Solutions to APTS Assessment on Statistical Inference

Simon Shaw, s.shaw@bath.ac.uk University of Bath

Warwick, 13-16 December 2022

Principles for Statistical Inference

1. Consider Birnbaum's Theorem, $(WIP \land WCP) \leftrightarrow SLP$. In lectures, we showed that $(WIP \land WCP) \rightarrow SLP$ but not the converse. Hence, show that $SLP \rightarrow WIP$ and $SLP \rightarrow WCP$.

The Strong Likelihood Principle (SLP) states that if $\mathcal{E}_1 = \{\mathcal{X}_1, \Theta, f_{X_1}(x_1 | \theta)\}$ and $\mathcal{E}_2 = \{\mathcal{X}_2, \Theta, f_{X_2}(x_2 | \theta)\}$ are two experiments with the same parameter θ and if $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$ satisfy $f_{X_1}(x_1 | \theta) = c(x_1, x_2)f_{X_2}(x_2 | \theta)$ for some c > 0 for all $\theta \in \Theta$ then $Ev(\mathcal{E}_1, x_1) = Ev(\mathcal{E}_2, x_2).$

(a) $SLP \rightarrow WIP$.

The Weak Indifference Principle (WIP) states that for the experiment $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ if $f_X(x \mid \theta) = f_X(x' \mid \theta)$ for all $\theta \in \Theta$ then $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$.

In the SLP, let $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E}$ and suppose that $f_X(x \mid \theta) = f_X(x' \mid \theta)$ for all $\theta \in \Theta$. Hence, taking c(x, x') = 1, the SLP implies that $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$ which is the WIP.

(b) $SLP \rightarrow WCP$.

The Weak Conditionality Principle (WCP) states that if \mathcal{E}^* is the mixture of the experiments \mathcal{E}_1 and \mathcal{E}_2 according to mixture probabilities $p_1, p_2 = 1 - p_1$ then $Ev(\mathcal{E}^*, (i, x_i)) = Ev(\mathcal{E}_i, x_i)$.

For the mixture experiment we have $f^*((i, x_i) | \theta) = p_i f_{X_i}(x_i | \theta)$ for all $\theta \in \Theta$. Applying the SLP with $c((i, x_i), x_i) = p_i$ gives $Ev(\mathcal{E}^*, (i, x_i)) = Ev(\mathcal{E}_i, x_i)$ which is the WCP.

2. ¹Suppose that we have two discrete experiments $\mathcal{E}_1 = \{\mathcal{X}_1, \Theta, f_{X_1}(x_1 \mid \theta)\}$ and $\mathcal{E}_2 = \{\mathcal{X}_2, \Theta, f_{X_2}(x_2 \mid \theta)\}$ and that, for $x'_1 \in \mathcal{X}_1$ and $x'_2 \in \mathcal{X}_2$,

$$f_{X_1}(x_1' | \theta) = c f_{X_2}(x_2' | \theta)$$
(1)

for all θ where c is a positive constant not depending upon θ (but which may depend on x'_1, x'_2) and $f_{X_1}(x'_1 | \theta) > 0$. We wish to consider estimation of

¹See Section 5 of Berger, J. (1985). In defense of the likelihood principle: Axiomatics and coherency. *Bayesian Statistics 2* (J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, Eds.), 33-66. North-Holland.

 θ under a loss function $L(\theta, d)$ which is strictly convex in d for each θ . Thus, for all $d_1 \neq d_2 \in \mathcal{D}$, the decision space, and $\alpha \in (0, 1)$,

$$L(\theta, \alpha d_1 + (1 - \alpha)d_2) < \alpha L(\theta, d_1) + (1 - \alpha)L(\theta, d_2).$$

For the experiment \mathcal{E}_j , j = 1, 2, for the observation x_j we will use the decision rule $\delta_j(x_j)$ as our estimate of θ so that

$$\operatorname{Ev}(\mathcal{E}_j, x_j) = \delta_j(x_j).$$

Suppose that the inference violates the strong likelihood principle so that, whilst equation (1) holds, $\delta_1(x'_1) \neq \delta_2(x'_2)$.

(a) Let \mathcal{E}^* be the mixture of the experiments \mathcal{E}_1 and \mathcal{E}_2 according to mixture probabilities 1/2 and 1/2. For the outcome (j, x_j) the decision rule is $\delta(j, x_j)$. If the Weak Conditionality Principle (WCP) applies to \mathcal{E}^* show that

$$\delta(1, x_1') \neq \delta(2, x_2').$$

Under the WCP, $\operatorname{Ev}(\mathcal{E}^*, (j, x_j)) = \operatorname{Ev}(\mathcal{E}_j, x_j)$ so that $\delta(j, x_j) = \delta_j(x_j)$. Thus, if $\delta_1(x_1') \neq \delta_2(x_2')$ it immediately follows that $\delta(1, x_1') \neq \delta(2, x_2')$.

(b) An alternative decision rule for \mathcal{E}^* is

$$\delta^{*}(j, x_{j}) = \begin{cases} \frac{c}{c+1}\delta(1, x_{1}') + \frac{1}{c+1}\delta(2, x_{2}') & \text{if } x_{j} = x_{j}' \text{ for } j = 1, 2, \\ \delta(j, x_{j}) & \text{otherwise.} \end{cases}$$
(2)

Show that if the WCP applies to \mathcal{E}^* then δ^* dominates δ so that δ is inadmissible.

[Hint: First show that $R(\theta, \delta^*) = \frac{1}{2} \mathbb{E}[L(\theta, \delta^*(1, X_1)) \mid \theta] + \frac{1}{2} \mathbb{E}[L(\theta, \delta^*(2, X_2)) \mid \theta]$.]

In the mixture experiment the pair (j, x_j) are random and the classical risk for δ^* is

$$R(\theta, \delta^*) = \mathbb{E}[L(\theta, \delta^*(J, X_J)) | \theta]$$

$$= \sum_j \sum_{x_j} L(\theta, \delta^*(j, x_j)) f^*((j, x_j) | \theta)$$

$$= \sum_j \sum_{x_j} L(\theta, \delta^*(j, x_j)) \frac{1}{2} f_{X_j}(x_j | \theta)$$

$$= \frac{1}{2} \mathbb{E}[L(\theta, \delta^*(1, X_1)) | \theta] + \frac{1}{2} \mathbb{E}[L(\theta, \delta^*(2, X_2)) | \theta].$$
(3)

In an identical fashion it follows that

$$R(\theta,\delta) = \frac{1}{2}\mathbb{E}[L(\theta,\delta(1,X_1)) | \theta] + \frac{1}{2}\mathbb{E}[L(\theta,\delta(2,X_2)) | \theta].$$
(4)

Now, for each j = 1, 2, as $\delta^*(j, x_j) = \delta(j, x_j)$ for all $x_j \neq x'_j$,

$$\mathbb{E}[L(\theta, \delta^*(j, X_j)) | \theta] = \sum_{x_j} L(\theta, \delta^*(j, x_j)) f_{X_j}(x_j | \theta)$$

$$= \sum_{x_j} L(\theta, \delta(j, x_j)) f_{X_j}(x_j | \theta) + \{L(\theta, \delta^*(j, x'_j)) - L(\theta, \delta(j, x'_j))\} f_{X_j}(x'_j | \theta)$$

$$= \mathbb{E}[L(\theta, \delta(j, X_j)) | \theta] + \{L(\theta, \delta^*(j, x'_j)) - L(\theta, \delta(j, x'_j))\} f_{X_j}(x'_j | \theta).$$
(5)

Substituting, for each j, equation (5) into (3) and using (4) gives

$$R(\theta, \delta^{*}) = R(\theta, \delta) + \frac{1}{2} \{ L(\theta, \delta^{*}(1, x_{1}')) - L(\theta, \delta(1, x_{1}')) \} f_{X_{1}}(x_{1}' \mid \theta) + \frac{1}{2} \{ L(\theta, \delta^{*}(2, x_{2}')) - L(\theta, \delta(2, x_{2}')) \} f_{X_{2}}(x_{2}' \mid \theta)$$

$$= R(\theta, \delta) + \frac{1}{2} \{ L(\theta, \delta^{*}(1, x_{1}')) - L(\theta, \delta(1, x_{1}')) \} f_{X_{1}}(x_{1}' \mid \theta) + \frac{1}{2c} \{ L(\theta, \delta^{*}(2, x_{2}')) - L(\theta, \delta(2, x_{2}')) \} f_{X_{1}}(x_{1}' \mid \theta) (6) \}$$

using equation (1). Now, from equation (2), $\delta^*(1, x'_1) = \delta^*(2, x'_2)$ and so, for all θ , $L(\theta, \delta^*(1, x'_1)) = L(\theta, \delta^*(2, x'_2))$. Hence, (6) becomes

$$R(\theta, \delta^{*}) = R(\theta, \delta) + \frac{f_{X_{1}}(x'_{1} | \theta)}{2c} \{ (c+1)L(\theta, \delta^{*}(1, x'_{1})) - cL(\theta, \delta(1, x'_{1})) - L(\theta, \delta(2, x'_{2})) \} = R(\theta, \delta) + \frac{(c+1)f_{X_{1}}(x'_{1} | \theta)}{2c} A(\theta)$$
(7)

where

$$\begin{split} A(\theta) &= L(\theta, \delta^*(1, x_1')) - \frac{c}{c+1} L(\theta, \delta(1, x_1')) - \frac{1}{c+1} L(\theta, \delta(2, x_2')) \\ &= L\left(\theta, \frac{c}{c+1} \delta(1, x_1') + \frac{1}{c+1} \delta(2, x_2')\right) - \\ &\qquad \left(\frac{c}{c+1} L(\theta, \delta(1, x_1')) + \frac{1}{c+1} L(\theta, \delta(2, x_2'))\right) \\ &< 0 \end{split}$$

by the strict convexity of $L(\theta, d)$ in d for each θ as $\delta(1, x'_1) \neq \delta(2, x'_2)$. Hence, using equation (7), we have for each θ that

$$R(\theta, \delta^*) < R(\theta, \delta)$$

so that δ^* dominates δ and thus δ is inadmissible.

(c) Comment on the result of part (b).

Part (b) shows that if we use a decision rule which violates the SLP but retains the WCP then the corresponding decision rule of the mixture experiment, δ , also violates the SLP as $\delta(1, x'_1) \neq \delta(2, x'_2)$. Moreover, this rule is inadmissible and is dominated by a rule, δ^* , which does satisfy $\delta^*(1, x'_1) = \delta^*(2, x'_2)$ and so respects the SLP for the outcomes x'_1, x'_2 . As δ is inadmissible then we would not want to use it which suggests that violating the SLP is not advisable (if we accept the WCP) or a justification for not applying the WCP is required.

Statistical Decision Theory

3. Suppose we have a hypothesis test of two simple hypotheses

$$H_0: X \sim f_0$$
 versus $H_1: X \sim f_1$

so that if H_i is true then X has distribution $f_i(x)$. It is proposed to choose between H_0 and H_1 using the following loss function.

		Decision	
		H_0	H_1
Outcome	H_0	c_{00}	c_{01}
	H_1	c_{10}	c_{11}

where $c_{00} < c_{01}$ and $c_{11} < c_{10}$. Thus, $c_{ij} = L(H_i, H_j)$ is the loss when the 'true' hypothesis is H_i and the decision H_j is taken. Show that a decision rule $\delta(x)$ for choosing between H_0 and H_1 is admissible if and only if

$$\delta(x) = \begin{cases} H_0 & \text{if } \frac{f_0(x)}{f_1(x)} > c, \\ H_1 & \text{if } \frac{f_0(x)}{f_1(x)} < c, \\ \text{either } H_0 \text{ or } H_1 & \text{if } \frac{f_0(x)}{f_1(x)} = c, \end{cases}$$

for some critical value c > 0.

For the prior distribution $\pi = (\pi_0, \pi_1)$ where $\pi_i > 0$, let $\pi^* = (\pi_0^*, \pi_1^*)$ denote the posterior distribution so that

$$\begin{aligned} \pi_0^* &= & \mathbb{P}(H_0 \mid X = x) \\ &= & \frac{f_0(x)\pi_0}{f_0(x)\pi_0 + f_1(x)\pi_1}, \\ \pi_1^* &= & \mathbb{P}(H_1 \mid X = x) \\ &= & \frac{f_1(x)\pi_1}{f_0(x)\pi_0 + f_1(x)\pi_1}. \end{aligned}$$

As we also have $f_i(x) > 0$ for all $x \in \mathcal{X}$ then $\pi_i^* > 0$. We calculate the posterior risk under the two decisions H_0 and H_1 .

$$\rho(\pi^*, H_0) = L(H_0, H_0)\pi_0^* + L(H_1, H_0)\pi_1^*
= c_{00}\pi_0^* + c_{10}\pi_1^*,$$

$$\rho(\pi^*, H_1) = L(H_0, H_1)\pi_0^* + L(H_1, H_1)\pi_1^*$$
(8)

$$\begin{array}{l} n & (n_1) = - D(n_0, n_1) n_0 + D(n_1, n_1) n_1 \\ = - c_{01} \pi_0^* + c_{11} \pi_1^*. \end{array}$$

$$(9)$$

Thus,

$$\rho(\pi^*, H_0) < \rho(\pi^*, H_1) \iff c_{00}\pi_0^* + c_{10}\pi_1^* < c_{01}\pi_0^* + c_{11}\pi_1^*
\iff (c_{00} - c_{01})\pi_0^* < (c_{11} - c_{10})\pi_1^*
\iff \frac{\pi_0^*}{\pi_1^*} > \frac{c_{11} - c_{10}}{c_{00} - c_{01}} = \frac{c_{10} - c_{11}}{c_{01} - c_{00}}$$

since $c_{00} - c_{01} < 0$ and $\pi_1^* > 0$. Using equations (8) and (9) we thus have

$$\rho(\pi^*, H_0) < \rho(\pi^*, H_1) \quad \iff \quad \frac{f_0(x)\pi_0}{f_1(x)\pi_1} > \frac{c_{10} - c_{11}}{c_{01} - c_{00}} \\
\iff \quad \frac{f_0(x)}{f_1(x)} > \frac{(c_{10} - c_{11})\pi_1}{(c_{01} - c_{00})\pi_0} = c$$
(10)

since $\pi_0/\pi_1 > 0$ and thus c > 0. The analogous arguments show that

$$\rho(\pi^*, H_0) > \rho(\pi^*, H_1) \quad \iff \quad \frac{f_0(x)}{f_1(x)} < c$$
(11)

$$\rho(\pi^*, H_0) = \rho(\pi^*, H_1) \quad \iff \quad \frac{f_0(x)}{f_1(x)} = c$$
(12)

The decision rule $\delta(x)$ is chosen to minimise the posterior risk and so is H_0 when (10) holds, H_1 when (11) holds and is indifferent between H_0 and H_1 when (12) holds.

Wald's Complete Class Theorem states that a decision rule is admissible if and only if it is a Bayes rule for some prior distribution π with strictly positive values. Thus, all admissible decision rules have the form of $\delta(x)$.

4. Let X_1, \ldots, X_n be exchangeable random variables so that, conditional upon a parameter θ , the X_i are independent. Suppose that $X_i | \theta \sim N(\theta, \sigma^2)$ where the variance σ^2 is known, and that $\theta \sim N(\mu_0, \sigma_0^2)$ where the mean μ_0 and variance σ_0^2 are known. We wish to produce a point estimate d for θ , with loss function

$$L(\theta, d) = 1 - \exp\left\{-\frac{1}{2}(\theta - d)^2\right\}.$$
 (13)

(a) Let $f(\theta)$ denote the probability density function of $\theta \sim N(\mu_0, \sigma_0^2)$. Show that $\rho(f, d)$, the risk of d under $f(\theta)$, can be expressed as

$$\rho(f,d) = 1 - \frac{1}{\sqrt{1 + \sigma_0^2}} \exp\left\{-\frac{1}{2(1 + \sigma_0^2)}(d - \mu_0)^2\right\}.$$

We calculate the risk of decision d under $f(\theta)$,

$$\rho(f,d) = \mathbb{E}\left[1 - \exp\left\{-\frac{1}{2}(\theta - d)^2\right\} \middle| \theta \sim f(\theta)\right]$$

$$= 1 - \mathbb{E}\left[\exp\left\{-\frac{1}{2}(\theta - d)^2\right\} \middle| \theta \sim f(\theta)\right]$$

$$= 1 - \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2}(\theta - d)^2\right\} \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left\{-\frac{1}{2\sigma_0^2}(\theta - \mu_0)^2\right\} d\theta$$

$$= 1 - \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left\{-\frac{1}{2}\left((\theta - d)^2 + \frac{1}{\sigma_0^2}(\theta - \mu_0)^2\right)\right\} d\theta. \quad (14)$$

Now, using the result that

$$(\theta - a)^{2} + b(\theta - c)^{2} = (1 + b)\left(\theta - \frac{a + bc}{1 + b}\right)^{2} + \left(\frac{b}{1 + b}\right)(a - c)^{2}$$

for any $a, b, c \in \mathbb{R}$ with $b \neq -1$ we have that

$$(\theta - d)^{2} + \frac{1}{\sigma_{0}^{2}} (\theta - \mu_{0})^{2} = \left(\frac{1 + \sigma_{0}^{2}}{\sigma_{0}^{2}}\right) \left(\theta - \frac{\sigma_{0}^{2}d + \mu_{0}}{1 + \sigma_{0}^{2}}\right)^{2} + \frac{1}{1 + \sigma_{0}^{2}} (d - \mu_{0})^{2}$$
$$= \left(\frac{1 + \sigma_{0}^{2}}{\sigma_{0}^{2}}\right) (\theta - \tilde{\mu})^{2} + \frac{1}{1 + \sigma_{0}^{2}} (d - \mu_{0})^{2}$$
(15)

where $\tilde{\mu} = \frac{\sigma_0^2 d + \mu_0}{1 + \sigma_0^2}$. Substituting equation (15) into (14) gives

$$\rho(f,d) = 1 - \exp\left\{\frac{-1}{2(1+\sigma_0^2)}(d-\mu_0)^2\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left\{-\frac{1+\sigma_0^2}{2\sigma_0^2}(\theta-\tilde{\mu})^2\right\} d\theta$$
(16)

We recognise the integrand as a kernel of a $N(\tilde{\mu},\sigma_0^2/(1+\sigma_0^2))$ distribution. Thus, as

$$\int_{-\infty}^{\infty} \frac{\sqrt{1+\sigma_0^2}}{\sqrt{2\pi}\sigma_0} \exp\left\{-\frac{1+\sigma_0^2}{2\sigma_0^2}(\theta-\tilde{\mu})^2\right\} d\theta = 1,$$

equation (16) becomes

$$\rho(f,d) = 1 - \frac{1}{\sqrt{1 + \sigma_0^2}} \exp\left\{-\frac{1}{2(1 + \sigma_0^2)}(d - \mu_0)^2\right\}$$

as required.

(b) Using part (a), show that the Bayes rule of an immediate decision is $d^* = \mu_0$ and find the corresponding Bayes risk.

 $\rho(f,d)$ is minimised when $\frac{1}{\sqrt{1+\sigma_0^2}} \exp\left\{-\frac{1}{2(1+\sigma_0^2)}(d-\mu_0)^2\right\}$ is maximised. This is when $d^* = \mu_0$. The corresponding Bayes risk is

$$\rho^*(f) = \rho(f, d^*) = 1 - \frac{1}{\sqrt{1 + \sigma_0^2}}$$

(c) Find the Bayes rule and Bayes risk after observing $x = (x_1, \ldots, x_n)$. Express the Bayes rule as a weighted average of d^* and the maximum likelihood estimate of θ , $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, and interpret the weights.

As $X_i \mid \theta \sim N(\theta, \sigma^2)$ then

$$f(x \mid \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^{2}}(x_{i} - \theta)^{2}\right\}$$
$$\propto \exp\left\{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(\theta^{2} - 2x_{i}\theta)\right\}$$
$$= \exp\left\{-\frac{1}{2\sigma^{2}}(n\theta^{2} - 2n\overline{x}\theta)\right\}$$

where the proportionality is with respect to θ . Hence, as $\theta \sim N(\mu_0, \sigma_0^2)$,

$$\begin{aligned} f(\theta \,|\, x) &\propto f(x \,|\, \theta) f(\theta) \\ &\propto \exp\left\{-\frac{1}{2\sigma^2}(n\theta^2 - 2n\overline{x}\theta)\right\} \exp\left\{-\frac{1}{2\sigma_0^2}(\theta^2 - 2\mu_0\theta)\right\} \\ &= \exp\left\{-\frac{1}{2}\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right) \left[\theta^2 - 2\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}\left(\frac{\mu_0}{\sigma_0^2} + \frac{n\overline{x}}{\sigma^2}\right)\theta\right]\right\}, \end{aligned}$$

which we recognise as the kernel of a $N(\mu_n, \sigma_n^2)$ where

$$\mu_n = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\overline{x}}{\sigma^2}\right), \qquad \sigma_n^2 = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}$$

so that $\theta \mid x \sim N(\mu_n, \sigma_n^2)$. Thus, we have conjugacy. The solution of $[\Theta, \mathcal{D}, f(\theta \mid x), L(\theta, d)]$ will be identical to that of $[\Theta, \mathcal{D}, f(\theta), L(\theta, d)]$ but with revised hyperparameters $\mu_0 \mapsto \mu_n$ and $\sigma_0^2 \mapsto \sigma_n^2$.

The Bayes rule after observing x is thus

$$d^*(x) = \mu_n = \lambda \mu_0 + (1 - \lambda)\overline{x}$$

where $\lambda = \frac{(1/\sigma_0^2)}{(1/\sigma_0^2) + (n/\sigma^2)}$. Thus, $d^*(x)$ is a weighted average of $d^* = \mu_0$ and \overline{x} weighted according to their respective precisions. The corresponding Bayes risk is

$$\rho^*(f(\theta \,|\, x)) = 1 - \frac{1}{\sqrt{1 + \sigma_n^2}}.$$

(d) Suppose now, given data y, the parameter θ has the general posterior distribution $f(\theta | y)$. We wish to use the loss function $L(\theta, d)$, as given in equation (13), to find a point estimate d for θ . By considering an approximation of $L(\theta, d)$, or otherwise, what can you say about the corresponding Bayes rule?

To first-order, $e^z = 1 + z$ so that

$$L(\theta, d) \approx 1 - \left[1 - \frac{1}{2}(\theta - d)^2\right]$$
$$= \frac{1}{2}(\theta - d)^2$$
$$\propto (\theta - d)^2.$$

Thus, $L(\theta, d)$ is approximately proportional to quadratic loss and so the Bayes rule may be equivalently found by considering the loss function to be quadratic loss. For the decision problem $[\Theta, \mathcal{D}, \pi(\theta), (\theta-d)^2]$ the Bayes rule is $\mathbb{E}(\theta | \theta \sim \pi(\theta))$ so for $\pi(\theta) = f(\theta | y)$ the corresponding Bayes rule is $\mathbb{E}(\theta | Y)$ which is thus the approximate Bayes rule for the loss function given in equation (13).

Confidence sets and *p*-values

5. Show that if p is a family of significance procedures then

$$p(x;\Theta_0) = \sup_{\theta \in \Theta_0} p(x;\theta)$$

is a significance procedure for the null hypothesis $\Theta_0 \subset \Theta$, that is that $p(X;\Theta_0)$ is super-uniform for every $\theta \in \Theta_0$.

Notice that, for all $\theta \in \Theta_0$,

$$p(x;\Theta_0) \le u \implies p(x;\theta) \le u.$$

Thus, by the containment rule, for all $\theta \in \Theta_0$,

$$\mathbb{P}(p(X;\Theta_0) \le u \,|\, \theta) \le \mathbb{P}(p(X;\theta) \le u \,|\, \theta)$$
(17)

where equation (18) follows from (17) as p is a family of significance procedures. Hence, $p(X; \Theta_0)$ is super-uniform for every $\theta \in \Theta_0$.

 $\leq u$

- 6. Suppose that, given θ , X_1, \ldots, X_n are independent and identically distributed $N(\theta, 1)$ random variables so that, given θ , $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\theta, 1/n)$.
 - (a) Consider the test of the hypotheses

$$H_0: \theta = 0$$
 versus $H_1: \theta = 1$

using the statistic \overline{X} so that large observed values \overline{x} support H_1 . For a given *n*, the corresponding *p*-value is

$$p_n(\overline{x}; 0) = \mathbb{P}(\overline{X} \ge \overline{x} \mid \theta = 0)$$

We wish to investigate how, for a fixed *p*-value, the likelihood ratio for H_0 versus H_1 ,

$$LR(H_0, H_1) := \frac{f(\overline{x} \mid \theta = 0)}{f(\overline{x} \mid \theta = 1)}$$

changes as n increases.

(i) Use R to create a plot of $LR(H_0, H_1)$ for each $n \in \{1, ..., 20\}$ where, for each n, \overline{x} is the value which corresponds to a *p*-value of 0.05.

For p = 0.05, for each n, we want to find \overline{x} such that $\mathbb{P}(\overline{X} \ge \overline{x} | \theta = 0) = 0.05$, that is \overline{x} is the 95th quantile of N(0, 1/n). The following R code can be used to create Figure 1; a log-scale has been used to present the plot slightly more attractively though this is not necessary.

```
alpha <- 0.05
nseq <- 1:20
logBF <- sapply(nseq, function(n){
sd <- 1 / sqrt(n)
z <- qnorm(1 - alpha, mean = 0, sd = sd)
dnorm(z, mean = 0, sd = sd, log = TRUE) -
dnorm(z, mean = 1, sd = sd, log = TRUE)
})
plot(nseq, exp(logBF), type = "b", pch = 16, log = "xy",
ylim = c(0.2, 15),
xlab = "Number of observations, n",
ylab = expression(paste("Likelihood ratio for ", H[0],
" versus ", H[1])), xpd = NA)
abline(h = 1, lty = 2)
```


Figure 1: The likelihood ratio for the hypothesis test $H_0: \theta = 0$ versus $H_1: \theta = 1$ where $\overline{X} \sim N(\theta, 1/n)$ and the *p*-value is fixed at 0.05.

(ii) Comment on your plot, in particular on what happens to the likelihood ratio as n increases. What is the implication for hypothesis testing and the corresponding (fixed) p-value?

Figure 1 shows that for small n a small p-value for H_0 such as 0.05 corresponds to a likelihood ratio for H_0 versus H_1 of less than one, and so 'rejecting H_0 in favour of H_1 ' is supported by the evidence from the observations. But as n increases a p-value of 0.05 for H_0 comes to correspond to a likelihood ratio that strongly favours H_0 over H_1 . By the time n = 20 the likelihood ratio already exceeds 10.

We conclude that a fixed threshold for a *p*-value is a very poor way of distinguishing between hypotheses. The moral of this story is that where there is an explicit H_1 it should be used in a Neyman-Pearson test based on the likelihood ratio and with careful consideration of both size and power. In medical science the 'minimal clinically important difference' is the smallest gap between H_0 and H_1 that is interesting. It is used to do design calculations for sample size, but it can also be used to do hypothesis testing, rather than just *p*-valuing H_0 .

(b) Consider the test of the hypotheses

$$H_0: \theta = 0$$
 versus $H_1: \theta > 0$

using once again \overline{X} as the test statistic.

(i) Suppose that $\overline{x} > 0$. Show that

$$lr(H_0, H_1) := \min_{\theta > 0} \frac{f(\overline{x} \,|\, \theta = 0)}{f(\overline{x} \,|\, \theta)} = \exp\left\{-\frac{n}{2}\overline{x}^2\right\}.$$

Since $\overline{X} \sim N(\theta, 1/n)$ then

$$lr(H_0, H_1) = \min_{\theta > 0} \exp\left\{-\frac{n}{2}\left[(\overline{x} - 0)^2 - (\overline{x} - \theta)^2\right]\right\}$$
$$= \exp\left\{-\frac{n}{2}\overline{x}^2\right\}$$

if $\overline{x} > 0$ (and is equal to one otherwise).

(ii) Use R to create a plot of $lr(H_0, H_0)$ for a range of *p*-values for H_0 from 0.001 to 0.1.² Comment on whether the conventional choice of 0.05 is a suitable threshold for choosing between hypotheses, or whether some other choice might be better.³

The aim of this question is for fixed n to investigate how the likelihood ratio changes with the *p*-value. For each *p*-value α , \overline{x} is the $100(1-\alpha)$ th quantile of N(0, 1/n). The following R code, taking n = 1, can be used to create Figure 2. pseq <- c(0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1)

Figure 2: Lower bound on the likelihood ratio as a function of the *p*-value for H_0 for the hypothesis test $H_0: \theta = 0$ versus $H_1: \theta > 0$ where $\overline{X} \sim N(\theta, 1/n)$.

In this case, a p-value of 0.05 corresponds to a lower bound on the likelihood ratio of 0.26. If we agree that a likelihood ratio of 1/20 is starting to get interesting, then a p-value of a bit less than 0.01 is suggested for this model and these hypotheses.

²The plot doesn't depend upon the actual choice of n and so you may choose n = 1.

³For the origins of the use of 0.05 see Cowles, M. and C. Davis (1982). On the origins of the .05 level of statistical significance. *American Psychologist* 37(5), 553-558.