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Principles for Statistical Inference

1. Consider Birnbaum’s Theorem, (WIP ∧WCP ) ↔ SLP. In lectures, we
showed that (WIP∧WCP )→ SLP but not the converse. Hence, show that
SLP→WIP and SLP→WCP.

The Strong Likelihood Principle (SLP) states that if E1 = {X1,Θ, fX1
(x1 | θ)} and

E2 = {X2,Θ, fX2
(x2 | θ)} are two experiments with the same parameter θ and if x1 ∈ X1

and x2 ∈ X2 satisfy fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ) for some c > 0 for all θ ∈ Θ then
Ev(E1, x1) = Ev(E2, x2).

(a) SLP→WIP.
The Weak Indifference Principle (WIP) states that for the experiment E = {X ,Θ,
fX(x | θ)} if fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ then Ev(E , x) = Ev(E , x′).

In the SLP, let E1 = E2 = E and suppose that fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ.
Hence, taking c(x, x′) = 1, the SLP implies that Ev(E , x) = Ev(E , x′) which is
the WIP.

(b) SLP→WCP.
The Weak Conditionality Principle (WCP) states that if E∗ is the mixture of the
experiments E1 and E2 according to mixture probabilities p1, p2 = 1 − p1 then
Ev(E∗, (i, xi)) = Ev(Ei, xi).

For the mixture experiment we have f∗((i, xi) | θ) = pifXi
(xi | θ) for all θ ∈ Θ.

Applying the SLP with c((i, xi), xi) = pi gives Ev(E∗, (i, xi)) = Ev(Ei, xi) which
is the WCP.

2. 1Suppose that we have two discrete experiments E1 = {X1,Θ, fX1(x1 | θ)} and
E2 = {X2,Θ, fX2

(x2 | θ)} and that, for x′1 ∈ X1 and x′2 ∈ X2,

fX1(x′1 | θ) = cfX2(x′2 | θ) (1)

for all θ where c is a positive constant not depending upon θ (but which
may depend on x′1, x

′
2) and fX1(x′1 | θ) > 0. We wish to consider estimation of

1See Section 5 of Berger, J. (1985). In defense of the likelihood principle: Axiomatics and coherency.
Bayesian Statistics 2 (J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, Eds.), 33-66. North-
Holland.
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θ under a loss function L(θ, d) which is strictly convex in d for each θ. Thus,
for all d1 6= d2 ∈ D, the decision space, and α ∈ (0, 1),

L(θ, αd1 + (1− α)d2) < αL(θ, d1) + (1− α)L(θ, d2).

For the experiment Ej, j = 1, 2, for the observation xj we will use the decision
rule δj(xj) as our estimate of θ so that

Ev(Ej , xj) = δj(xj).

Suppose that the inference violates the strong likelihood principle so that,
whilst equation (1) holds, δ1(x′1) 6= δ2(x′2).

(a) Let E∗ be the mixture of the experiments E1 and E2 according to mixture
probabilities 1/2 and 1/2. For the outcome (j, xj) the decision rule is
δ(j, xj). If the Weak Conditionality Principle (WCP) applies to E∗ show
that

δ(1, x′1) 6= δ(2, x′2).

Under the WCP, Ev(E∗, (j, xj)) = Ev(Ej , xj) so that δ(j, xj) = δj(xj). Thus, if
δ1(x′1) 6= δ2(x′2) it immediately follows that δ(1, x′1) 6= δ(2, x′2).

(b) An alternative decision rule for E∗ is

δ∗(j, xj) =

{
c
c+1δ(1, x

′
1) + 1

c+1δ(2, x
′
2) if xj = x′j for j = 1, 2,

δ(j, xj) otherwise.
(2)

Show that if the WCP applies to E∗ then δ∗ dominates δ so that δ is
inadmissible.
[Hint: First show that R(θ, δ∗) = 1

2E[L(θ, δ∗(1, X1)) | θ]+ 1
2E[L(θ, δ∗(2, X2)) | θ].]

In the mixture experiment the pair (j, xj) are random and the classical risk for
δ∗ is

R(θ, δ∗) = E[L(θ, δ∗(J,XJ)) | θ]
=

∑
j

∑
xj

L(θ, δ∗(j, xj))f
∗((j, xj) | θ)

=
∑
j

∑
xj

L(θ, δ∗(j, xj))
1

2
fXj (xj | θ)

=
1

2
E[L(θ, δ∗(1, X1)) | θ] +

1

2
E[L(θ, δ∗(2, X2)) | θ]. (3)

In an identical fashion it follows that

R(θ, δ) =
1

2
E[L(θ, δ(1, X1)) | θ] +

1

2
E[L(θ, δ(2, X2)) | θ]. (4)

Now, for each j = 1, 2, as δ∗(j, xj) = δ(j, xj) for all xj 6= x′j ,

E[L(θ, δ∗(j,Xj)) | θ] =
∑
xj

L(θ, δ∗(j, xj))fXj
(xj | θ)

=
∑
xj

L(θ, δ(j, xj))fXj
(xj | θ) + {L(θ, δ∗(j, x′j))− L(θ, δ(j, x′j))}fXj

(x′j | θ)

= E[L(θ, δ(j,Xj)) | θ] + {L(θ, δ∗(j, x′j))− L(θ, δ(j, x′j))}fXj
(x′j | θ). (5)
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Substituting, for each j, equation (5) into (3) and using (4) gives

R(θ, δ∗) = R(θ, δ) +
1

2
{L(θ, δ∗(1, x′1))− L(θ, δ(1, x′1))}fX1

(x′1 | θ) +

1

2
{L(θ, δ∗(2, x′2))− L(θ, δ(2, x′2))}fX2

(x′2 | θ)

= R(θ, δ) +
1

2
{L(θ, δ∗(1, x′1))− L(θ, δ(1, x′1))}fX1

(x′1 | θ) +

1

2c
{L(θ, δ∗(2, x′2))− L(θ, δ(2, x′2))}fX1(x′1 | θ) (6)

using equation (1). Now, from equation (2), δ∗(1, x′1) = δ∗(2, x′2) and so, for all
θ, L(θ, δ∗(1, x′1)) = L(θ, δ∗(2, x′2)). Hence, (6) becomes

R(θ, δ∗) = R(θ, δ)

+
fX1

(x′1 | θ)
2c

{(c+ 1)L(θ, δ∗(1, x′1))− cL(θ, δ(1, x′1))− L(θ, δ(2, x′2))}

= R(θ, δ) +
(c+ 1)fX1(x′1 | θ)

2c
A(θ) (7)

where

A(θ) = L(θ, δ∗(1, x′1))− c

c+ 1
L(θ, δ(1, x′1))− 1

c+ 1
L(θ, δ(2, x′2))

= L

(
θ,

c

c+ 1
δ(1, x′1) +

1

c+ 1
δ(2, x′2)

)
−(

c

c+ 1
L(θ, δ(1, x′1)) +

1

c+ 1
L(θ, δ(2, x′2))

)
< 0

by the strict convexity of L(θ, d) in d for each θ as δ(1, x′1) 6= δ(2, x′2). Hence,
using equation (7), we have for each θ that

R(θ, δ∗) < R(θ, δ)

so that δ∗ dominates δ and thus δ is inadmissible.

(c) Comment on the result of part (b).

Part (b) shows that if we use a decision rule which violates the SLP but retains
the WCP then the corresponding decision rule of the mixture experiment, δ, also
violates the SLP as δ(1, x′1) 6= δ(2, x′2). Moreover, this rule is inadmissible and is
dominated by a rule, δ∗, which does satisfy δ∗(1, x′1) = δ∗(2, x′2) and so respects
the SLP for the outcomes x′1, x′2. As δ is inadmissible then we would not want
to use it which suggests that violating the SLP is not advisable (if we accept the
WCP) or a justification for not applying the WCP is required.

Statistical Decision Theory

3. Suppose we have a hypothesis test of two simple hypotheses

H0 : X ∼ f0 versus H1 : X ∼ f1
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so that if Hi is true then X has distribution fi(x). It is proposed to choose
between H0 and H1 using the following loss function.

Decision
H0 H1

Outcome
H0

H1

c00

c10

c01

c11

where c00 < c01 and c11 < c10. Thus, cij = L(Hi, Hj) is the loss when the ‘true’
hypothesis is Hi and the decision Hj is taken. Show that a decision rule
δ(x) for choosing between H0 and H1 is admissible if and only if

δ(x) =


H0 if

f0(x)

f1(x)
> c,

H1 if
f0(x)

f1(x)
< c,

either H0 or H1 if
f0(x)

f1(x)
= c,

for some critical value c > 0.

For the prior distribution π = (π0, π1) where πi > 0, let π∗ = (π∗0 , π
∗
1) denote the

posterior distribution so that

π∗0 = P(H0 |X = x)

=
f0(x)π0

f0(x)π0 + f1(x)π1
,

π∗1 = P(H1 |X = x)

=
f1(x)π1

f0(x)π0 + f1(x)π1
.

As we also have fi(x) > 0 for all x ∈ X then π∗i > 0. We calculate the posterior risk
under the two decisions H0 and H1.

ρ(π∗, H0) = L(H0, H0)π∗0 + L(H1, H0)π∗1

= c00π
∗
0 + c10π

∗
1 , (8)

ρ(π∗, H1) = L(H0, H1)π∗0 + L(H1, H1)π∗1

= c01π
∗
0 + c11π

∗
1 . (9)

Thus,

ρ(π∗, H0) < ρ(π∗, H1) ⇐⇒ c00π
∗
0 + c10π

∗
1 < c01π

∗
0 + c11π

∗
1

⇐⇒ (c00 − c01)π∗0 < (c11 − c10)π∗1

⇐⇒ π∗0
π∗1

>
c11 − c10

c00 − c01
=

c10 − c11

c01 − c00

since c00 − c01 < 0 and π∗1 > 0. Using equations (8) and (9) we thus have

ρ(π∗, H0) < ρ(π∗, H1) ⇐⇒ f0(x)π0

f1(x)π1
>
c10 − c11

c01 − c00

⇐⇒ f0(x)

f1(x)
>

(c10 − c11)π1

(c01 − c00)π0
= c (10)
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since π0/π1 > 0 and thus c > 0. The analogous arguments show that

ρ(π∗, H0) > ρ(π∗, H1) ⇐⇒ f0(x)

f1(x)
< c (11)

ρ(π∗, H0) = ρ(π∗, H1) ⇐⇒ f0(x)

f1(x)
= c (12)

The decision rule δ(x) is chosen to minimise the posterior risk and so is H0 when (10)
holds, H1 when (11) holds and is indifferent between H0 and H1 when (12) holds.

Wald’s Complete Class Theorem states that a decision rule is admissible if and only if
it is a Bayes rule for some prior distribution π with strictly positive values. Thus, all
admissible decision rules have the form of δ(x).

4. Let X1, . . . , Xn be exchangeable random variables so that, conditional upon
a parameter θ, the Xi are independent. Suppose that Xi | θ ∼ N(θ, σ2) where
the variance σ2 is known, and that θ ∼ N(µ0, σ

2
0) where the mean µ0 and

variance σ2
0 are known. We wish to produce a point estimate d for θ, with

loss function

L(θ, d) = 1− exp

{
−1

2
(θ − d)2

}
. (13)

(a) Let f(θ) denote the probability density function of θ ∼ N(µ0, σ
2
0). Show

that ρ(f, d), the risk of d under f(θ), can be expressed as

ρ(f, d) = 1− 1√
1 + σ2

0

exp

{
− 1

2(1 + σ2
0)

(d− µ0)2

}
.

We calculate the risk of decision d under f(θ),

ρ(f, d) = E
[
1− exp

{
−1

2
(θ − d)2

} ∣∣∣∣ θ ∼ f(θ)

]
= 1− E

[
exp

{
−1

2
(θ − d)2

} ∣∣∣∣ θ ∼ f(θ)

]
= 1−

∫ ∞
−∞

exp

{
−1

2
(θ − d)2

}
1√

2πσ0

exp

{
− 1

2σ2
0

(θ − µ0)2

}
dθ

= 1−
∫ ∞
−∞

1√
2πσ0

exp

{
−1

2

(
(θ − d)2 +

1

σ2
0

(θ − µ0)2

)}
dθ. (14)

Now, using the result that

(θ − a)2 + b(θ − c)2 = (1 + b)

(
θ − a+ bc

1 + b

)2

+

(
b

1 + b

)
(a− c)2

for any a, b, c ∈ R with b 6= −1 we have that

(θ − d)2 +
1

σ2
0

(θ − µ0)2 =

(
1 + σ2

0

σ2
0

)(
θ − σ2

0d+ µ0

1 + σ2
0

)2

+
1

1 + σ2
0

(d− µ0)2

=

(
1 + σ2

0

σ2
0

)
(θ − µ̃)2 +

1

1 + σ2
0

(d− µ0)2 (15)
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where µ̃ =
σ2

0d+ µ0

1 + σ2
0

. Substituting equation (15) into (14) gives

ρ(f, d) =

1− exp

{
−1

2(1 + σ2
0)

(d− µ0)2

}∫ ∞
−∞

1√
2πσ0

exp

{
−1 + σ2

0

2σ2
0

(θ − µ̃)2

}
dθ (16)

We recognise the integrand as a kernel of a N(µ̃, σ2
0/(1 +σ2

0)) distribution. Thus,
as ∫ ∞

−∞

√
1 + σ2

0√
2πσ0

exp

{
−1 + σ2

0

2σ2
0

(θ − µ̃)2

}
dθ = 1,

equation (16) becomes

ρ(f, d) = 1− 1√
1 + σ2

0

exp

{
− 1

2(1 + σ2
0)

(d− µ0)2

}
as required.

(b) Using part (a), show that the Bayes rule of an immediate decision is
d∗ = µ0 and find the corresponding Bayes risk.

ρ(f, d) is minimised when
1√

1 + σ2
0

exp

{
− 1

2(1 + σ2
0)

(d− µ0)2

}
is maximised.

This is when d∗ = µ0. The corresponding Bayes risk is

ρ∗(f) = ρ(f, d∗) = 1− 1√
1 + σ2

0

.

(c) Find the Bayes rule and Bayes risk after observing x = (x1, . . . , xn).
Express the Bayes rule as a weighted average of d∗ and the maximum
likelihood estimate of θ, x = 1

n

∑n
i=1 xi, and interpret the weights.

As Xi | θ ∼ N(θ, σ2) then

f(x | θ) =

n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(xi − θ)2

}

∝ exp

{
− 1

2σ2

n∑
i=1

(θ2 − 2xiθ)

}

= exp

{
− 1

2σ2
(nθ2 − 2nxθ)

}
where the proportionality is with respect to θ. Hence, as θ ∼ N(µ0, σ

2
0),

f(θ |x) ∝ f(x | θ)f(θ)

∝ exp

{
− 1

2σ2
(nθ2 − 2nxθ)

}
exp

{
− 1

2σ2
0

(θ2 − 2µ0θ)

}
= exp

{
−1

2

(
1

σ2
0

+
n

σ2

)[
θ2 − 2

(
1

σ2
0

+
n

σ2

)−1(
µ0

σ2
0

+
nx

σ2

)
θ

]}
,
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which we recognise as the kernel of a N(µn, σ
2
n) where

µn =

(
1

σ2
0

+
n

σ2

)−1(
µ0

σ2
0

+
nx

σ2

)
, σ2

n =

(
1

σ2
0

+
n

σ2

)−1

so that θ |x ∼ N(µn, σ
2
n). Thus, we have conjugacy. The solution of [Θ,D, f(θ |x),

L(θ, d)] will be identical to that of [Θ,D, f(θ), L(θ, d)] but with revised hyperpa-
rameters µ0 7→ µn and σ2

0 7→ σ2
n.

The Bayes rule after observing x is thus

d∗(x) = µn = λµ0 + (1− λ)x

where λ =
(1/σ2

0)

(1/σ2
0) + (n/σ2)

. Thus, d∗(x) is a weighted average of d∗ = µ0 and x

weighted according to their respective precisions. The corresponding Bayes risk
is

ρ∗(f(θ |x)) = 1− 1√
1 + σ2

n

.

(d) Suppose now, given data y, the parameter θ has the general posterior
distribution f(θ | y). We wish to use the loss function L(θ, d), as given
in equation (13), to find a point estimate d for θ. By considering an
approximation of L(θ, d), or otherwise, what can you say about the
corresponding Bayes rule?

To first-order, ez = 1 + z so that

L(θ, d) ≈ 1−
[
1− 1

2
(θ − d)2

]
=

1

2
(θ − d)2

∝ (θ − d)2.

Thus, L(θ, d) is approximately proportional to quadratic loss and so the Bayes
rule may be equivalently found by considering the loss function to be quadratic
loss. For the decision problem [Θ,D, π(θ), (θ−d)2] the Bayes rule is E(θ | θ ∼ π(θ))
so for π(θ) = f(θ | y) the corresponding Bayes rule is E(θ |Y ) which is thus the
approximate Bayes rule for the loss function given in equation (13).

Confidence sets and p-values

5. Show that if p is a family of significance procedures then

p(x; Θ0) = sup
θ∈Θ0

p(x; θ)

is a significance procedure for the null hypothesis Θ0 ⊂ Θ, that is that
p(X; Θ0) is super-uniform for every θ ∈ Θ0.
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Notice that, for all θ ∈ Θ0,

p(x; Θ0) ≤ u =⇒ p(x; θ) ≤ u.

Thus, by the containment rule, for all θ ∈ Θ0,

P(p(X; Θ0) ≤ u | θ) ≤ P(p(X; θ) ≤ u | θ) (17)

≤ u (18)

where equation (18) follows from (17) as p is a family of significance procedures. Hence,
p(X; Θ0) is super-uniform for every θ ∈ Θ0.

6. Suppose that, given θ, X1, . . . , Xn are independent and identically distributed
N(θ, 1) random variables so that, given θ, X = 1

n

∑n
i=1Xi ∼ N(θ, 1/n).

(a) Consider the test of the hypotheses

H0 : θ = 0 versus H1 : θ = 1

using the statistic X so that large observed values x support H1. For a
given n, the corresponding p-value is

pn(x; 0) = P(X ≥ x | θ = 0).

We wish to investigate how, for a fixed p-value, the likelihood ratio for
H0 versus H1,

LR(H0, H1) :=
f(x | θ = 0)

f(x | θ = 1)

changes as n increases.

(i) Use R to create a plot of LR(H0, H1) for each n ∈ {1, . . . , 20} where,
for each n, x is the value which corresponds to a p-value of 0.05.

For p = 0.05, for each n, we want to find x such that P(X ≥ x | θ = 0) = 0.05,
that is x is the 95th quantile of N(0, 1/n). The following R code can be used
to create Figure 1; a log-scale has been used to present the plot slightly more
attractively though this is not necessary.

alpha <- 0.05

nseq <- 1:20

logBF <- sapply(nseq, function(n){

sd <- 1 / sqrt(n)

z <- qnorm(1 - alpha, mean = 0, sd = sd)

dnorm(z, mean = 0, sd = sd, log = TRUE) -

dnorm(z, mean = 1, sd = sd, log = TRUE)

})

plot(nseq, exp(logBF), type = "b", pch = 16, log = "xy",

ylim = c(0.2, 15),

xlab = "Number of observations, n",

ylab = expression(paste("Likelihood ratio for ", H[0],

" versus ", H[1])), xpd = NA)

abline(h = 1, lty = 2)
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Figure 1: The likelihood ratio for the hypothesis test H0 : θ = 0 versus H1 : θ = 1 where
X ∼ N(θ, 1/n) and the p-value is fixed at 0.05.
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(ii) Comment on your plot, in particular on what happens to the like-
lihood ratio as n increases. What is the implication for hypothesis
testing and the corresponding (fixed) p-value?

Figure 1 shows that for small n a small p-value for H0 such as 0.05 corresponds
to a likelihood ratio for H0 versus H1 of less than one, and so ‘rejecting H0

in favour of H1 ’ is supported by the evidence from the observations. But as
n increases a p-value of 0.05 for H0 comes to correspond to a likelihood ratio
that strongly favours H0 over H1. By the time n = 20 the likelihood ratio
already exceeds 10.
We conclude that a fixed threshold for a p-value is a very poor way of dis-
tinguishing between hypotheses. The moral of this story is that where there
is an explicit H1 it should be used in a Neyman-Pearson test based on the
likelihood ratio and with careful consideration of both size and power. In
medical science the ‘minimal clinically important difference’ is the smallest
gap between H0 and H1 that is interesting. It is used to do design calcula-
tions for sample size, but it can also be used to do hypothesis testing, rather
than just p-valuing H0.

(b) Consider the test of the hypotheses

H0 : θ = 0 versus H1 : θ > 0

using once again X as the test statistic.

(i) Suppose that x > 0. Show that

lr(H0, H1) := min
θ>0

f(x | θ = 0)

f(x | θ)
= exp

{
−n

2
x2
}
.

Since X ∼ N(θ, 1/n) then

lr(H0, H1) = min
θ>0

exp
{
−n

2

[
(x− 0)2 − (x− θ)2

]}
= exp

{
−n

2
x2
}

if x > 0 (and is equal to one otherwise).

(ii) Use R to create a plot of lr(H0, H0) for a range of p-values for H0

from 0.001 to 0.1.2 Comment on whether the conventional choice
of 0.05 is a suitable threshold for choosing between hypotheses, or
whether some other choice might be better.3

The aim of this question is for fixed n to investigate how the likelihood ratio
changes with the p-value. For each p-value α, x is the 100(1−α)th quantile of
N(0, 1/n). The following R code, taking n = 1, can be used to create Figure
2.

pseq <- c(0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1)

z <- qnorm(1 - pseq, mean = 0, sd = 1)

ell <- pmin(1, exp(-(1/2)*z^2))

plot(pseq, ell, type = "b", pch = 16, log = "xy",

xlab = "P-value", ylab = "Lower bound on likelihood ratio")
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Figure 2: Lower bound on the likelihood ratio as a function of the p-value for H0 for the
hypothesis test H0 : θ = 0 versus H1 : θ > 0 where X ∼ N(θ, 1/n).

11



In this case, a p-value of 0.05 corresponds to a lower bound on the likelihood
ratio of 0.26. If we agree that a likelihood ratio of 1/20 is starting to get
interesting, then a p-value of a bit less than 0.01 is suggested for this model
and these hypotheses.

2The plot doesn’t depend upon the actual choice of n and so you may choose n = 1.
3For the origins of the use of 0.05 see Cowles, M. and C. Davis (1982). On the origins of the .05 level of

statistical significance. American Psychologist 37(5), 553-558.
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