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Principles for Statistical Inference This morning’s lecture

This morning’s lecture

Strong Likelihood Principle, SLP: if fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ),
for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

Stopping Rule Principle, SRP: in a sequential experiment Eτ ,
Ev (Eτ , (x1, . . . , xn)) does not depend on the stopping rule τ .

SLP → SRP.

A Bayesian statistical model is the collection
EB = {X ,Θ, fX (x | θ), π(θ)}.

The posterior distribution is π(θ | x) = c(x)fX (x | θ)π(θ) where c(x) is
the normalising constant.

Two Bayesian models with the same prior distribution,
EB,1 = {X1,Θ, fX1

(x1 | θ), π(θ)} and EB,2 = {X2,Θ, fX2
(x2 | θ), π(θ)}

have the same posterior distribution when
fX1

(x1 | θ) = c(x1, x2)fX2
(x2 | θ).

Hence, the Bayesian approach satisfies the SLP.
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Principles for Statistical Inference The Likelihood Principle in practice

The classical approach typically violates the SLP.

Inference techniques depend upon the sampling distribution and so
they depend on the whole sample space X and not just the observed
x ∈ X .

Sampling distribution depends on values of fX other than
L(θ; x) = fX (x | θ).

Theorem

Suppose that Ev(E , x) depends on the value of fX (x
′ | θ) for some x ′ 6= x .

Then Ev does not respect the SLP.

Proof

Let E = {X ,Θ, fX (x | θ)} and let x̃ 6= x , x ′. Define E1 = {X ,Θ, f1(x | θ)}
where f1(x

′ | θ) = fX (x̃ | θ) and f1(x̃ | θ) = fX (x
′ | θ), and f1 = fX elsewhere.

Then fX (x | θ) = f1(x | θ) but fX (x
′ | θ) 6= f1(x

′ | θ) and so
Ev(E , x) 6= Ev(E1, x) violating the SLP. ✷
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Principles for Statistical Inference The Likelihood Principle in practice

The two main difficulties with violating the SLP are:

1 To reject the SLP is to reject at least one of the WIP and the WCP.
Yet both of these principles seem self-evident. Therefore violating the
SLP is either illogical or obtuse.

2 In their everyday practice, statisticians use the SRP (ignoring the
intentions of the experimenter) which is not self-evident, but is
implied by the SLP. If the SLP is violated, it needs an alternative
justification which has not yet been forthcoming.
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Principles for Statistical Inference Reflections

Reflections

This chapter does not explain how to choose Ev but instead describes
desirable properties of Ev.

What is evaluated is the algorithm, the method by which (E , x) is
turned into an inference about the parameter θ.

It is quite possible that statisticians of quite different persuasions will
produce effectively identical inferences from different algorithms.

A Bayesian statistician might produce a 95% High Density Region,
and a classical statistician a 95% confidence set, but they might be
effectively the same set.

Primary concern for the auditor is why the particular inference
method was chosen and they might also ask if the statistician is
worried about the SLP.

Classical statistician might argue a long-run frequency property but
the client might wonder about their interval.
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Statistical Decision Theory Introduction

Introduction

Statistical Decision Theory allows us to consider ways to construct
the Ev’ function that reflects our needs, which will vary from
application to application, and which assesses the consequences of
making a good or bad inference.

The set of possible inferences, or decisions, is termed the decision
space, denoted D.

For each d ∈ D, we want a way to assess the consequence of how
good or bad the choice of decision d was under the event θ.

Definition (Loss function)

A loss function is any function L from Θ×D to [0,∞).

The loss function measures the penalty or error, L(θ, d) of the
decision d when the parameter takes the value θ.

Thus, larger values indicate worse consequences.
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Statistical Decision Theory Introduction

The three main types of inference about θ are

1 point estimation,

2 set estimation,

3 hypothesis testing.

It is a great conceptual and practical simplification that Statistical
Decision Theory distinguishes between these three types simply according
to their decision spaces.

Type of inference Decision space D

Point estimation The parameter space, Θ.

Set estimation A set of subsets of Θ.

Hypothesis testing A specified partition of Θ, denoted H.
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Statistical Decision Theory Bayesian statistical decision theory

Bayesian statistical decision theory

In a Bayesian approach, a statistical decision problem [Θ,D, π(θ), L(θ, d)]
has the following ingredients.

1 The possible values of the parameter: Θ, the parameter space.

2 The set of possible decisions: D, the decision space.
3 The probability distribution on Θ, π(θ). For example,

1 this could be a prior distribution, π(θ) = f (θ).
2 this could be a posterior distribution, π(θ) = f (θ | x) following the

receipt of some data x .
3 this could be a posterior distribution π(θ) = f (θ | x , y) following the

receipt of some data x ,y .

4 The loss function L(θ, d).

In this setting, only θ is random and we can calculate the expected loss, or
risk.
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Statistical Decision Theory Bayesian statistical decision theory

Definition (Risk)

The risk of decision d ∈ D under the distribution π(θ) is

ρ(π(θ), d) =

∫

θ
L(θ, d)π(θ) dθ.

We choose d to minimise this risk.

Definition (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a
Bayes rule against π(θ).

The Bayes rule may not be unique, and in weird cases it might not exist.
We solve [Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss

Suppose that Θ ⊂ R and we wish to find a point estimate for θ. We
consider the loss function L(θ, d) = (θ − d)2.

The risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)} = E(π){(θ − d)2}

= E(π)(θ
2)− 2dE(π)(θ) + d2,

where E(π)(·) denotes the expectation with respect to π(θ).

Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d .

So, the Bayes rule is d∗ = E(π)(θ).
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss (continued)

The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ
2)− 2d∗

E(π)(θ) + (d∗)2

= Var(π)(θ) + (d∗ − E(π)(θ))
2

= Var(π)(θ)

where Var(π)(θ) is the variance of θ computed with respect to π(θ).

1 If π(θ) = f (θ), a prior for θ, then the Bayes rule of an immediate
decision is d∗ = E(θ) with corresponding Bayes risk ρ∗ = Var(θ).

2 If we observe sample data x then the Bayes rule given this sample
information is d∗ = E(θ |X ) with corresponding Bayes risk
ρ∗ = Var(θ |X ) as π(θ) = f (θ | x).
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Statistical Decision Theory Bayesian statistical decision theory

Typically we solve:
1 [Θ,D, f (θ), L(θ, d)], the immediate decision problem,
2 [Θ,D, f (θ | x), L(θ, d)], the decision problem after sample information.

We may also want to consider the risk of the sampling procedure,
before observing the sample, to decide whether or not to sample.

We now consider both θ and X as random.

For each possible sample, we need to specify which decision to make.

Definition (Decision rule)

A decision rule δ(x) is a function from X into D,

δ : X → D.

If X = x is the observed value of the sample information then δ(x) is the
decision that will be taken. The collection of all decision rules is denoted
by ∆ so that δ ∈ ∆ ⇒ δ(x) ∈ D ∀x ∈ X .
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Statistical Decision Theory Bayesian statistical decision theory

We wish to solve the problem [Θ,∆, f (θ, x), L(θ, δ(x))].

Definition (Bayes (decision) rule and risk of the sampling procedure)

The decision rule δ∗ is a Bayes (decision) rule exactly when

E{L(θ, δ∗(X ))} ≤ E{L(θ, δ(X ))}

for all δ(x) ∈ D. The corresponding risk ρ∗ = E{L(θ, δ∗(X ))} is termed
the risk of the sampling procedure.

If the sample information consists of X = (X1, . . . ,Xn) then ρ∗ will be
a function of n and so can be used to help determine sample size
choice.
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Statistical Decision Theory Bayesian statistical decision theory

Bayes rule theorem, BRT

Suppose that a Bayes rule exists for [Θ,D, f (θ | x), L(θ, d)]. Then

δ∗(x) = argmin
d∈D

E(L(θ, d) |X = x).

Proof

Let δ be arbitrary. Then

E{L(θ, δ(X ))} =

∫

x

∫

θ
L(θ, δ(x))f (θ, x) dθdx

=

∫

x

∫

θ
L(θ, δ(x))f (θ | x)f (x) dθdx

=

∫

x

{
∫

θ
L(θ, δ(x))f (θ | x) dθ

}

f (x) dx

=

∫

x

E{L(θ, δ(x)) |X}f (x) dx
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Statistical Decision Theory Bayesian statistical decision theory

Proof continued

Now, as f (x) > 0, the δ∗ ∈ ∆ which minimises E{L(θ, δ(X ))} may
equivalently be found as the δ∗ which satisfies

ρ(f (θ), δ∗) = inf
δ(x)∈D

E{L(θ, δ(x)) |X},

giving the result. ✷

The minimisation of expected loss over the space of all functions from
X to D can be achieved by the pointwise minimisation over D of the
expected loss conditional on X = x .

The risk of the sampling procedure is ρ∗ = E[E{L(θ, δ∗(x)) |X}].

Example - quadratic loss

We have δ∗ = E(θ |X ) and ρ∗ = E{Var(θ |X )}.
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Statistical Decision Theory Bayesian statistical decision theory

We could consider ∆, the set of decision rules, to be our possible set of
inferences about θ when the sample is observed so that Ev(E , x) is δ∗(x).
We thus have the following result.

Theorem

The Bayes rule for the posterior decision respects the strong likelihood
principle.

Proof

If we have two Bayesian models with the same prior distribution then if
fX1

(x1 | θ) = c(x1, x2)fX2
(x2 | θ) the corresponding posterior distributions

are the same and so the corresponding Bayes rule (and risk) is the same. ✷
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Statistical Decision Theory Admissible rules

Admissible rules

Bayes rules rely upon a prior distribution for θ: the risk is a function
of d only.

In classical statistics, there is no distribution for θ and so another
approach is needed.

Definition (The classical risk)

For a decision rule δ(x), the classical risk for the model
E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫

X

L(θ, δ(x))fX (x | θ) dx .

The classical risk is thus, for each δ, a function of θ.
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Statistical Decision Theory Admissible rules

Example

Let X = (X1, . . . ,Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that
L(θ, d) = (θ − d)2 and consider a conjugate prior θ ∼ N(µ0, σ

2
0). Possible

decision functions include:

1 δ1(x) = x , the sample mean.

2 δ2(x) = med{x1, . . . , xn} = x̃ , the sample median.

3 δ3(x) = µ0, the prior mean.

4 δ4(x) = µn, the posterior mean where

µn =

(

1

σ2
0

+
n

σ2

)−1 (µ0

σ2
0

+
nx

σ2

)

,

the weighted average of the prior and sample mean accorded to their
respective precisions.

Simon Shaw (University of Bath) Statistical Inference Lecture Three, 17 December 2019 18 / 19



Statistical Decision Theory Admissible rules

Example - continued

The respective classical risks are

1 R(θ, δ1) =
σ2

n
, a constant for θ, since X ∼ N(θ, σ2/n).

2 R(θ, δ2) =
πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n)
(approximately).

3 R(θ, δ3) = (θ − µ0)
2 = σ2

n

(

θ−µ0

σ/
√
n

)2
.

4 R(θ, δ4) =
(

1
σ2
0
+ n

σ2

)−2
{

1
σ2
0

(

θ−µ0

σ0

)2
+ n

σ2

}

.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all
θ ∈ Θ but other comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set
of possible decision rules by ruling out those that are obviously bad.
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