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Statistical Decision Theory Overview of Lecture Four

Overview of Lecture Four
Last time, Bayesian statistical decision problem, [Θ,D, π(θ), L(θ, d)].

The risk of decision d ∈ D under the distribution π(θ) is
ρ(π(θ), d) =

∫
θ L(θ, d)π(θ) dθ.

A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes rule.
The Bayes rule for the posterior decision respects the SLP.

Today, we’ll look at decision theory from a classical perspective.

The classical risk for the model E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫
X
L(θ, δ(x))fX (x | θ) dx .

A decision rule δ0 is admissible if there is no decision rule δ1 which
dominates it.
Wald’s Complete Class Theorem, CCT: a decision rule is admissible if
and only if it is a Bayes rule for some prior distribution.
Admissible decision rules respect the SLP.
Loss functions for point estimation, set estimation and hypothesis
testing.
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Statistical Decision Theory Admissible rules

Example

Let X = (X1, . . . ,Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that
L(θ, d) = (θ − d)2 and consider a conjugate prior θ ∼ N(µ0, σ

2
0). Possible

decision functions include:

1 δ1(x) = x , the sample mean.

2 δ2(x) = med{x1, . . . , xn} = x̃ , the sample median.

3 δ3(x) = µ0, the prior mean.

4 δ4(x) = µn, the posterior mean where

µn =

(
1

σ2
0

+
n

σ2

)−1(µ0

σ2
0

+
nx

σ2

)
,

the weighted average of the prior and sample mean accorded to their
respective precisions.
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Statistical Decision Theory Admissible rules

Example - continued

The respective classical risks are

1 R(θ, δ1) = σ2

n , a constant for θ, since X ∼ N(θ, σ2/n).

2 R(θ, δ2) = πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n)
(approximately).

3 R(θ, δ3) = (θ − µ0)2 = σ2
0

(
θ−µ0
σ0

)2
.

4 R(θ, δ4) =
(

1
σ2

0
+ n

σ2

)−2
{

1
σ2

0

(
θ−µ0
σ0

)2
+ n

σ2

}
.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all
θ ∈ Θ but other comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set
of possible decision rules by ruling out those that are obviously bad.
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Statistical Decision Theory Admissible rules

Definition (Admissible decision rule)

A decision rule δ0 is inadmissible if there exists a decision rule δ1 which
dominates it, that is

R(θ, δ1) ≤ R(θ, δ0)

for all θ ∈ Θ with R(θ, δ1) < R(θ, δ0) for at least one value θ0 ∈ Θ. If no
such δ1 exists then δ0 is admissible.

If δ0 is dominated by δ1 then the classical risk of δ0 is never smaller
than that of δ1 and δ1 has a smaller risk for θ0.

Thus, you would never want to use δ0.1

The accepted approach is to reduce the set of possible decision rules
under consideration by only using admissible rules.

1Here I am assuming that all other considerations are the same in the two cases: e.g.
for all x ∈ X , δ1(x) and δ0(x) take about the same amount of resource to compute.
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Statistical Decision Theory Admissible rules

We now show that admissible rules can be related to a Bayes rule δ∗

for a prior distribution π(θ).

Theorem

If a prior distribution π(θ) is strictly positive for all Θ with finite Bayes risk
and the classical risk, R(θ, δ), is a continuous function of θ for all δ, then
the Bayes rule δ∗ is admissible.

Proof (Robert, 2007)

Letting f (θ, x) = fX (x | θ)π(θ) we have

E{L(θ, δ(X ))} =

∫
x

∫
θ
L(θ, δ(x))f (θ, x) dθdx

=

∫
θ

{∫
x
L(θ, δ(x))fX (x | θ) dx

}
π(θ) dθ

=

∫
θ
R(θ, δ)π(θ) dθ
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Statistical Decision Theory Admissible rules

Proof continued

Suppose that the Bayes rule δ∗ is inadmissible and dominated by δ1.

Thus, in an open set C of θ, R(θ, δ1) < R(θ, δ∗) with
R(θ, δ1) ≤ R(θ, δ∗) elsewhere.

Consequently, E{L(θ, δ1(X ))} < E{L(θ, δ∗(X ))} which is a
contradiction to δ∗ being the Bayes rule. 2

The relationship between a Bayes rule with prior π(θ) and an
admissible decision rule is even stronger.

The following result was derived by Abraham Wald (1902-1950)

Wald’s Complete Class Theorem, CCT

In the case where the parameter space Θ and sample space X are finite, a
decision rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π(θ) with strictly positive values.

Simon Shaw (University of Bath) Statistical Inference Lecture Four APTS, 13-16 December 2022 7 / 28

https://en.wikipedia.org/wiki/Abraham_Wald


Statistical Decision Theory Admissible rules

An illuminating blackboard proof of this result can be found in Cox
and Hinkley (1974, Section 11.6).

There are generalisations of this theorem to non-finite decision sets,
parameter spaces, and sample spaces but the results are highly
technical.

We’ll proceed assuming the more general result, which is that a
decision rule is admissible if and only if it is a Bayes rule for some
prior distribution π(θ), which holds for practical purposes.

So what does the CCT say?

1 Admissible decision rules respect the SLP. This follows from the fact
that admissible rules are Bayes rules which respect the SLP. This
provides support for using admissible decision rules.

2 If you select a Bayes rule according to some positive prior distribution
π(θ) then you cannot ever choose an inadmissible decision rule.
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Statistical Decision Theory Point estimation

Point estimation

We now look at possible choices of loss functions for different types of
inference.

For point estimation the decision space is D = Θ, and the loss
function L(θ, d) represents the (negative) consequence of choosing d
as a point estimate of θ.

It will not be often that an obvious loss function L : Θ×Θ→ R
presents itself. There is a need for a generic loss function which is
acceptable over a wide range of applications.

Suppose that Θ is a convex subset of Rp. A natural choice is a convex loss
function,

L(θ, d) = h(d − θ)

where h : Rp → R is a smooth non-negative convex function with
h(0) = 0.
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Statistical Decision Theory Point estimation

This type of loss function asserts that small errors are much more
tolerable than large ones.

One possible further restriction is that h is an even function,
h(d − θ) = h(θ − d).

In this case, L(θ, θ + ε) = L(θ, θ − ε) so that under-estimation incurs
the same loss as over-estimation.

We saw previously, that for quadratic loss Θ ⊂ R, L(θ, d) = (θ − d)2,
the Bayes rule was the expectation of π(θ). As we will see, this
attractive feature can be extended to more dimensions.

There are many situations where this is not appropriate and the loss
function should be asymmetric and a generic loss function should be
replaced by a more specific one.
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Statistical Decision Theory Point estimation

The bilinear loss function for Θ ⊂ R is, for α, β > 0,

L(θ, d) =

{
α(θ − d) if d ≤ θ,
β(d − θ) if d ≥ θ.

The Bayes rule is a α
α+β -fractile of π(θ).

If α = β = 1 then L(θ, d) = |θ − d |, the absolute loss which gives a
Bayes rule of the median of π(θ).

|θ − d | is smaller that (θ − d)2 for |θ − d | > 1 and so absolute loss is
smaller than quadratic loss for large deviations. Thus, it takes less
account of the tails of π(θ) leading to the choice of the median.

If α > β, so α
α+β > 0.5, then under-estimation is penalised more than

over-estimation and so that Bayes rule is more likely to be an
over-estimate.
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Statistical Decision Theory Point estimation

Example

If Θ ∈ Rp, the Bayes rule δ∗ associated with the distribution π(θ) and the
quadratic loss

L(θ, d) = (d − θ)TQ (d − θ)

is the expectation E(π)(θ) for every positive-definite symmetric p × p
matrix Q.

Example (Robert, 2007), Q = Σ−1

Suppose X ∼ Np(θ,Σ) where the known variance matrix Σ is diagonal
with elements σ2

i for each i . Then D = Rp. A possible loss function is

L(θ, d) =

p∑
i=1

(
di − θi
σi

)2

so that the total loss is the sum of the squared component-wise errors.
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Statistical Decision Theory Point estimation

As the Bayes rule for L(θ, d) = (d − θ)TQ (d − θ) does not depend
upon Q, it is the same for an uncountably large class of loss functions.

If we apply the Complete Class Theorem to this result we see that for
quadratic loss, a point estimator for θ is admissible if and only if it is
the conditional expectation with respect to some positive prior
distribution π(θ).

The value, and interpretability, of the quadratic loss can be further
observed by noting that, from a Taylor series expansion, an even,
differentiable and strictly convex loss function can be approximated by
a quadratic loss function.
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Statistical Decision Theory Point estimation

Stein’s Example

Let X = (X1, . . . ,Xp)T , θ = (θ1, . . . , θp)T for p ≥ 3.

Suppose that X | θ ∼ Np(θ, Ip) where Ip is the p × p identity matrix.

Thus, given θ, the Xi s are independent N(θi , 1).

For a single observation X = x the maximum likelihood estimate is
δ0(x) = x = (x1, . . . , xp)T . This is unbiased.

For quadratic loss L(θ, d) = (θ − d)T (θ − d) the classical risk of δ0 is

R(θ, δ0) = E[L(θ, δ0(X )) | θ]

=

p∑
i=1

E[(θi − Xi )
2 | θ]

=

p∑
i=1

Var(Xi | θ) = p.

We’ll show that δ0 is inadmissible.
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Statistical Decision Theory Point estimation

Consider the set of James-Stein estimators

δa(X ) =
(

1− a

XTX

)
X

for a ≥ 0 (a = 0 gives δ0(X ) = X ) which, for a > 0, are biased.

For quadratic loss the classical risk of δa is

R(θ, δa) = E[(θ − δa(X ))T (θ − δa(X )) | θ]

= E

[(
(θ − X ) +

aX

XTX

)T (
(θ − X ) +

aX

XTX

) ∣∣∣∣∣ θ
]

= E[(θ − X )T (θ − X ) | θ] + a2E
[

1

XTX

∣∣∣∣ θ]
−2aE

[
XT (X − θ)

XTX

∣∣∣∣ θ]
= R(θ, δ0) + a2E

[
1

XTX

∣∣∣∣ θ]− 2a

p∑
i=1

E
[
Xi (Xi − θi )

XTX

∣∣∣∣ θ]
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Statistical Decision Theory Point estimation

Stein’s Lemma states that for X | θ ∼ Np(θ, Ip) and g(X ) a suitably
behaved real valued function

E(g(X )(Xi − θi ) | θ) = E
[
∂g(X )

∂Xi

∣∣∣∣ θ] .
Using this result we can show that

p∑
i=1

E
[

Xi

XTX
(Xi − θi )

∣∣∣∣ θ] = (p − 2)E
[

1

XTX

∣∣∣∣ θ]
so that

R(θ, δa) = R(θ, δ0) + (a2 − 2a(p − 2))E
[

1

XTX

∣∣∣∣ θ].
Now, XTX ≥ 0 so that E[1/XTX | θ] ≥ 0 (actually positive) and
thus if a2 − 2a(p − 2) < 0 then R(θ, δa) < R(θ, δ0).

Hence, if 0 < a < 2(p − 2) (exists as p ≥ 3) then δ0 is inadmissible.
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Statistical Decision Theory Point estimation

Note that a = p − 2 minimises R(θ, δa)

The ith term of δa(X ) =
(
1− a

XTX

)
X is

(
1− a

XTX

)
Xi and so

depends on all X1, . . . ,Xp even though the Xi s are independent.

This outcome, often called Stein’s Paradox, can be shown to occur in
many situations when comparing three or more populations.

It occurs because the loss function is dealing with simultaneous
estimation of all parameters and so is an on average property.

Note that δa shrinks some of the estimates towards 0 and this idea -
using shrinkage to reduce variance (at the expense of introducing
bias) - is widely used in statistics.

The inadmissible δ0 means that I can’t find a proper prior for which
δ0 is the Bayes rule (in this case, it’s essentially the Bayes rule of an
improper uniform).
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Statistical Decision Theory Set estimation

Set estimation

For set estimation the decision space is a set of subsets of Θ so that
each d ⊂ Θ.

There are two contradictory requirements for set estimators of Θ.
1 We want the sets to be small.
2 We also want them to contain θ.

A simple way to represent these two requirements is to consider the
loss function

L(θ, d) = |d |+ κ(1− 1θ∈d)

for some κ > 0 where |d | is the volume of d .

The value of κ controls the trade-off between the two requirements.
I If κ ↓ 0 then minimising the expected loss will always produce the

empty set.
I If κ ↑ ∞ then minimising the expected loss will always produce Θ.
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Statistical Decision Theory Set estimation

For loss functions of the form L(θ, d) = |d |+ κ(1− 1θ∈d) we’ll show
there is a a simple necessary condition for a rule to be a Bayes rule.

Definition (Level set)

A set d ⊂ Θ is a level set of the posterior distribution exactly when
d = {θ : π(θ | x) ≥ k} for some k.

Theorem (Level set property, LSP)

If δ∗ is a Bayes rule for L(θ, d) = |d |+ κ(1− 1θ∈d) then it is a level set
of the posterior distribution.

Proof

Note that

E{L(θ, d) |X} = |d |+ κ(1− E(1θ∈d |X ))

= |d |+ κP(θ /∈ d |X ).
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Statistical Decision Theory Set estimation

Proof continued

For fixed x , we show that if d is not a level set of the posterior
distribution then there is a d ′ 6= d which has a smaller expected loss
so that δ∗(x) 6= d .

Suppose that d is not a level set of π(θ | x). Then there is a θ ∈ d
and θ′ /∈ d for which π(θ′ | x) > π(θ | x).

Let d ′ = d ∪ dθ′ \ dθ where dθ is the tiny region of Θ around θ and
dθ′ is the tiny region of Θ around θ′ for which |dθ| = |dθ′|.
Then |d ′| = |d | but

P(θ /∈ d ′ |X ) < P(θ /∈ d |X )

Thus, E{L(θ, d ′) |X} < E{L(θ, d) |X} showing that δ∗(x) 6= d . 2
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Statistical Decision Theory Set estimation

The Level Set Property Theorem states that δ having the level set
property is necessary for δ to be a Bayes rule for loss functions of the
form L(θ, d) = |d |+ κ(1− 1θ∈d).

The Complete Class Theorem states that being a Bayes rule is a
necessary condition for δ to be admissible.

Being a level set of a posterior distribution for some prior distribution
π(θ) is a necessary condition for being admissible for loss functions of
this form.

Bayesian HPD regions satisfy the necessary condition for being a set
estimator.

Classical set estimators achieve a similar outcome if they are level sets
of the likelihood function, because the posterior is proportional to the
likelihood under a uniform prior distribution.2

2In the case where Θ is unbounded, this prior distribution may have to be truncated
to be proper.

Simon Shaw (University of Bath) Statistical Inference Lecture Four APTS, 13-16 December 2022 21 / 28



Statistical Decision Theory Hypothesis tests

Hypothesis tests

For hypothesis tests, the decision space is a partition of Θ, denoted

H := {H0,H1, . . . ,Hd}.

Each element of H is termed a hypothesis.

The loss function L(θ,Hi ) represents the (negative) consequences of
choosing element Hi , when the true value of the parameter is θ.

It would be usual for the loss function to satisfy

θ ∈ Hi =⇒ L(θ,Hi ) = min
j

L(θ,Hj)

on the grounds that an incorrect choice of element should never incur
a smaller loss than the correct choice.
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Statistical Decision Theory Hypothesis tests

Consider the test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 where
Θ1 = Θ \Θ0. Let D = {d0, d1} where di corresponds to accepting
Hi . A generic loss function is the 0-1 (’zero-one’) loss function

L(θ, di ) =

{
0 if θ ∈ Θi ,
1 if θ /∈ Θi .

The classical risk is the probability of making a wrong decision,

R(θ, δ) =

{
P(δ(X ) = d1 | θ) if θ ∈ Θ0,
P(δ(X ) = d0 | θ) if θ ∈ Θ1,

which correspond to the familiar Type I and Type II errors.

The Bayes rule is to choose H0 if Pπ(θ ∈ Θ0) > Pπ(θ ∈ Θ1) and H1

otherwise, where Pπ(·) is the probability when θ ∼ π(θ).

Hence, if π(θ) = f (θ | x), the Bayes rule is to choose the hypothesis
with the largest posterior probability.
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Statistical Decision Theory Hypothesis tests

This approach can be naturally extended to multiple hypotheses
H = {H0,H1, . . . ,Hd} which partition Θ by taking

L(θ,Hi ) = 1− 1{θ∈Hi}.

i.e., zero if θ ∈ Hi , and one if it is not.

For the posterior decision, the Bayes rule is to select the hypothesis
with the largest posterior probability.

However, this loss function is hard to defend as being realistic.

If we choose Hi and it turns out that θ /∈ Hi then the inference is
wrong and the loss is the same irrespective of where θ lies.

An alternative approach is to co-opt the theory of set estimators.

The statistician can use her set estimator δ to make at least some
distinctions between the members of H:

I Accept Hi exactly when δ(x) ⊂ Hi ,
I Reject Hi exactly when δ(x) ∩ Hi = ∅,
I Undecided about Hi otherwise.
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Confidence sets and p-values Confidence procedures and confidence sets

Confidence procedures and confidence sets

We consider interval estimation, or more generally set estimation.

Under the model E = {X ,Θ, fX (x | θ)}, for given data X = x , we
wish to construct a set C = C (x) ⊂ Θ and the inference is the
statement that θ ∈ C .

If θ ∈ R then the set estimate is typically an interval.

Definition (Confidence procedure)

A random set C (X ) is a level-(1− α) confidence procedure exactly when

P(θ ∈ C (X ) | θ) ≥ 1− α

for all θ ∈ Θ. C is an exact level-(1− α) confidence procedure if the
probability equals (1− α) for all θ.
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Confidence sets and p-values Confidence procedures and confidence sets

The value P(θ ∈ C (X ) | θ) is termed the coverage of C at θ.

Exact is a special case: typically P(θ ∈ C (X ) | θ) will depend upon θ.

The procedure is thus conservative: for a given θ0 the coverage may
be much higher than (1− α) .

Uniform example

Let X1, . . . ,Xn be independent and identically distributed Unif(0, θ)
random variables where θ > 0. Let Y = max{X1, . . . ,Xn}.
We consider two possible sets: (aY , bY ) where 1 ≤ a < b and
(Y + c ,Y + d) where 0 ≤ c < d .

1 P(θ ∈ (aY , bY ) | θ) =
(

1
a

)n − ( 1
b

)n
. Thus, the coverage probability of

the interval does not depend upon θ.
2 P(θ ∈ (Y + c ,Y + d) | θ) =

(
1− c

θ

)n − (1− d
θ

)n
. In this case, the

coverage probability of the interval does depend upon θ.
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Confidence sets and p-values Confidence procedures and confidence sets

We distinguish between the confidence procedure C , which is a
random interval and so a function for each possible x , and the result
when C is evaluated at the observation x , which is a set in Θ.

Definition (Confidence set)

The observed C (x) is a level-(1− α) confidence set exactly when the
random C (X ) is a level-(1− α) confidence procedure.

If Θ ⊂ R and C (x) is convex, i.e. an interval, then a confidence set
(interval) is represented by a lower and upper value.

The challenge with confidence procedures is to construct one with a
specified level: to do this we start with the level and then construct a
C guaranteed to have this level.
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Confidence sets and p-values Confidence procedures and confidence sets

Definition (Family of confidence procedures)

C (X ;α) is a family of confidence procedures exactly when C (X ;α) is
a level-(1− α) confidence procedure for every α ∈ [0, 1].

C is a nesting family exactly when α < α′ implies that
C (x ;α′) ⊂ C (x ;α).

For X1, . . . ,Xn iid Unif(0, θ), Y = max{X1, . . . ,Xn} then

C (Y ;α) =

((
1− α

2

)−1/n
Y ,
(α

2

)−1/n
Y

)
is a nesting family of exact confidence procedures.

For example, if n = 10 then

C (y ; 0.10) = (1.0051y , 1.3493y); C (y ; 0.05) = (1.0025y , 1.4461y).

If we start with a family of confidence procedures for a specified
model, then we can compute a confidence set for any level we choose.
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