θ0 depending
on the intervals they construct.

This illustrates why it is important to be able to account for the
choices you make as a statistician.

The theorem utilises Markov’s Inequality which is a very slack result.
It is likely that the coverage of the corresponding family of confidence
procedures will be much larger than (1− α) .

A more desirable strategy would be to use an exact family of
confidence procedures which satisfy the LSP, if one existed.
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The linear model

We’ll briefly discuss the linear model and construct an exact family of
confidence procedures which satisfy the LSP.

Let Y = (Y1, . . . ,Yn) be an n-vector of observables with Y = Xθ+ ǫ.

◮ X is an (n × p) matrix1 of regressors,
◮ θ is a p-vector of regression coefficients,
◮ ǫ is an n-vector of residuals.

Assume that ǫ ∼ Nn(0, σ
2In), the n-dimensional multivariate normal

distribution, where σ2 is known and In is the (n × n) identity matrix.

From properties of the multivariate normal distribution, it follows that
Y ∼ Nn(Xθ, σ2In).

1We typically use X to denote a generic random variable and so it is not ideal to use
it here for a specified matrix but this is the standard notation for linear models.
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Now,

LY (θ; y) =
(

2πσ2
)−

n
2 exp

{

−
1

2σ2
(y − Xθ)T (y − Xθ)

}

.

Let θ̂ = θ̂(y) =
(

XTX
)−1

XT y then

(y − Xθ)T (y − Xθ) = (y − X θ̂ + X θ̂ − Xθ)T (y − X θ̂ + X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (X θ̂ − Xθ)T (X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (θ̂ − θ)TXTX (θ̂ − θ).

Thus, (y − Xθ)T (y − Xθ) is minimised when θ = θ̂ and so,

θ̂ =
(

XTX
)−1

XT y is the mle of θ. The likelihood ratio is

λ(y) =
LY (θ; y)

LY (θ̂; y)

= exp

{

−
1

2σ2

[

(y − Xθ)T (y − Xθ)− (y − X θ̂)T (y − X θ̂)
]

}

= exp

{

−
1

2σ2
(θ̂ − θ)TXTX (θ̂ − θ)

}
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Thus, −2 log λ(y) = 1
σ2 (θ̂ − θ)TXTX (θ̂ − θ).

As θ̂(Y ) =
(

XTX
)−1

XTY then, as Y ∼ Nn(Xθ, σ2In),

θ̂(Y ) ∼ Np

(

θ, σ2
(

XTX
)−1

)

Consequently, −2 log λ(Y ) ∼ χ2
p.

Hence, with P(χ2
p ≥ χ2

p,α) = α,

C (y ;α) =

{

θ ∈ R
p : −2 log λ(y) = −2 log

fY (y | θ, σ
2)

fY (y | θ̂, σ2)
< χ2

p,α

}

=

{

θ ∈ R
p : fY (y | θ, σ

2) > exp

(

−
χ2
p,α

2

)

fY (y | θ̂, σ
2)

}

is a family of exact confidence procedures for θ which has the LSP.
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Wilks confidence procedures

This outcome, where we can find a family of exact confidence
procedures with the LSP, is more-or-less unique to the regression
parameters of the linear model.

It is however found, approximately, in the large n behaviour of a
much wider class of models.

Wilks’ Theorem

Let X = (X1, . . . ,Xn) where each Xi is independent and identically
distributed, Xi ∼ f (xi | θ), where f is a regular model and the parameter
space Θ is an open convex subset of Rp (and invariant to n). The
distribution of the statistic −2 log λ(X ) converges to a chi-squared
distribution with p degrees of freedom as n → ∞.

A working guideline to regular model is that f must be smooth and
differentiable in θ; in particular, the support must not depend on θ.
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The result dates back to Wilks (1938) and, as such, the resultant
confidence procedures are often termed Wilks confidence procedures.

Thus, if the conditions of Wilks’ Theorem are met,

C (x ;α) =

{

θ ∈ R
p : fX (x | θ) > exp

(

−
χ2
p,α

2

)

fX (x | θ̂)

}

is a family of approximately exact confidence procedures which satisfy
the LSP.

For a given model, the pertinent question is whether or not the
approximation is a good one.

We are thus interested in the level error, the difference between the
nominal level, typically (1− α) everywhere, and the actual level, the
actual minimum coverage everywhere,

level error = nominal level− actual level.

Methods, such as bootstrap calibration, described in DiCiccio and
Efron (1996), exist which attempt to correct for the level error.
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Significance procedures and duality

A hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0, where
Θ0∪Θc

0 = Θ, at significance level of 5% (or any other specified value)
returns one bit of information, either we accept H0 or reject H0.

We do not know whether the decision was borderline or nearly
conclusive; i.e. whether, for rejection, H0 and C (x ; 0.05) were close,
or well-separated.

Of more interest is to consider the smallest value of α for which
C (x ;α) does not intersect H0. This value is termed the p-value.

Definition (p-value)

A p-value p(X ) is a statistic satisfying p(x) ∈ [0, 1] for every x ∈ X .
Small values of p(x) support the hypothesis that H1 is true. A p-value is
valid if, for every θ ∈ Θ0 and every α ∈ [0, 1],

P(p(X ) ≤ α | θ) ≤ α.
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If p(X ) is a valid p-value then a significance test that rejects H0 if
and only if p(X ) ≤ α is a test with significance level α.

In this part we introduce the idea of significance procedure at level α,
deriving a duality between it and a level 1− α confidence procedure.

Let X and Y be two scalar random variables. Then X stochastically
dominates Y exactly when P(X ≤ v) ≤ P(Y ≤ v) for all v ∈ R.

If U ∼ Unif(0, 1) then P(U ≤ u) = u for u ∈ [0, 1]. With this in mind,
we make the following definition.

Definition (Super-uniform)

The random variable X is super-uniform exactly when it stochastically
dominates a standard uniform random variable. That is

P(X ≤ u) ≤ u

for all u ∈ [0, 1].

Thus, for θ ∈ Θ0, the p-value p(X ) is super-uniform.
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We now define a significance procedure. Note the similarities with the
definitions of a confidence procedure which are not coincidental.

Definition (Significance procedure)

1 p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X )
is super-uniform under θ0. If p(X ) is uniform under θ0, then p is an
exact significance procedure for θ0.

2 For X = x , p(x) is a significance level or (observed) p-value for θ0
exactly when p is a significance procedure for θ0.

3 p : X ×Θ → R is a family of significance procedures exactly when
p(x ; θ0) is a significance procedure for θ0 for every θ0 ∈ Θ.

We now show that there is a duality between significance procedures
and confidence procedures.
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Duality Theorem

1 Let p be a family of significance procedures. Then

C (x ;α) := {θ ∈ Θ : p(x ; θ) > α}

is a nesting family of confidence procedures.

2 Conversely, let C be a nesting family of confidence procedures. Then

p(x ; θ0) := inf{α : θ0 /∈ C (x ;α)}

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof

If p is a family of significance procedures then for any θ ∈ Θ,

P(θ ∈ C (X ;α) | θ) = P(p(X ; θ) > α | θ) = 1− P(p(X ; θ) ≤ α | θ).
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Proof continued

Now, as p is super-uniform for θ then P(p(X ; θ) ≤ α | θ) ≤ α. Thus,
P(θ ∈ C (X ;α) | θ) ≥ 1− α. Hence, C (X ;α) is a level-(1− α)
confidence procedure.

If α′ > α then if θ ∈ C (X ;α′) we have p(x ; θ) > α′ > α and so
θ ∈ C (X ;α) and so C is nesting.

If p is exact then the inequalities can be replaced by equalities and so
C is also exact.

We thus have 1.

Now, if C is a nesting family of confidence procedures thena

inf{α : θ0 /∈ C (x ;α)} ≤ u ⇐⇒ θ0 /∈ C (x ; u).

aHere we’re finessing the issue of the boundary of C by assuming that if
α∗ := inf{α : θ0 /∈ C(x ;α)} then θ0 /∈ C(x ;α∗).
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Proof continued

Let θ0 and u ∈ [0, 1] be arbitrary. Then,

P(p(X ; θ0) ≤ u | θ0) = P(θ0 /∈ C (X ; u) | θ0) ≤ u

as C (X ; u) is a level-(1 − u) confidence procedure. Thus, p is
super-uniform.

If C is exact, then the inequality is replaced by an equality, and hence
p is exact as well. ✷
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