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Principles for Statistical Inference Introduction

Introduction
We wish to consider inferences about a parameter θ given a
parametric model

E = {X ,Θ, fX (x | θ)}.

We assume that the model is true so that only θ ∈ Θ is unknown. We
wish to learn about θ from observations x (typically, vector valued) so
that E represents a model for this experiment.

Smith (2010) considers that there are three players in an inference
problem:

1 Client: person with the problem

2 Statistician: employed by the client to help solve the problem

3 Auditor: hired by the client to check the statistician’s work

The statistician is thus responsible for explaining the rationale behind the
choice of inference in a compelling way.
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Principles for Statistical Inference Reasoning about inferences

Reasoning about inferences

We consider a series of statistical principles to guide the way to learn
about θ. The principles are meant to be either self-evident or logical
implications of principles which are self-evident.
We shall assume that X is finite: Basu (1975) argues that “infinite and
continuous models are to be looked upon as mere approximations to the
finite realities.”

Inspiration of Allan Birnbaum (1923-1976) to see how to construct
and reason about statistical principles given “evidence” from data.

The model E = {X ,Θ, fX (x | θ)} is accepted as a working hypothesis.

How the statistician chooses her inference statements about the true
value θ is entirely down to her and her client.

I as a point or a set in Θ;
I as a choice among alternative sets or actions;
I or maybe as some more complicated, not ruling out visualisations.
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Principles for Statistical Inference Reasoning about inferences

Following Dawid (1977), consider that the statistician defines, a
priori, a set of possible inferences about θ

Task is to choose an element of this set based on E and x .

The statistician should see herself as a function Ev: a mapping from
(E , x) into a predefined set of inferences about θ.

(E , x) � statistician, Ev
// Inference about θ.

For example, Ev(E , x) might be:
I the maximum likelihood estimator of θ
I a 95% confidence interval for θ

Birnbaum called E the experiment, x the outcome, and Ev the
evidence.
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Principles for Statistical Inference Reasoning about inferences

Note:

1 There can be different experiments with the same θ.

2 Under some outcomes, we would agree that it is self-evident that
these different experiments provide the same evidence about θ.

Example

Consider two experiments with the same θ.

1 X ∼ Bin(n, θ), so we observe x successes in n trials.

2 Y ∼ NBin(r , θ), so we observe the rth success in the y th trial.

If we observe x = r and y = n, do we make the same inference about θ in
each case?
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Principles for Statistical Inference Reasoning about inferences

Consider two experiments E1 = {X1,Θ, fX1(x1 | θ)} and
E2 = {X2,Θ, fX2(x2 | θ)}.

Equivalence of evidence (Basu, 1975)

The equality or equivalence of Ev(E1, x1) and Ev(E2, x2) means that:

1 E1 and E2 are related to the same parameter θ.

2 Everything else being equal, the outcome x1 from E1 warrants the
same inference about θ as does the outcomes x2 from E2.

We now consider constructing statistical principles and demonstrate
how these principles imply other principles.

These principles all have the same form: under such and such
conditions, the evidence about θ should be the same.

Thus they serve only to rule out inferences that satisfy the conditions
but have different evidences. They do not tell us how to do an
inference, only what to avoid.
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Principles for Statistical Inference The principle of indifference

The principle of indifference

Principle 1: Weak Indifference Principle, WIP

Let E = {X ,Θ, fX (x | θ)}. If fX (x | θ) = fX (x ′ | θ) for all θ ∈ Θ then
Ev(E , x) = Ev(E , x ′).

We are indifferent between two models of evidence if they differ only
in the manner of the labelling of sample points.

If X = (X1, . . . ,Xn) where the Xi s are a series of independent
Bernoulli trials with parameter θ then fX (x | θ) = fX (x ′ | θ) if x and x ′

contain the same number of successes.
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Principles for Statistical Inference The principle of indifference

Principle 2: Distribution Principle, DP

If E = E ′, then Ev(E , x) = Ev(E ′, x).

Informally, (Dawid, 1977), only aspects of an experiment which are
relevant to inference are the sample space and the family of
distributions over it.

Principle 3: Transformation Principle, TP

Let E = {X ,Θ, fX (x | θ)}. For the bijective g : X → Y, let
Eg = {Y,Θ, fY (y | θ)}, the same experiment as E but expressed in terms
of Y = g(X ), rather than X . Then Ev(E , x) = Ev(Eg , g(x)).

Inferences should not depend on the way in which the sample space is
labelled, for example, X or X−1.
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Principles for Statistical Inference The principle of indifference

Theorem

(DP ∧ TP )→WIP.

Proof

Fix E , and suppose that x , x ′ ∈ X satisfy fX (x | θ) = fX (x ′ | θ) for all
θ ∈ Θ, as in the condition of the WIP.
Let g : X → X be the function which switches x for x ′, but leaves all of
the other elements of X unchanged. Then E = Eg and

Ev(E , x ′) = Ev(Eg , x ′) [by the DP]

= Ev(Eg , g(x))

= Ev(E , x), [by the TP]

which gives the WIP. 2
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Principles for Statistical Inference The Likelihood Principle

The Likelihood Principle
Consider experiments Ei = {Xi ,Θ, fXi

(xi | θ)}, i = 1, 2, . . ., where the
parameter space Θ is the same for each experiment.

Let p1, p2, . . . be a set of known probabilities so that pi ≥ 0 and∑
i pi = 1.

Mixture experiment

The mixture E∗ of the experiments E1, E2, . . . according to mixture
probabilities p1, p2, . . . is the two-stage experiment

1 A random selection of one of the experiments: Ei is selected with
probability pi .

2 The experiment selected in stage 1. is performed.

Thus, each outcome of the experiment E∗ is a pair (i , xi ), where
i = 1, 2, . . . and xi ∈ Xi , and family of distributions

f ∗((i , xi ) | θ) = pi fXi
(xi | θ).
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Principles for Statistical Inference The Likelihood Principle

Principle 4: Weak Conditionality Principle, WCP

Let E∗ be the mixture of the experiments E1, E2 according to mixture
probabilities p1, p2 = 1− p1. Then Ev (E∗, (i , xi )) = Ev(Ei , xi ).

The WCP says that inferences for θ depend only on the experiment
performed and not which experiments could have been performed.

Suppose that Ei is randomly chosen with probability pi and xi is
observed.

The WCP states that the same evidence about θ would have been
obtained if it was decided non-randomly to perform Ei from the
beginning and xi is observed.
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Principles for Statistical Inference The Likelihood Principle

Principle 5: Strong Likelihood Principle, SLP

Let E1 and E2 be two experiments which have the same parameter θ. If
x1 ∈ X1 and x2 ∈ X2 satisfy fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ), that is

LX1(θ; x1) = c(x1, x2)LX2(θ; x2)

for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

The SLP states that if two likelihood functions for the same
parameter have the same shape, then the evidence is the same.

A corollary of the SLP, obtained by setting E1 = E2 = E , is that
Ev(E , x) should depend on E and x only through LX (θ; x).
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Principles for Statistical Inference The Likelihood Principle

Many classical statistical procedures violate the SLP and the following
result was something of the bombshell, when it first emerged in the 1960s.
The following form is due to Birnbaum (1972) and Basu (1975)

Birnbaum’s Theorem

(WIP ∧WCP )↔ SLP.

Proof

Both SLP→WIP and SLP→WCP are straightforward. The trick is to
prove (WIP ∧WCP )→ SLP.
Let E1 and E2 be two experiments which have the same parameter, and
suppose that x1 ∈ X1 and x2 ∈ X2 satisfy fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ)
where the function c > 0. As the value c is known (as the data has been
observed) then consider the mixture experiment with p1 = 1/(1 + c) and
p2 = c/(1 + c).
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Principles for Statistical Inference The Likelihood Principle

Proof continued

f ∗((1, x1) | θ) =
1

1 + c
fX1(x1 | θ) =

c

1 + c
fX2(x2 | θ) = f ∗((2, x2) | θ)

Then the WIP implies that

Ev (E∗, (1, x1)) = Ev (E∗, (2, x2)) .

Applying the WCP to each side we infer that

Ev(E1, x1) = Ev(E2, x2),

as required. 2

Thus, either I accept the SLP, or I explain which of the two principles,
WIP and WCP, I refute. Methods, which include many classical
procedures, which violate the SLP face exactly this challenge.
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