Statistical Inference https://people.bath.ac.uk/masss/APTS/lecture2.pdf

Simon Shaw

University of Bath

Lecture Two, 17 December 2019

3

A 1

Yesterday's lecture

• We wish to consider inferences about a parameter θ given a parametric model $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$

$$(\mathcal{E}, x) \longmapsto \text{Inference about } \theta.$$

- Weak Indifference Principle, WIP: if f_X(x | θ) = f_X(x' | θ) for all θ ∈ Θ then Ev(ε, x) = Ev(ε, x').
- Distribution Principle, DP: if $\mathcal{E} = \mathcal{E}'$, then $Ev(\mathcal{E}, x) = Ev(\mathcal{E}', x)$.
- Transformation Principle, TP: $Ev(\mathcal{E}, x) = Ev(\mathcal{E}^g, g(x))$.
- (DP \wedge TP) \rightarrow WIP.
- Weak Conditionality Principle, WCP: let *E*^{*} be the mixture of *E*₁, *E*₂ according to probabilities *p*₁, *p*₂. Then Ev (*E*^{*}, (*i*, *x_i*)) = Ev(*E_i*, *x_i*).
- Strong Likelihood Principle, SLP: if $f_{X_1}(x_1 | \theta) = c(x_1, x_2) f_{X_2}(x_2 | \theta)$, for some function c > 0 for all $\theta \in \Theta$ then $Ev(\mathcal{E}_1, x_1) = Ev(\mathcal{E}_2, x_2)$.
- Birnbaum's Theorem: (WIP \land WCP) \leftrightarrow SLP.

The Sufficiency Principle

• Recall the idea of sufficiency: if S = s(X) is sufficient for θ then

$$f_X(x \mid \theta) = f_{X \mid S}(x \mid s, \theta) f_S(s \mid \theta)$$

where $f_{X|S}(x | s, \theta)$ does not depend upon θ .

• Consequently, consider the experiment $\mathcal{E}^{S} = \{s(\mathcal{X}), \Theta, f_{S}(s \mid \theta)\}.$

Principle 6: Strong Sufficiency Principle, SSP

If S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ then $\mathsf{Ev}(\mathcal{E}, x) = \mathsf{Ev}(\mathcal{E}^S, s(x)).$

Principle 7: Weak Sufficiency Principle, WSP

If S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x | \theta)\}$ and s(x) = s(x') then $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$.

- 3

イロト イポト イヨト イヨト

Theorem

 $\mathsf{SLP} \to \mathsf{SSP} \to \mathsf{WSP} \to \mathsf{WIP}.$

Proof

As *s* is sufficient, $f_X(x | \theta) = cf_S(s | \theta)$ where $c = f_{X|S}(x | s, \theta)$ does not depend on θ . Applying the SLP, $Ev(\mathcal{E}, x) = Ev(\mathcal{E}^S, s(x))$ which is the SSP. Note, that from the SSP,

$$Ev(\mathcal{E}, x) = Ev(\mathcal{E}^{S}, s(x)) \quad (by \text{ the SSP})$$

= $Ev(\mathcal{E}^{S}, s(x')) \quad (as s(x) = s(x'))$
= $Ev(\mathcal{E}, x') \quad (by \text{ the SSP})$

We thus have the WSP. Finally, if $f_X(x | \theta) = f_X(x' | \theta)$ as in the statement of WIP then s(x) = x' is sufficient for x. Hence, from the WSP, $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$ giving the WIP.

A D N A B N A B N A B N

If we put together the last two theorems, we get the following corollary.

Corollary

 $(WIP \land WCP) \rightarrow SSP.$

Proof

From Birnbaum's theorem, (WIP \wedge WCP) \leftrightarrow SLP and from the previous theorem, SLP \rightarrow SSP.

- Birnbaum's (1962) original result combined sufficiency and conditionality for the likelihood but he revised this to the WIP and WCP in later work.
- One advantage of this is that it reduces the dependency on sufficiency: Pitman-Koopman-Darmois Theorem states that sufficiency more-or-less characterises the exponential family.

< □ > < □ > < □ > < □ > < □ > < □ >

Stopping rules

- Consider observing a sequence of random variables X_1, X_2, \ldots where the number of observations is not fixed in advance but depends on the values seen so far.
 - ► At time *j*, the decision to observe X_{j+1} can be modelled by a probability p_j(x₁,..., x_j).
 - We assume, resources being finite, that the experiment must stop at specified time *m*, if it has not stopped already, hence $p_m(x_1, \ldots, x_m) = 0$.
- The stopping rule may then be denoted as $\tau = (p_1, \dots, p_m)$. This gives an experiment \mathcal{E}^{τ} with, for $n = 1, 2, \dots, f_n(x_1, \dots, x_n | \theta)$ where consistency requires that

$$f_n(x_1,\ldots,x_n \mid \theta) = \sum_{x_{n+1}} \cdots \sum_{x_m} f_m(x_1,\ldots,x_n,x_{n+1},\ldots,x_m \mid \theta).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation for the stopping rule principle (Basu, 1975)

- Consider four different coin-tossing experiments (with some finite limit on the number of tosses).
 - \mathcal{E}_1 Toss the coin exactly 10 times;
 - \mathcal{E}_2 Continue tossing until 6 heads appear;
 - \mathcal{E}_3 Continue tossing until 3 consecutive heads appear;
 - \mathcal{E}_4 Continue tossing until the accumulated number of heads exceeds that of tails by exactly 2.
- Suppose that all four experiments have the same outcome x = (T,H,T,T,H,H,T,H,H).
- We may feel that the evidence for θ , the probability of heads, is the same in every case.
 - Once the sequence of heads and tails is known, the intentions of the original experimenter (i.e. the experiment she was doing) are immaterial to inference about the probability of heads.
 - The simplest experiment \mathcal{E}_1 can be used for inference.

- 4 回 ト - 4 回 ト

Principle 8: Stopping Rule Principle, SRP

^a In a sequential experiment \mathcal{E}^{τ} , $Ev(\mathcal{E}^{\tau}, (x_1, \ldots, x_n))$ does not depend on the stopping rule τ .

^aBasu (1975) claims the SRP is due to George Barnard (1915-2002)

- If it is accepted, the SRP is nothing short of revolutionary.
- It implies that the intentions of the experimenter, represented by τ , are irrelevant for making inferences about θ , once the observations (x_1, \ldots, x_n) are known.
- Once the data is observed, we can ignore the sampling plan.
- The statistician could proceed as though the simplest possible stopping rule were in effect, which is p₁ = ··· = p_{n-1} = 1 and p_n = 0, an experiment with n fixed in advance, Eⁿ = {X_{1:n}, Θ, f_n(x_{1:n} | θ)}.
- Can the SRP possibly be justified? Indeed it can.

イロト 不得 トイラト イラト 一日

Theorem

 $\mathsf{SLP} \to \mathsf{SRP}.$

Proof

Let τ be an arbitrary stopping rule, and consider the outcome (x_1, \ldots, x_n) , which we will denote as $x_{1:n}$.

- We take the first observation with probability one.
- For j = 1, ..., n 1, the (j + 1)th observation is taken with probability $p_j(x_{1:j})$.
- We stop after the *n*th observation with probability $1 p_n(x_{1:n})$. Consequently, the probability of this outcome under τ is

$$f_{\tau}(x_{1:n} | \theta) = f_{1}(x_{1} | \theta) \left\{ \prod_{j=1}^{n-1} p_{j}(x_{1:j}) f_{j+1}(x_{j+1} | x_{1:j}, \theta) \right\} (1 - p_{n}(x_{1:n}))$$

3

A D N A B N A B N A B N

Proof continued

$$f_{\tau}(x_{1:n} | \theta) = \left\{ \prod_{j=1}^{n-1} p_j(x_{1:j}) \right\} (1 - p_n(x_{1:n})) f_1(x_1 | \theta) \prod_{j=2}^n f_j(x_j | x_{1:(j-1)}, \theta) \\ = \left\{ \prod_{j=1}^{n-1} p_j(x_{1:j}) \right\} (1 - p_n(x_{1:n})) f_n(x_{1:n} | \theta).$$

Now observe that this equation has the form

$$f_{\tau}(x_{1:n} | \theta) = c(x_{1:n}) f_n(x_{1:n} | \theta)$$
 (1)

where $c(x_{1:n}) > 0$. Thus the SLP implies that $Ev(\mathcal{E}^{\tau}, x_{1:n}) = Ev(\mathcal{E}^{n}, x_{1:n})$ where $\mathcal{E}^{n} = \{\mathcal{X}_{1:n}, \Theta, f_{n}(x_{1:n} | \theta)\}$. Since the choice of stopping rule was arbitrary, equation (1) holds for all stopping rules, showing that the choice of stopping rule is irrelevant.

Simon Shaw (University of Bath)

10 / 13

A comment from Leonard Jimmie Savage (1917-1971), one of the great statisticians of the Twentieth Century, captured the revolutionary and transformative nature of the SRP.

May I digress to say publicly that I learned the stopping rule principle from Professor Barnard, in conversation in the summer of 1952. Frankly, I then thought it a scandal that anyone in the profession could advance an idea so patently wrong, even as today I can scarcely believe that some people resist an idea so patently right. (Savage et al., 1962, p76)

• We'll omit the section "A stronger form of the WCP" which looks at an extension of the WCP.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Likelihood Principle in practice

• We consider whether there is any inferential approach which respects the SLP? Or do all inferential approaches respect it?

A Bayesian statistical model is the collection

 $\mathcal{E}_B = \{\mathcal{X}, \Theta, f_X(x \mid \theta), \pi(\theta)\}.$

The posterior distribution is $\pi(\theta | x) = c(x)f_X(x | \theta)\pi(\theta)$ where c(x) is the normalising constant,

$$c(x) = \left\{ \int_{\Theta} f_X(x \mid heta) \pi(heta) \, d heta
ight\}^{-1}.$$

- All knowledge about θ given the data x are represented by $\pi(\theta | x)$.
- Any inferences made about θ are derived from this distribution.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Consider two Bayesian models with the same prior distribution, $\mathcal{E}_{B,1} = \{\mathcal{X}_1, \Theta, f_{X_1}(x_1 \mid \theta), \pi(\theta)\}$ and $\mathcal{E}_{B,2} = \{\mathcal{X}_2, \Theta, f_{X_2}(x_2 \mid \theta), \pi(\theta)\}$
- Suppose that $f_{X_1}(x_1 | \theta) = c(x_1, x_2) f_{X_2}(x_2 | \theta)$. Then

 $\pi(\theta | x_1) = c(x_1) f_{X_1}(x_1 | \theta) \pi(\theta) = c(x_1) c(x_1, x_2) f_{X_2}(x_2 | \theta) \pi(\theta) \\ = \pi(\theta | x_2)$

- Hence, the posterior distributions are the same. Consequently, the same inferences are drawn from either model and so the Bayesian approach satisfies the SLP.
- This assumes that $\pi(\theta)$ does not depend upon the form of the data.
- Some methods for making default choices for $\pi(\theta)$ depend on $f_X(x | \theta)$, notably Jeffreys priors and reference priors. These methods violate the SLP.

13/13