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Principles for Statistical Inference BRESINGEVENEEHITE

Yesterday's lecture
@ We wish to consider inferences about a parameter 6 given a
parametric model £ = {X, 0, fx(x|0)}

statistician, Ev
E, x) Inference about 6.

e Weak Indifference Principle, WIP: if fx(x|0) = fx(x"|0) for all § € ©

then Ev(&, x) = Ev(E, X).

Distribution Principle, DP: if £ = &', then Ev(&, x) = Ev(&’, x).

Transformation Principle, TP: Ev(&, x) = Ev(E&, g(x)).

(DPATP) — WIP.

Weak Conditionality Principle, WCP: let £* be the mixture of &1, &

according to probabilities p1, po. Then Ev(E, (i, x;)) = Ev(&;, xi).

e Strong Likelihood Principle, SLP: if fx, (x1 |€) = c(x1, x2)fx,(x2 | 6),
for some function ¢ > 0 for all # € © then Ev(&1, x1) = Ev(&2, x2).

@ Birnbaum'’s Theorem: (WIP A WCP ) <» SLP.
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MR el
The Sufficiency Principle

o Recall the idea of sufficiency: if S = s(X) is sufficient for ¢ then
fx(x[0) = fxs(x|s,0)fs(s|0)

where fx|s(x|s, ) does not depend upon 6.

o Consequently, consider the experiment £° = {s(X), 0, fs(s|6)}.

Principle 6: Strong Sufficiency Principle, SSP

If S = s(X) is a sufficient statistic for £ = {X,©, fx(x|6)} then
Ev(E, x) = Ev(E°, 5(x)).

Principle 7: Weak Sufficiency Principle, WSP

If S = s(X) is a sufficient statistic for £ = {X,©, fx(x|6)} and
s(x) = s(x’) then Ev(&, x) = Ev(&, X').
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Theorem
SLP — SSP — WSP — WIP.

Proof
As s is sufficient, fx(x | 0) = cfs(s|0) where ¢ = fx|s(x|s,0) does not

depend on 6. Applying the SLP, Ev(€, x) = Ev(£°, 5(x)) which is the SSP.
Note, that from the SSP,

Ev(E,x) = Ev(E°,s(x))  (by the SSP)
— EW(ES,s(x)) (a5 s(x) = s(x"))
Ev(&, x") (by the SSP)
We thus have the WSP. Finally, if fx(x |6) = fx(x’| ) as in the statement

of WIP then s(x) = x’ is sufficient for x. Hence, from the WSP,
Ev(&, x) = Ev(&, x') giving the WIP. O

v
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If we put together the last two theorems, we get the following corollary.

Corollary
(WIP A WCP) — SSP.

Proof

From Birnbaum's theorem, (WIP A WCP ) <» SLP and from the previous
theorem, SLP — SSP. O

v

@ Birnbaum'’s (1962) original result combined sufficiency and
conditionality for the likelihood but he revised this to the WIP and
WCP in later work.

@ One advantage of this is that it reduces the dependency on
sufficiency: Pitman-Koopman-Darmois Theorem states that
sufficiency more-or-less characterises the exponential family.
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Stopping rules

@ Consider observing a sequence of random variables X1, X5, ... where
the number of observations is not fixed in advance but depends on
the values seen so far.

> At time j, the decision to observe Xj,1 can be modelled by a
probability pj(x1,...,x;).

» We assume, resources being finite, that the experiment must stop at
specified time m, if it has not stopped already, hence

Pm(X1s -y Xm) = 0.
@ The stopping rule may then be denoted as 7 = (p1,..., pm). This
gives an experiment £7 with, for n =1,2,..., fo(x1,...,x,|0) where
consistency requires that

fa(x1,...,xn|0) = Z---Zfm(xl,...,xn,xn+1,...xm|9).

Xn+1 Xm
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Motivation for the stopping rule principle (Basu, 1975)

e Consider four different coin-tossing experiments (with some finite
limit on the number of tosses).
&1 Toss the coin exactly 10 times;
&> Continue tossing until 6 heads appear;
&3 Continue tossing until 3 consecutive heads appear;
&, Continue tossing until the accumulated number of heads exceeds that

of tails by exactly 2.
@ Suppose that all four experiments have the same outcome
x=(T,HTTHHTHHH).
@ We may feel that the evidence for 6, the probability of heads, is the
same in every case.
» Once the sequence of heads and tails is known, the intentions of the
original experimenter (i.e. the experiment she was doing) are

immaterial to inference about the probability of heads.
» The simplest experiment £ can be used for inference.
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Principle 8: Stopping Rule Principle, SRP

? In a sequential experiment €7, Ev(E7, (x1, ..., Xn)) does not depend on
the stopping rule 7.

“Basu (1975) claims the SRP is due to George Barnard (1915-2002)

o If it is accepted, the SRP is nothing short of revolutionary.

@ It implies that the intentions of the experimenter, represented by 7,
are irrelevant for making inferences about 6, once the observations
(x1,...,xn) are known.

@ Once the data is observed, we can ignore the sampling plan.

@ The statistician could proceed as though the simplest possible
stopping rule were in effect, whichis py =--- = p,_1 =1 and p, =0,
an experiment with n fixed in advance, £" = {X7.,,©, fy(x1., | 0)}.

@ Can the SRP possibly be justified? Indeed it can.
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Theorem
SLP — SRP.

Proof

Let 7 be an arbitrary stopping rule, and consider the outcome (xi, . .
which we will denote as xj.,.

@ We take the first observation with probability one.

@ Forj=1,...,n—1, the (j + 1)th observation is taken with
probability pj(x1.j).
e We stop after the nth observation with probability 1 — p,(x1:5).

Consequently, the probability of this outcome under 7 is

fr(xin0) = f(x]0) H pi(x1j) fi+1(X41 | X135, 0) ¢ (L — pn(x1:n))

s Xn),
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Proof continued

n—1
f(an0) = [ pilay) ¢ (1= palxan)) filxa |60) H (% [ x1:(-1), 0)
Jj=1 j=2

= S [Ipitay) p (0= po(xan)) fa(xan | 60).
j=1

Now observe that this equation has the form
ﬁr(Xl:n | ‘9) = C(Xl:n)fn(xl:n | 0) (1)

where ¢(xi.5) > 0. Thus the SLP implies that Ev(E™, x1.,) = Ev(E", x1.p)
where " = {X1.,,©, fy(x1:n | ) }. Since the choice of stopping rule was
arbitrary, equation (1) holds for all stopping rules, showing that the choice
of stopping rule is irrelevant. O

v
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A comment from Leonard Jimmie Savage (1917-1971), one of the great
statisticians of the Twentieth Century, captured the revolutionary and

transformative nature of the SRP.
May | digress to say publicly that | learned the stopping rule prin-

ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, | then thought it a scandal that anyone in the pro-
fession could advance an idea so patently wrong, even as today
| can scarcely believe that some people resist an idea so patently
right. (Savage et al., 1962, p76)

o We'll omit the section " A stronger form of the WCP" which looks at
an extension of the WCP.
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The Likelihood Principle in practice

@ We consider whether there is any inferential approach which respects
the SLP? Or do all inferential approaches respect it?

A Bayesian statistical model is the collection
gB — {Xa 97 fX(X ‘ 9)7 71—(0)}

The posterior distribution is (60 | x) = c(x)fx(x | 0)m(6) where c(x) is the
normalising constant,

cx) = { /@ fx(x\0)7r(9)d0}_l.

o All knowledge about 6 given the data x are represented by (€ | x).

@ Any inferences made about 6 are derived from this distribution.

Simon Shaw (University of Bath) Statistical Inference Lecture Two, 17 December 2019 12/13



AT EER @S S NN The Likelihood Principle in practice

@ Consider two Bayesian models with the same prior distribution,
5371 = {Xl, @, le(Xl ‘ 9),71’(9)} and 5372 = {Xg, @, fXg(X2 | 9), 7T(9)}
@ Suppose that le (X1 | 9) = C(Xl,Xz)fX2(X2 | 9) Then

m(0]x1) = cla)i(al0)m(0) = cla)elxa, x2)fx, (x2[0)7(0)
= 7T(9|X2)

@ Hence, the posterior distributions are the same. Consequently, the
same inferences are drawn from either model and so the Bayesian
approach satisfies the SLP.

@ This assumes that 7(6) does not depend upon the form of the data.

@ Some methods for making default choices for 7(6) depend on
fx(x|0), notably Jeffreys priors and reference priors. These methods
violate the SLP.
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