Statistical Inference

https://people.bath.ac.uk/masss/APTS/lecture4.pdf

Simon Shaw

University of Bath

Lecture Four, 18 December 2019

Yesterday's lecture

- Bayesian statistical decision problem, $[\Theta, \mathcal{D}, \pi(\theta), L(\theta, d)]$.
- The risk of decision $d \in \mathcal{D}$ under the distribution $\pi(\theta)$ is $\rho(\pi(\theta), d) = \int_{\theta} L(\theta, d) \pi(\theta) d\theta$.
- The Bayes risk $\rho^*(\pi)$ minimises the expected loss,

$$\rho^*(\pi) = \inf_{d \in \mathcal{D}} \rho(\pi, d)$$

with respect to $\pi(\theta)$.

- A decision $d^* \in \mathcal{D}$ for which $\rho(\pi, d^*) = \rho^*(\pi)$ is a Bayes rule against $\pi(\theta)$.
- A decision rule $\delta(x)$ is a function from \mathcal{X} into \mathcal{D} ,
- We view the set of decision rules, to be our possible set of inferences about θ when the sample is observed so that $\text{Ev}(\mathcal{E}, x)$ is $\delta^*(x)$
- The classical risk for the model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ is

$$R(\theta, \delta) = \int_X L(\theta, \delta(x)) f_X(x \mid \theta) dx.$$

Example

Let $X = (X_1, ..., X_n)$ where $X_i \sim N(\theta, \sigma^2)$ and σ^2 is known. Suppose that $L(\theta, d) = (\theta - d)^2$ and consider a conjugate prior $\theta \sim N(\mu_0, \sigma_0^2)$. Possible decision functions include:

- $\bullet \quad \delta_1(x) = \overline{x}, \text{ the sample mean.}$
- $\delta_2(x) = \text{med}\{x_1, \dots, x_n\} = \tilde{x}$, the sample median.
- $\delta_3(x) = \mu_0$, the prior mean.
- $\delta_4(x) = \mu_n$, the posterior mean where

$$\mu_n = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\overline{x}}{\sigma^2}\right),\,$$

the weighted average of the prior and sample mean accorded to their respective precisions.

Example - continued

The respective classical risks are

- **1** $R(\theta, \delta_1) = \frac{\sigma^2}{n}$, a constant for θ , since $\overline{X} \sim N(\theta, \sigma^2/n)$.
- **2** $R(\theta, \delta_2) = \frac{\pi \sigma^2}{2n}$, a constant for θ , since $\tilde{X} \sim N(\theta, \pi \sigma^2/2n)$ (approximately).

Which decision do we choose? We observe that $R(\theta, \delta_1) < R(\theta, \delta_2)$ for all $\theta \in \Theta$ but other comparisons depend upon θ .

 The accepted approach for classical statisticians is to narrow the set of possible decision rules by ruling out those that are obviously bad.

Definition (Admissible decision rule)

A decision rule δ_0 is inadmissible if there exists a decision rule δ_1 which dominates it, that is

$$R(\theta, \delta_1) \leq R(\theta, \delta_0)$$

for all $\theta \in \Theta$ with $R(\theta, \delta_1) < R(\theta, \delta_0)$ for at least one value $\theta_0 \in \Theta$. If no such δ_1 exists then δ_0 is admissible.

- If δ_0 is dominated by δ_1 then the classical risk of δ_0 is never smaller than that of δ_1 and δ_1 has a smaller risk for θ_0 .
- Thus, you would never want to use δ_0 .¹
- The accepted approach is to reduce the set of possible decision rules under consideration by only using admissible rules.

¹Here I am assuming that all other considerations are the same in the two cases: e.g. for all $x \in \mathcal{X}$, $\delta_1(x)$ and $\delta_0(x)$ take about the same amount of resource to compute.

• We now show that admissible rules can be related to a Bayes rule δ^* for a prior distribution $\pi(\theta)$.

Theorem

If a prior distribution $\pi(\theta)$ is strictly positive for all Θ with finite Bayes risk and the classical risk, $R(\theta, \delta)$, is a continuous function of θ for all δ , then the Bayes rule δ^* is admissible.

Proof (Robert, 2007)

Letting $f(\theta, x) = f_X(x \mid \theta)\pi(\theta)$ we have

$$\mathbb{E}\{L(\theta, \delta(X))\} = \int_{x} \int_{\theta} L(\theta, \delta(x)) f(\theta, x) d\theta dx$$

$$= \int_{\theta} \left\{ \int_{x} L(\theta, \delta(x)) f_{X}(x \mid \theta) dx \right\} \pi(\theta) d\theta$$

$$= \int_{\theta} R(\theta, \delta) \pi(\theta) d\theta$$

Proof continued

- Suppose that the Bayes rule δ^* is inadmissible and dominated by δ_1 .
- Thus, in an open set C of θ , $R(\theta, \delta_1) < R(\theta, \delta^*)$ with $R(\theta, \delta_1) \le R(\theta, \delta^*)$ elsewhere.
- Consequently, $\mathbb{E}\{L(\theta, \delta_1(X))\} < \mathbb{E}\{L(\theta, \delta^*(X))\}$ which is a contradiction to δ^* being the Bayes rule.
- The relationship between a Bayes rule with prior $\pi(\theta)$ and an admissible decision rule is even stronger.
- The following result was derived by Abraham Wald (1902-1950)

Wald's Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space $\mathcal X$ are finite, a decision rule δ is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$ with strictly positive values.

- An illuminating blackboard proof of this result can be found in Cox and Hinkley (1974, Section 11.6).
- There are generalisations of this theorem to non-finite decision sets, parameter spaces, and sample spaces but the results are highly technical.
- We'll proceed assuming the more general result, which is that a decision rule is admissible if and only if it is a Bayes rule for some prior distribution $\pi(\theta)$, which holds for practical purposes.

So what does the CCT say?

- Admissible decision rules respect the SLP. This follows from the fact that admissible rules are Bayes rules which respect the SLP. This provides support for using admissible decision rules.
- ② If you select a Bayes rule according to some positive prior distribution $\pi(\theta)$ then you cannot ever choose an inadmissible decision rule.

Point estimation

- We now look at possible choices of loss functions for different types of inference.
- For point estimation the decision space is $\mathcal{D} = \Theta$, and the loss function $L(\theta, d)$ represents the (negative) consequence of choosing d as a point estimate of θ .
- It will not be often that an obvious loss function $L: \Theta \times \Theta \to \mathbb{R}$ presents itself. There is a need for a generic loss function which is acceptable over a wide range of applications.

Suppose that Θ is a convex subset of \mathbb{R}^p . A natural choice is a convex loss function,

$$L(\theta,d) = h(d-\theta)$$

where $h: \mathbb{R}^p \to \mathbb{R}$ is a smooth non-negative convex function with h(0) = 0.

Point estimation

- This type of loss function asserts that small errors are much more tolerable than large ones.
- One possible further restriction is that h is an even function, $h(d-\theta) = h(\theta-d)$.
- In this case, $L(\theta, \theta + \epsilon) = L(\theta, \theta \epsilon)$ so that under-estimation incurs the same loss as over-estimation.
- There are many situations where this is not appropriate and the loss function should be asymmetric and a generic loss function should be replaced by a more specific one.
- For $\Theta \subset \mathbb{R}$, the absolute loss function $L(\theta, d) = |\theta d|$ gives a Bayes rule of the median of $\pi(\theta)$.
- We saw previously, that for quadratic loss $\Theta \subset \mathbb{R}$, $L(\theta, d) = (\theta d)^2$, the Bayes rule was the expectation of $\pi(\theta)$. This attractive feature can be extended to more dimensions.

Example

If $\Theta \in \mathbb{R}^p$, the Bayes rule δ^* associated with the prior distribution $\pi(\theta)$ and the quadratic loss

$$L(\theta, d) = (d - \theta)^T Q (d - \theta)$$

is the posterior expectation $\mathbb{E}(\theta \mid X)$ for every positive-definite symmetric $p \times p$ matrix Q.

Example (Robert, 2007), $Q = \Sigma^{-1}$

Suppose $X \sim N_p(\theta, \Sigma)$ where the known variance matrix Σ is diagonal with elements σ_i^2 for each i. Then $\mathcal{D} = \mathbb{R}^p$. A possible loss function is

$$L(\theta, d) = \sum_{i=1}^{p} \left(\frac{d_i - \theta_i}{\sigma_i}\right)^2$$

so that the total loss is the sum of the squared componentwise errors.

• As the Bayes rule for $L(\theta, d) = (d - \theta)^T Q (d - \theta)$ does not depend upon Q, it is the same for an uncountably large class of loss functions.

Point estimation

- If we apply the Complete Class Theorem to this result we see that for quadratic loss, a point estimator for θ is admissible if and only if it is the conditional expectation with respect to some positive prior distribution $\pi(\theta)$.
- The value, and interpretability, of the quadratic loss can be further observed by noting that, from a Taylor series expansion, an even, differentiable and strictly convex loss function can be approximated by a quadratic loss function.

Set estimation

- For set estimation the decision space is a set of subsets of Θ so that each $d \subset \Theta$.
- There are two contradictory requirements for set estimators of Θ .
 - We want the sets to be small.
 - 2 We also want them to contain θ .
- A simple way to represent these two requirements is to consider the loss function

$$L(\theta, d) = |d| + \kappa (1 - 1_{\theta \in d})$$

for some $\kappa > 0$ where |d| is the volume of d.

- The value of κ controls the trade-off between the two requirements.
 - ▶ If $\kappa \downarrow 0$ then minimising the expected loss will always produce the empty set.
 - ▶ If $\kappa \uparrow \infty$ then minimising the expected loss will always produce Θ .

13 / 18

• For loss functions of the form $L(\theta, d) = |d| + \kappa (1 - 1_{\theta \in d})$ we'll show there is a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set $d \subset \Theta$ is a level set of the posterior distribution exactly when $d = \{\theta : \pi(\theta \mid x) \geq k\}$ for some k.

Theorem (Level set property, LSP)

If δ^* is a Bayes rule for $L(\theta, d) = |d| + \kappa (1 - 1_{\theta \in d})$ then it is a level set of the posterior distribution.

Proof

Note that

$$\mathbb{E}\{L(\theta,d) \mid X\} = |d| + \kappa (1 - \mathbb{E}(1_{\theta \in d} \mid X))$$
$$= |d| + \kappa \mathbb{P}(\theta \notin d \mid X).$$

Proof continued

- For fixed x, we show that if d is not a level set of the posterior distribution then there is a $d' \neq d$ which has a smaller expected loss so that $\delta^*(x) \neq d$.
- Suppose that d is not a level set of $\pi(\theta \mid x)$. Then there is a $\theta \in d$ and $\theta' \notin d$ for which $\pi(\theta' \mid x) > \pi(\theta \mid x)$.
- Let $\mathbf{d}' = \mathbf{d} \cup \mathbf{d}\theta' \setminus \mathbf{d}\theta$ where $\mathbf{d}\theta$ is the tiny region of Θ around θ and $\mathbf{d}\theta'$ is the tiny region of Θ around \mathbf{d}' for which $|\mathbf{d}\theta| = |\mathbf{d}\theta'|$.
- Then |d'| = |d| but

$$\mathbb{P}(\theta \notin d' \mid X) < \mathbb{P}(\theta \notin d \mid X)$$

Thus, $\mathbb{E}\{L(\theta, d') | X\} < \mathbb{E}\{L(\theta, d) | X\}$ showing that $\delta^*(x) \neq d$.

- The Level Set Property Theorem states that δ having the level set property is necessary for δ to be a Bayes rule for loss functions of the form $L(\theta, d) = |d| + \kappa (1 - 1_{\theta \in d})$.
- The Complete Class Theorem states that being a Bayes rule is a necessary condition for δ to be admissible.
- Being a level set of a posterior distribution for some prior distribution $\pi(\theta)$ is a necessary condition for being admissible for loss functions of this form.
- Bayesian HPD regions satisfy the necessary condition for being a set estimator.
- Classical set estimators achieve a similar outcome if they are level sets of the likelihood function, because the posterior is proportional to the likelihood under a uniform prior distribution.²

 $^{^2}$ In the case where Θ is unbounded, this prior distribution may have to be truncated to be proper. 4 D > 4 B > 4 B > 4 B >

Hypothesis tests

• For hypothesis tests, the decision space is a partition of Θ , denoted

$$\mathcal{H} := \{H_0, H_1, \dots, H_d\}.$$

- Each element of \mathcal{H} is termed a hypothesis.
- The loss function $L(\theta, H_i)$ represents the (negative) consequences of choosing element H_i , when the true value of the parameter is θ .
- It would be usual for the loss function to satisfy

$$\theta \in H_i \implies L(\theta, H_i) = \min_j L(\theta, H_j)$$

on the grounds that an incorrect choice of element should never incur a smaller loss than the correct choice.

 A generic loss function for hypothesis tests is the 0-1 ('zero-one') loss function

$$L(\theta, H_i) = 1 - 1_{\{\theta \in H_i\}}.$$

i.e., zero if $\theta \in H_i$, and one if it is not.

- The corresponding Bayes rule is to select the hypothesis with the largest posterior probability.
- The drawback is that this loss function is hard to defend as being realistic.
- An alternative approach is to co-opt the theory of set estimators.
- The statistician can use her set estimator δ to make at least some distinctions between the members of \mathcal{H} :
 - ▶ Accept H_i exactly when $\delta(x) \subset H_i$,
 - ▶ Reject H_i exactly when $\delta(x) \cap H_i = \emptyset$,
 - ▶ Undecided about *H*; otherwise.

