Solutions to APTS Assessment on Statistical Inference

Simon Shaw, s.shaw@bath.ac.uk
 University of Bath

Warwick, 13-16 December 2022

Principles for Statistical Inference

1. Consider Birnbaum's Theorem, (WIP \wedge WCP) \leftrightarrow SLP. In lectures, we showed that $(W I P \wedge W C P) \rightarrow$ SLP but not the converse. Hence, show that SLP \rightarrow WIP and SLP \rightarrow WCP.

The Strong Likelihood Principle (SLP) states that if $\mathcal{E}_{1}=\left\{\mathcal{X}_{1}, \Theta, f_{X_{1}}\left(x_{1} \mid \theta\right)\right\}$ and $\mathcal{E}_{2}=\left\{\mathcal{X}_{2}, \Theta, f_{X_{2}}\left(x_{2} \mid \theta\right)\right\}$ are two experiments with the same parameter θ and if $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$ satisfy $f_{X_{1}}\left(x_{1} \mid \theta\right)=c\left(x_{1}, x_{2}\right) f_{X_{2}}\left(x_{2} \mid \theta\right)$ for some $c>0$ for all $\theta \in \Theta$ then $E v\left(\mathcal{E}_{1}, x_{1}\right)=E v\left(\mathcal{E}_{2}, x_{2}\right)$.
(a) SLP \rightarrow WIP.

The Weak Indifference Principle (WIP) states that for the experiment $\mathcal{E}=\{\mathcal{X}, \Theta$, $\left.f_{X}(x \mid \theta)\right\}$ if $f_{X}(x \mid \theta)=f_{X}\left(x^{\prime} \mid \theta\right)$ for all $\theta \in \Theta$ then $E v(\mathcal{E}, x)=E v\left(\mathcal{E}, x^{\prime}\right)$.

In the SLP, let $\mathcal{E}_{1}=\mathcal{E}_{2}=\mathcal{E}$ and suppose that $f_{X}(x \mid \theta)=f_{X}\left(x^{\prime} \mid \theta\right)$ for all $\theta \in \Theta$. Hence, taking $c\left(x, x^{\prime}\right)=1$, the SLP implies that $\operatorname{Ev}(\mathcal{E}, x)=\operatorname{Ev}\left(\mathcal{E}, x^{\prime}\right)$ which is the WIP.
(b) SLP \rightarrow WCP.

The Weak Conditionality Principle (WCP) states that if \mathcal{E}^{*} is the mixture of the experiments \mathcal{E}_{1} and \mathcal{E}_{2} according to mixture probabilities $p_{1}, p_{2}=1-p_{1}$ then $\operatorname{Ev}\left(\mathcal{E}^{*},\left(i, x_{i}\right)\right)=\operatorname{Ev}\left(\mathcal{E}_{i}, x_{i}\right)$.

For the mixture experiment we have $f^{*}\left(\left(i, x_{i}\right) \mid \theta\right)=p_{i} f_{X_{i}}\left(x_{i} \mid \theta\right)$ for all $\theta \in \Theta$. Applying the SLP with $c\left(\left(i, x_{i}\right), x_{i}\right)=p_{i}$ gives $\operatorname{Ev}\left(\mathcal{E}^{*},\left(i, x_{i}\right)\right)=\operatorname{Ev}\left(\mathcal{E}_{i}, x_{i}\right)$ which is the WCP.
2. ${ }^{1}$ Suppose that we have two discrete experiments $\mathcal{E}_{1}=\left\{\mathcal{X}_{1}, \Theta, f_{X_{1}}\left(x_{1} \mid \theta\right)\right\}$ and $\mathcal{E}_{2}=\left\{\mathcal{X}_{2}, \Theta, f_{X_{2}}\left(x_{2} \mid \theta\right)\right\}$ and that, for $x_{1}^{\prime} \in \mathcal{X}_{1}$ and $x_{2}^{\prime} \in \mathcal{X}_{2}$,

$$
\begin{equation*}
f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)=c f_{X_{2}}\left(x_{2}^{\prime} \mid \theta\right) \tag{1}
\end{equation*}
$$

for all θ where c is a positive constant not depending upon θ (but which may depend on $\left.x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)>0$. We wish to consider estimation of

[^0]θ under a loss function $L(\theta, d)$ which is strictly convex in d for each θ. Thus, for all $d_{1} \neq d_{2} \in \mathcal{D}$, the decision space, and $\alpha \in(0,1)$,
$$
L\left(\theta, \alpha d_{1}+(1-\alpha) d_{2}\right)<\alpha L\left(\theta, d_{1}\right)+(1-\alpha) L\left(\theta, d_{2}\right) .
$$

For the experiment $\mathcal{E}_{j}, j=1,2$, for the observation x_{j} we will use the decision rule $\delta_{j}\left(x_{j}\right)$ as our estimate of θ so that

$$
\operatorname{Ev}\left(\mathcal{E}_{j}, x_{j}\right)=\delta_{j}\left(x_{j}\right)
$$

Suppose that the inference violates the strong likelihood principle so that, whilst equation (1) holds, $\delta_{1}\left(x_{1}^{\prime}\right) \neq \delta_{2}\left(x_{2}^{\prime}\right)$.
(a) Let \mathcal{E}^{*} be the mixture of the experiments \mathcal{E}_{1} and \mathcal{E}_{2} according to mixture probabilities $1 / 2$ and $1 / 2$. For the outcome $\left(j, x_{j}\right)$ the decision rule is $\delta\left(j, x_{j}\right)$. If the Weak Conditionality Principle (WCP) applies to \mathcal{E}^{*} show that

$$
\delta\left(1, x_{1}^{\prime}\right) \neq \delta\left(2, x_{2}^{\prime}\right)
$$

Under the WCP, $\operatorname{Ev}\left(\mathcal{E}^{*},\left(j, x_{j}\right)\right)=\operatorname{Ev}\left(\mathcal{E}_{j}, x_{j}\right)$ so that $\delta\left(j, x_{j}\right)=\delta_{j}\left(x_{j}\right)$. Thus, if $\delta_{1}\left(x_{1}^{\prime}\right) \neq \delta_{2}\left(x_{2}^{\prime}\right)$ it immediately follows that $\delta\left(1, x_{1}^{\prime}\right) \neq \delta\left(2, x_{2}^{\prime}\right)$.
(b) An alternative decision rule for \mathcal{E}^{*} is

$$
\delta^{*}\left(j, x_{j}\right)= \begin{cases}\frac{c}{c+1} \delta\left(1, x_{1}^{\prime}\right)+\frac{1}{c+1} \delta\left(2, x_{2}^{\prime}\right) & \text { if } x_{j}=x_{j}^{\prime} \text { for } j=1,2 \tag{2}\\ \delta\left(j, x_{j}\right) & \text { otherwise }\end{cases}
$$

Show that if the WCP applies to \mathcal{E}^{*} then δ^{*} dominates δ so that δ is inadmissible.
[Hint: First show that $R\left(\theta, \delta^{*}\right)=\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta^{*}\left(1, X_{1}\right)\right) \mid \theta\right]+\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta^{*}\left(2, X_{2}\right)\right) \mid \theta\right]$.]
In the mixture experiment the pair $\left(j, x_{j}\right)$ are random and the classical risk for δ^{*} is

$$
\begin{align*}
R\left(\theta, \delta^{*}\right) & =\mathbb{E}\left[L\left(\theta, \delta^{*}\left(J, X_{J}\right)\right) \mid \theta\right] \\
& =\sum_{j} \sum_{x_{j}} L\left(\theta, \delta^{*}\left(j, x_{j}\right)\right) f^{*}\left(\left(j, x_{j}\right) \mid \theta\right) \\
& =\sum_{j} \sum_{x_{j}} L\left(\theta, \delta^{*}\left(j, x_{j}\right)\right) \frac{1}{2} f_{X_{j}}\left(x_{j} \mid \theta\right) \\
& =\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta^{*}\left(1, X_{1}\right)\right) \mid \theta\right]+\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta^{*}\left(2, X_{2}\right)\right) \mid \theta\right] . \tag{3}
\end{align*}
$$

In an identical fashion it follows that

$$
\begin{equation*}
R(\theta, \delta)=\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta\left(1, X_{1}\right)\right) \mid \theta\right]+\frac{1}{2} \mathbb{E}\left[L\left(\theta, \delta\left(2, X_{2}\right)\right) \mid \theta\right] . \tag{4}
\end{equation*}
$$

Now, for each $j=1,2$, as $\delta^{*}\left(j, x_{j}\right)=\delta\left(j, x_{j}\right)$ for all $x_{j} \neq x_{j}^{\prime}$,

$$
\begin{align*}
\mathbb{E} & {\left[L\left(\theta, \delta^{*}\left(j, X_{j}\right)\right) \mid \theta\right]=\sum_{x_{j}} L\left(\theta, \delta^{*}\left(j, x_{j}\right)\right) f_{X_{j}}\left(x_{j} \mid \theta\right) } \\
& =\sum_{x_{j}} L\left(\theta, \delta\left(j, x_{j}\right)\right) f_{X_{j}}\left(x_{j} \mid \theta\right)+\left\{L\left(\theta, \delta^{*}\left(j, x_{j}^{\prime}\right)\right)-L\left(\theta, \delta\left(j, x_{j}^{\prime}\right)\right)\right\} f_{X_{j}}\left(x_{j}^{\prime} \mid \theta\right) \\
& =\mathbb{E}\left[L\left(\theta, \delta\left(j, X_{j}\right)\right) \mid \theta\right]+\left\{L\left(\theta, \delta^{*}\left(j, x_{j}^{\prime}\right)\right)-L\left(\theta, \delta\left(j, x_{j}^{\prime}\right)\right)\right\} f_{X_{j}}\left(x_{j}^{\prime} \mid \theta\right) . \tag{5}
\end{align*}
$$

Substituting, for each j, equation (5) into (3) and using (4) gives

$$
\begin{aligned}
& R\left(\theta, \delta^{*}\right)= R(\theta, \delta)+\frac{1}{2}\left\{L\left(\theta, \delta^{*}\left(1, x_{1}^{\prime}\right)\right)-L\left(\theta, \delta\left(1, x_{1}^{\prime}\right)\right)\right\} f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)+ \\
& \frac{1}{2}\left\{L\left(\theta, \delta^{*}\left(2, x_{2}^{\prime}\right)\right)-L\left(\theta, \delta\left(2, x_{2}^{\prime}\right)\right)\right\} f_{X_{2}}\left(x_{2}^{\prime} \mid \theta\right) \\
&= R(\theta, \delta)+\frac{1}{2}\left\{L\left(\theta, \delta^{*}\left(1, x_{1}^{\prime}\right)\right)-L\left(\theta, \delta\left(1, x_{1}^{\prime}\right)\right)\right\} f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)+ \\
& \frac{1}{2 c}\left\{L\left(\theta, \delta^{*}\left(2, x_{2}^{\prime}\right)\right)-L\left(\theta, \delta\left(2, x_{2}^{\prime}\right)\right)\right\} f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)(6)
\end{aligned}
$$

using equation (1). Now, from equation (2), $\delta^{*}\left(1, x_{1}^{\prime}\right)=\delta^{*}\left(2, x_{2}^{\prime}\right)$ and so, for all $\theta, L\left(\theta, \delta^{*}\left(1, x_{1}^{\prime}\right)\right)=L\left(\theta, \delta^{*}\left(2, x_{2}^{\prime}\right)\right)$. Hence, (6) becomes

$$
\begin{align*}
& R\left(\theta, \delta^{*}\right)=R(\theta, \delta) \\
& \quad+\frac{f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)}{2 c}\left\{(c+1) L\left(\theta, \delta^{*}\left(1, x_{1}^{\prime}\right)\right)-c L\left(\theta, \delta\left(1, x_{1}^{\prime}\right)\right)-L\left(\theta, \delta\left(2, x_{2}^{\prime}\right)\right)\right\} \\
& \quad=\quad R(\theta, \delta)+\frac{(c+1) f_{X_{1}}\left(x_{1}^{\prime} \mid \theta\right)}{2 c} A(\theta) \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
A(\theta)= & L\left(\theta, \delta^{*}\left(1, x_{1}^{\prime}\right)\right)-\frac{c}{c+1} L\left(\theta, \delta\left(1, x_{1}^{\prime}\right)\right)-\frac{1}{c+1} L\left(\theta, \delta\left(2, x_{2}^{\prime}\right)\right) \\
= & L\left(\theta, \frac{c}{c+1} \delta\left(1, x_{1}^{\prime}\right)+\frac{1}{c+1} \delta\left(2, x_{2}^{\prime}\right)\right)- \\
& \left(\frac{c}{c+1} L\left(\theta, \delta\left(1, x_{1}^{\prime}\right)\right)+\frac{1}{c+1} L\left(\theta, \delta\left(2, x_{2}^{\prime}\right)\right)\right) \\
< & 0
\end{aligned}
$$

by the strict convexity of $L(\theta, d)$ in d for each θ as $\delta\left(1, x_{1}^{\prime}\right) \neq \delta\left(2, x_{2}^{\prime}\right)$. Hence, using equation (7), we have for each θ that

$$
R\left(\theta, \delta^{*}\right)<R(\theta, \delta)
$$

so that δ^{*} dominates δ and thus δ is inadmissible.
(c) Comment on the result of part (b).

Part (b) shows that if we use a decision rule which violates the SLP but retains the WCP then the corresponding decision rule of the mixture experiment, δ, also violates the SLP as $\delta\left(1, x_{1}^{\prime}\right) \neq \delta\left(2, x_{2}^{\prime}\right)$. Moreover, this rule is inadmissible and is dominated by a rule, δ^{*}, which does satisfy $\delta^{*}\left(1, x_{1}^{\prime}\right)=\delta^{*}\left(2, x_{2}^{\prime}\right)$ and so respects the SLP for the outcomes $x_{1}^{\prime}, x_{2}^{\prime}$. As δ is inadmissible then we would not want to use it which suggests that violating the SLP is not advisable (if we accept the WCP) or a justification for not applying the WCP is required.

Statistical Decision Theory

3. Suppose we have a hypothesis test of two simple hypotheses

$$
H_{0}: X \sim f_{0} \quad \text { versus } \quad H_{1}: X \sim f_{1}
$$

so that if H_{i} is true then X has distribution $f_{i}(x)$. It is proposed to choose between H_{0} and H_{1} using the following loss function.

		Decision	
		H_{0}	H_{1}
Outcome	H_{0}	c_{00}	c_{01}
	H_{1}	c_{10}	c_{11}

where $c_{00}<c_{01}$ and $c_{11}<c_{10}$. Thus, $c_{i j}=L\left(H_{i}, H_{j}\right)$ is the loss when the 'true' hypothesis is H_{i} and the decision H_{j} is taken. Show that a decision rule $\delta(x)$ for choosing between H_{0} and H_{1} is admissible if and only if

$$
\delta(x)=\left\{\begin{array}{cl}
H_{0} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}>c \\
H_{1} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}<c \\
\text { either } H_{0} \text { or } H_{1} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}=c
\end{array}\right.
$$

for some critical value $c>0$.

For the prior distribution $\pi=\left(\pi_{0}, \pi_{1}\right)$ where $\pi_{i}>0$, let $\pi^{*}=\left(\pi_{0}^{*}, \pi_{1}^{*}\right)$ denote the posterior distribution so that

$$
\begin{aligned}
\pi_{0}^{*} & =\mathbb{P}\left(H_{0} \mid X=x\right) \\
& =\frac{f_{0}(x) \pi_{0}}{f_{0}(x) \pi_{0}+f_{1}(x) \pi_{1}}, \\
\pi_{1}^{*} & =\mathbb{P}\left(H_{1} \mid X=x\right) \\
& =\frac{f_{1}(x) \pi_{1}}{f_{0}(x) \pi_{0}+f_{1}(x) \pi_{1}} .
\end{aligned}
$$

As we also have $f_{i}(x)>0$ for all $x \in \mathcal{X}$ then $\pi_{i}^{*}>0$. We calculate the posterior risk under the two decisions H_{0} and H_{1}.

$$
\begin{align*}
\rho\left(\pi^{*}, H_{0}\right) & =L\left(H_{0}, H_{0}\right) \pi_{0}^{*}+L\left(H_{1}, H_{0}\right) \pi_{1}^{*} \\
& =c_{00} \pi_{0}^{*}+c_{10} \pi_{1}^{*}, \tag{8}\\
\rho\left(\pi^{*}, H_{1}\right) & =L\left(H_{0}, H_{1}\right) \pi_{0}^{*}+L\left(H_{1}, H_{1}\right) \pi_{1}^{*} \\
& =c_{01} \pi_{0}^{*}+c_{11} \pi_{1}^{*} . \tag{9}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\rho\left(\pi^{*}, H_{0}\right)<\rho\left(\pi^{*}, H_{1}\right) & \Longleftrightarrow c_{00} \pi_{0}^{*}+c_{10} \pi_{1}^{*}<c_{01} \pi_{0}^{*}+c_{11} \pi_{1}^{*} \\
& \Longleftrightarrow\left(c_{00}-c_{01}\right) \pi_{0}^{*}<\left(c_{11}-c_{10}\right) \pi_{1}^{*} \\
& \Longleftrightarrow \frac{\pi_{0}^{*}}{\pi_{1}^{*}}>\frac{c_{11}-c_{10}}{c_{00}-c_{01}}=\frac{c_{10}-c_{11}}{c_{01}-c_{00}}
\end{aligned}
$$

since $c_{00}-c_{01}<0$ and $\pi_{1}^{*}>0$. Using equations (8) and (9) we thus have

$$
\begin{align*}
\rho\left(\pi^{*}, H_{0}\right)<\rho\left(\pi^{*}, H_{1}\right) & \Longleftrightarrow \frac{f_{0}(x) \pi_{0}}{f_{1}(x) \pi_{1}}>\frac{c_{10}-c_{11}}{c_{01}-c_{00}} \\
& \Longleftrightarrow \frac{f_{0}(x)}{f_{1}(x)}>\frac{\left(c_{10}-c_{11}\right) \pi_{1}}{\left(c_{01}-c_{00}\right) \pi_{0}}=c \tag{10}
\end{align*}
$$

since $\pi_{0} / \pi_{1}>0$ and thus $c>0$. The analogous arguments show that

$$
\begin{align*}
\rho\left(\pi^{*}, H_{0}\right)>\rho\left(\pi^{*}, H_{1}\right) & \Longleftrightarrow \frac{f_{0}(x)}{f_{1}(x)}<c \tag{11}\\
\rho\left(\pi^{*}, H_{0}\right)=\rho\left(\pi^{*}, H_{1}\right) & \Longleftrightarrow \frac{f_{0}(x)}{f_{1}(x)}=c \tag{12}
\end{align*}
$$

The decision rule $\delta(x)$ is chosen to minimise the posterior risk and so is H_{0} when (10) holds, H_{1} when (11) holds and is indifferent between H_{0} and H_{1} when (12) holds.

Wald's Complete Class Theorem states that a decision rule is admissible if and only if it is a Bayes rule for some prior distribution π with strictly positive values. Thus, all admissible decision rules have the form of $\delta(x)$.
4. Let X_{1}, \ldots, X_{n} be exchangeable random variables so that, conditional upon a parameter θ, the X_{i} are independent. Suppose that $X_{i} \mid \theta \sim N\left(\theta, \sigma^{2}\right)$ where the variance σ^{2} is known, and that $\theta \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ where the mean μ_{0} and variance σ_{0}^{2} are known. We wish to produce a point estimate d for θ, with loss function

$$
\begin{equation*}
L(\theta, d)=1-\exp \left\{-\frac{1}{2}(\theta-d)^{2}\right\} \tag{13}
\end{equation*}
$$

(a) Let $f(\theta)$ denote the probability density function of $\theta \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$. Show that $\rho(f, d)$, the risk of d under $f(\theta)$, can be expressed as

$$
\rho(f, d)=1-\frac{1}{\sqrt{1+\sigma_{0}^{2}}} \exp \left\{-\frac{1}{2\left(1+\sigma_{0}^{2}\right)}\left(d-\mu_{0}\right)^{2}\right\} .
$$

We calculate the risk of decision d under $f(\theta)$,

$$
\begin{align*}
\rho(f, d) & =\mathbb{E}\left[\left.1-\exp \left\{-\frac{1}{2}(\theta-d)^{2}\right\} \right\rvert\, \theta \sim f(\theta)\right] \\
& =1-\mathbb{E}\left[\left.\exp \left\{-\frac{1}{2}(\theta-d)^{2}\right\} \right\rvert\, \theta \sim f(\theta)\right] \\
& =1-\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}(\theta-d)^{2}\right\} \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}}\left(\theta-\mu_{0}\right)^{2}\right\} d \theta \\
& =1-\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{1}{2}\left((\theta-d)^{2}+\frac{1}{\sigma_{0}^{2}}\left(\theta-\mu_{0}\right)^{2}\right)\right\} d \theta \tag{14}
\end{align*}
$$

Now, using the result that

$$
(\theta-a)^{2}+b(\theta-c)^{2}=(1+b)\left(\theta-\frac{a+b c}{1+b}\right)^{2}+\left(\frac{b}{1+b}\right)(a-c)^{2}
$$

for any $a, b, c \in \mathbb{R}$ with $b \neq-1$ we have that

$$
\begin{align*}
(\theta-d)^{2}+\frac{1}{\sigma_{0}^{2}}\left(\theta-\mu_{0}\right)^{2} & =\left(\frac{1+\sigma_{0}^{2}}{\sigma_{0}^{2}}\right)\left(\theta-\frac{\sigma_{0}^{2} d+\mu_{0}}{1+\sigma_{0}^{2}}\right)^{2}+\frac{1}{1+\sigma_{0}^{2}}\left(d-\mu_{0}\right)^{2} \\
& =\left(\frac{1+\sigma_{0}^{2}}{\sigma_{0}^{2}}\right)(\theta-\tilde{\mu})^{2}+\frac{1}{1+\sigma_{0}^{2}}\left(d-\mu_{0}\right)^{2} \tag{15}
\end{align*}
$$

where $\tilde{\mu}=\frac{\sigma_{0}^{2} d+\mu_{0}}{1+\sigma_{0}^{2}}$. Substituting equation (15) into (14) gives
$\rho(f, d)=$

$$
\begin{equation*}
1-\exp \left\{\frac{-1}{2\left(1+\sigma_{0}^{2}\right)}\left(d-\mu_{0}\right)^{2}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{1+\sigma_{0}^{2}}{2 \sigma_{0}^{2}}(\theta-\tilde{\mu})^{2}\right\} d \theta \tag{16}
\end{equation*}
$$

We recognise the integrand as a kernel of a $N\left(\tilde{\mu}, \sigma_{0}^{2} /\left(1+\sigma_{0}^{2}\right)\right)$ distribution. Thus, as

$$
\int_{-\infty}^{\infty} \frac{\sqrt{1+\sigma_{0}^{2}}}{\sqrt{2 \pi} \sigma_{0}} \exp \left\{-\frac{1+\sigma_{0}^{2}}{2 \sigma_{0}^{2}}(\theta-\tilde{\mu})^{2}\right\} d \theta=1
$$

equation (16) becomes

$$
\rho(f, d)=1-\frac{1}{\sqrt{1+\sigma_{0}^{2}}} \exp \left\{-\frac{1}{2\left(1+\sigma_{0}^{2}\right)}\left(d-\mu_{0}\right)^{2}\right\}
$$

as required.
(b) Using part (a), show that the Bayes rule of an immediate decision is $d^{*}=\mu_{0}$ and find the corresponding Bayes risk.
$\rho(f, d)$ is minimised when $\frac{1}{\sqrt{1+\sigma_{0}^{2}}} \exp \left\{-\frac{1}{2\left(1+\sigma_{0}^{2}\right)}\left(d-\mu_{0}\right)^{2}\right\}$ is maximised.
This is when $d^{*}=\mu_{0}$. The corresponding Bayes risk is

$$
\rho^{*}(f)=\rho\left(f, d^{*}\right)=1-\frac{1}{\sqrt{1+\sigma_{0}^{2}}}
$$

(c) Find the Bayes rule and Bayes risk after observing $x=\left(x_{1}, \ldots, x_{n}\right)$. Express the Bayes rule as a weighted average of d^{*} and the maximum likelihood estimate of $\theta, \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, and interpret the weights.

As $X_{i} \mid \theta \sim N\left(\theta, \sigma^{2}\right)$ then

$$
\begin{aligned}
f(x \mid \theta) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\theta\right)^{2}\right\} \\
& \propto \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\theta^{2}-2 x_{i} \theta\right)\right\} \\
& =\exp \left\{-\frac{1}{2 \sigma^{2}}\left(n \theta^{2}-2 n \bar{x} \theta\right)\right\}
\end{aligned}
$$

where the proportionality is with respect to θ. Hence, as $\theta \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$,

$$
\begin{aligned}
f(\theta \mid x) & \propto f(x \mid \theta) f(\theta) \\
& \propto \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n \theta^{2}-2 n \bar{x} \theta\right)\right\} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}}\left(\theta^{2}-2 \mu_{0} \theta\right)\right\} \\
& =\exp \left\{-\frac{1}{2}\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)\left[\theta^{2}-2\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{n \bar{x}}{\sigma^{2}}\right) \theta\right]\right\},
\end{aligned}
$$

which we recognise as the kernel of a $N\left(\mu_{n}, \sigma_{n}^{2}\right)$ where

$$
\mu_{n}=\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{n \bar{x}}{\sigma^{2}}\right), \quad \sigma_{n}^{2}=\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}
$$

so that $\theta \mid x \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$. Thus, we have conjugacy. The solution of $[\Theta, \mathcal{D}, f(\theta \mid x)$, $L(\theta, d)]$ will be identical to that of $[\Theta, \mathcal{D}, f(\theta), L(\theta, d)]$ but with revised hyperparameters $\mu_{0} \mapsto \mu_{n}$ and $\sigma_{0}^{2} \mapsto \sigma_{n}^{2}$.

The Bayes rule after observing x is thus

$$
d^{*}(x)=\mu_{n}=\lambda \mu_{0}+(1-\lambda) \bar{x}
$$

where $\lambda=\frac{\left(1 / \sigma_{0}^{2}\right)}{\left(1 / \sigma_{0}^{2}\right)+\left(n / \sigma^{2}\right)}$. Thus, $d^{*}(x)$ is a weighted average of $d^{*}=\mu_{0}$ and \bar{x} weighted according to their respective precisions. The corresponding Bayes risk is

$$
\rho^{*}(f(\theta \mid x))=1-\frac{1}{\sqrt{1+\sigma_{n}^{2}}}
$$

(d) Suppose now, given data y, the parameter θ has the general posterior distribution $f(\theta \mid y)$. We wish to use the loss function $L(\theta, d)$, as given in equation (13), to find a point estimate d for θ. By considering an approximation of $L(\theta, d)$, or otherwise, what can you say about the corresponding Bayes rule?

To first-order, $e^{z}=1+z$ so that

$$
\begin{aligned}
L(\theta, d) & \approx 1-\left[1-\frac{1}{2}(\theta-d)^{2}\right] \\
& =\frac{1}{2}(\theta-d)^{2} \\
& \propto(\theta-d)^{2}
\end{aligned}
$$

Thus, $L(\theta, d)$ is approximately proportional to quadratic loss and so the Bayes rule may be equivalently found by considering the loss function to be quadratic loss. For the decision problem $\left[\Theta, \mathcal{D}, \pi(\theta),(\theta-d)^{2}\right]$ the Bayes rule is $\mathbb{E}(\theta \mid \theta \sim \pi(\theta))$ so for $\pi(\theta)=f(\theta \mid y)$ the corresponding Bayes rule is $\mathbb{E}(\theta \mid Y)$ which is thus the approximate Bayes rule for the loss function given in equation (13).

Confidence sets and p-values

5. Show that if p is a family of significance procedures then

$$
p\left(x ; \Theta_{0}\right)=\sup _{\theta \in \Theta_{0}} p(x ; \theta)
$$

is a significance procedure for the null hypothesis $\Theta_{0} \subset \Theta$, that is that $p\left(X ; \Theta_{0}\right)$ is super-uniform for every $\theta \in \Theta_{0}$.

Notice that, for all $\theta \in \Theta_{0}$,

$$
p\left(x ; \Theta_{0}\right) \leq u \quad \Longrightarrow \quad p(x ; \theta) \leq u
$$

Thus, by the containment rule, for all $\theta \in \Theta_{0}$,

$$
\begin{align*}
\mathbb{P}\left(p\left(X ; \Theta_{0}\right) \leq u \mid \theta\right) & \leq \mathbb{P}(p(X ; \theta) \leq u \mid \theta) \tag{17}\\
& \leq u \tag{18}
\end{align*}
$$

where equation (18) follows from (17) as p is a family of significance procedures. Hence, $p\left(X ; \Theta_{0}\right)$ is super-uniform for every $\theta \in \Theta_{0}$.
6. Suppose that, given $\theta, X_{1}, \ldots, X_{n}$ are independent and identically distributed $N(\theta, 1)$ random variables so that, given $\theta, \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(\theta, 1 / n)$.
(a) Consider the test of the hypotheses

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta=1
$$

using the statistic \bar{X} so that large observed values \bar{x} support H_{1}. For a given n, the corresponding p-value is

$$
p_{n}(\bar{x} ; 0)=\mathbb{P}(\bar{X} \geq \bar{x} \mid \theta=0)
$$

We wish to investigate how, for a fixed p-value, the likelihood ratio for H_{0} versus H_{1},

$$
L R\left(H_{0}, H_{1}\right) \quad:=\frac{f(\bar{x} \mid \theta=0)}{f(\bar{x} \mid \theta=1)}
$$

changes as n increases.
(i) Use \mathbf{R} to create a plot of $L R\left(H_{0}, H_{1}\right)$ for each $n \in\{1, \ldots, 20\}$ where, for each n, \bar{x} is the value which corresponds to a p-value of $\mathbf{0 . 0 5}$.

For $p=0.05$, for each n, we want to find \bar{x} such that $\mathbb{P}(\bar{X} \geq \bar{x} \mid \theta=0)=0.05$, that is \bar{x} is the 95 th quantile of $N(0,1 / n)$. The following R code can be used to create Figure 1; a log-scale has been used to present the plot slightly more attractively though this is not necessary.

```
alpha <- 0.05
nseq <- 1:20
logBF <- sapply(nseq, function(n){
sd <- 1 / sqrt(n)
z <- qnorm(1 - alpha, mean = 0, sd = sd)
dnorm(z, mean = 0, sd = sd, log = TRUE) -
dnorm(z, mean = 1, sd = sd, log = TRUE)
})
plot(nseq, exp(logBF), type = "b", pch = 16, log = "xy",
ylim = c(0.2, 15),
xlab = "Number of observations, n",
ylab = expression(paste("Likelihood ratio for ", H[0],
" versus ", H[1])), xpd = NA)
abline(h = 1, lty = 2)
```


Figure 1: The likelihood ratio for the hypothesis test $H_{0}: \theta=0$ versus $H_{1}: \theta=1$ where $\bar{X} \sim N(\theta, 1 / n)$ and the p-value is fixed at 0.05 .
(ii) Comment on your plot, in particular on what happens to the likelihood ratio as n increases. What is the implication for hypothesis testing and the corresponding (fixed) p-value?

Figure 1 shows that for small n a small p-value for H_{0} such as 0.05 corresponds to a likelihood ratio for H_{0} versus H_{1} of less than one, and so 'rejecting H_{0} in favour of H_{1} ' is supported by the evidence from the observations. But as n increases a p-value of 0.05 for H_{0} comes to correspond to a likelihood ratio that strongly favours H_{0} over H_{1}. By the time $n=20$ the likelihood ratio already exceeds 10 .
We conclude that a fixed threshold for a p-value is a very poor way of distinguishing between hypotheses. The moral of this story is that where there is an explicit H_{1} it should be used in a Neyman-Pearson test based on the likelihood ratio and with careful consideration of both size and power. In medical science the 'minimal clinically important difference' is the smallest gap between H_{0} and H_{1} that is interesting. It is used to do design calculations for sample size, but it can also be used to do hypothesis testing, rather than just p-valuing H_{0}.
(b) Consider the test of the hypotheses

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta>0
$$

using once again \bar{X} as the test statistic.
(i) Suppose that $\bar{x}>0$. Show that

$$
\operatorname{lr}\left(H_{0}, H_{1}\right):=\min _{\theta>0} \frac{f(\bar{x} \mid \theta=0)}{f(\bar{x} \mid \theta)}=\exp \left\{-\frac{n}{2} \bar{x}^{2}\right\}
$$

Since $\bar{X} \sim N(\theta, 1 / n)$ then

$$
\begin{aligned}
\operatorname{lr}\left(H_{0}, H_{1}\right) & =\min _{\theta>0} \exp \left\{-\frac{n}{2}\left[(\bar{x}-0)^{2}-(\bar{x}-\theta)^{2}\right]\right\} \\
& =\exp \left\{-\frac{n}{2} \bar{x}^{2}\right\}
\end{aligned}
$$

if $\bar{x}>0$ (and is equal to one otherwise).
(ii) Use \mathbf{R} to create a plot of $\operatorname{lr}\left(H_{0}, H_{0}\right)$ for a range of p-values for H_{0} from 0.001 to $0.1 .{ }^{2}$ Comment on whether the conventional choice of 0.05 is a suitable threshold for choosing between hypotheses, or whether some other choice might be better. ${ }^{3}$

The aim of this question is for fixed n to investigate how the likelihood ratio changes with the p-value. For each p-value α, \bar{x} is the $100(1-\alpha)$ th quantile of $N(0,1 / n)$. The following R code, taking $n=1$, can be used to create Figure 2.
pseq <- c $(0.001,0.002,0.005,0.01,0.02,0.05,0.1)$
z <- qnorm(1 - pseq, mean $=0$, sd = 1)
ell <- pmin(1, $\left.\exp \left(-(1 / 2) * z^{\wedge} 2\right)\right)$
plot(pseq, ell, type = "b", pch = 16, log = "xy",
xlab = "P-value", ylab = "Lower bound on likelihood ratio")

Figure 2: Lower bound on the likelihood ratio as a function of the p-value for H_{0} for the hypothesis test $H_{0}: \theta=0$ versus $H_{1}: \theta>0$ where $\bar{X} \sim N(\theta, 1 / n)$.

In this case, a p-value of 0.05 corresponds to a lower bound on the likelihood ratio of 0.26 . If we agree that a likelihood ratio of $1 / 20$ is starting to get interesting, then a p-value of a bit less than 0.01 is suggested for this model and these hypotheses.

[^1]
[^0]: ${ }^{1}$ See Section 5 of Berger, J. (1985). In defense of the likelihood principle: Axiomatics and coherency. Bayesian Statistics 2 (J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, Eds.), 33-66. NorthHolland.

[^1]: ${ }^{2}$ The plot doesn't depend upon the actual choice of n and so you may choose $n=1$.
 ${ }^{3}$ For the origins of the use of 0.05 see Cowles, M. and C. Davis (1982). On the origins of the .05 level of statistical significance. American Psychologist 37(5), 553-558.

