Statistical Inference Lecture Two

https://people.bath.ac.uk/masss/APTS/2022-23/LectureTwo.pdf

Simon Shaw

University of Bath

APTS, 13-16 December 2022

Overview of Lecture Two

In Lecture One we considered a number of statistical principles.

- Weak Indifference Principle, WIP: if $f_X(x \mid \theta) = f_X(x' \mid \theta)$ for all $\theta \in \Theta$ then $\text{Ev}(\mathcal{E}, x) = \text{Ev}(\mathcal{E}, x')$.
- Distribution Principle, DP: if $\mathcal{E} = \mathcal{E}'$, then $\text{Ev}(\mathcal{E}, x) = \text{Ev}(\mathcal{E}', x)$.
- Transformation Principle, TP: for the bijective $g: \mathcal{X} \to \mathcal{Y}$, construct $\mathcal{E}^g = \{\mathcal{Y}, \Theta, f_Y(y \mid \theta)\}$. Then $\mathsf{Ev}(\mathcal{E}, x) = \mathsf{Ev}(\mathcal{E}^g, g(x))$.
- (DP \wedge TP) \rightarrow WIP.
- Weak Conditionality Principle, WCP: if \mathcal{E}^* is the mixture of the experiments \mathcal{E}_1 , \mathcal{E}_2 according to mixture probabilities p_1 , $p_2 = 1 p_1$. then $\text{Ev}\left(\mathcal{E}^*, (i, x_i)\right) = \text{Ev}(\mathcal{E}_i, x_i)$.
- Strong Likelihood Principle, SLP: if $f_{X_1}(x_1 \mid \theta) = c(x_1, x_2) f_{X_2}(x_2 \mid \theta)$, for some function c > 0 for all $\theta \in \Theta$ then $\text{Ev}(\mathcal{E}_1, x_1) = \text{Ev}(\mathcal{E}_2, x_2)$.
- Birnbaum's Theorem: $(WIP \land WCP) \leftrightarrow SLP$.

Overview of Lecture Two continued

In this lecture we will introduce some final principles, and consider the likelihood principle in practice.

- Strong Sufficiency Principle, SSP: if S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ then $\text{Ev}(\mathcal{E}, x) = \text{Ev}(\mathcal{E}^S, s(x))$.
- Weak Sufficiency Principle, WSP: if S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ and s(x) = s(x') then $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$.
- SLP \rightarrow SSP \rightarrow WSP \rightarrow WIP.
- Stopping Rule Principle, SRP: in a sequential experiment \mathcal{E}^{τ} , Ev $(\mathcal{E}^{\tau}, (x_1, \dots, x_n))$ does not depend on the stopping rule τ .
- SLP \rightarrow SRP.
- Y is ancillary if $f_{X,Y}(x,y \mid \theta) = f_Y(y)f_{X|Y}(x \mid y,\theta)$.
- Strong Conditionality Principle, SCP: If Y is ancillary then $\text{Ev}(\mathcal{E},(x,y)) = \text{Ev}(\mathcal{E}^{X|y},x)$.

The Sufficiency Principle

• Recall the idea of sufficiency: if S = s(X) is sufficient for θ then

$$f_X(x | \theta) = f_{X|S}(x | s, \theta) f_S(s | \theta)$$

where $f_{X|S}(x \mid s, \theta)$ does not depend upon θ .

• Consequently, consider the experiment $\mathcal{E}^{S} = \{s(\mathcal{X}), \Theta, f_{S}(s \mid \theta)\}.$

Principle 6: Strong Sufficiency Principle, SSP

If S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ then $\mathsf{Ev}(\mathcal{E}, x) = \mathsf{Ev}(\mathcal{E}^S, s(x))$.

Principle 7: Weak Sufficiency Principle, WSP

If S = s(X) is a sufficient statistic for $\mathcal{E} = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$ and s(x) = s(x') then $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$.

4 D > 4 A > 4 B > 4 B > B 9 Q (

Theorem

 $SLP \rightarrow SSP \rightarrow WSP \rightarrow WIP$.

Proof

As s is sufficient, $f_X(x \mid \theta) = cf_S(s \mid \theta)$ where $c = f_{X \mid S}(x \mid s, \theta)$ does not depend on θ . Applying the SLP, $\text{Ev}(\mathcal{E}, x) = \text{Ev}(\mathcal{E}^S, s(x))$ which is the SSP. Note, that from the SSP.

$$Ev(\mathcal{E}, x) = Ev(\mathcal{E}^{S}, s(x))$$
 (by the SSP)
= $Ev(\mathcal{E}^{S}, s(x'))$ (as $s(x) = s(x')$)
= $Ev(\mathcal{E}, x')$ (by the SSP)

We thus have the WSP. Finally, if $f_X(x \mid \theta) = f_X(x' \mid \theta)$ as in the statement of WIP then s(x) = x' is sufficient for x. Hence, from the WSP, $Ev(\mathcal{E}, x) = Ev(\mathcal{E}, x')$ giving the WIP.

5/25

If we put together the last two theorems, we get the following corollary.

Corollary

 $(\mathsf{WIP} \land \mathsf{WCP}) \to \mathsf{SSP}.$

Proof

From Birnbaum's theorem, (WIP \land WCP) \leftrightarrow SLP and from the previous theorem, SLP \rightarrow SSP.

- Birnbaum's (1962) original result combined sufficiency and conditionality for the likelihood but he revised this to the WIP and WCP in later work.
- One advantage of this is that it reduces the dependency on sufficiency: Pitman-Koopman-Darmois Theorem states that sufficiency more-or-less characterises the exponential family.

Stopping rules

- Consider observing a sequence of random variables $X_1, X_2,...$ where the number of observations is not fixed in advance but depends on the values seen so far.
 - At time j, the decision to observe X_{j+1} can be modelled by a probability $p_j(x_1, \ldots, x_j)$.
 - We assume, resources being finite, that the experiment must stop at specified time m, if it has not stopped already, hence $p_m(x_1, \ldots, x_m) = 0$.
- The stopping rule may then be denoted as $\tau = (p_1, \ldots, p_m)$. This gives an experiment \mathcal{E}^{τ} with, for $n = 1, 2, \ldots, f_n(x_1, \ldots, x_n \mid \theta)$ where consistency requires that

$$f_n(x_1,...,x_n | \theta) = \sum_{x_{n+1}} \cdots \sum_{x_m} f_m(x_1,...,x_n,x_{n+1},...x_m | \theta).$$

Motivation for the stopping rule principle (Basu, 1975)

- Consider four different coin-tossing experiments (with some finite limit on the number of tosses).
 - \mathcal{E}_1 Toss the coin exactly 10 times;
 - \mathcal{E}_2 Continue tossing until 6 heads appear;
 - \mathcal{E}_3 Continue tossing until 3 consecutive heads appear;
 - Continue tossing until the accumulated number of heads exceeds that of tails by exactly 2.
- Suppose that all four experiments have the same outcome
 x = (T,H,T,T,H,H,T,H,H,H).
- We may feel that the evidence for θ , the probability of heads, is the same in every case.
 - Once the sequence of heads and tails is known, the intentions of the original experimenter (i.e. the experiment she was doing) are immaterial to inference about the probability of heads.
 - ▶ The simplest experiment \mathcal{E}_1 can be used for inference.

Principle 8: Stopping Rule Principle, SRP

^a In a sequential experiment \mathcal{E}^{τ} , Ev $(\mathcal{E}^{\tau},(x_1,\ldots,x_n))$ does not depend on the stopping rule τ .

^aBasu (1975) claims the SRP is due to George Barnard (1915-2002)

- If it is accepted, the SRP is nothing short of revolutionary.
- It implies that the intentions of the experimenter, represented by τ , are irrelevant for making inferences about θ , once the observations (x_1,\ldots,x_n) are known.
- Once the data is observed, we can ignore the sampling plan.
- The statistician could proceed as though the simplest possible stopping rule were in effect, which is $p_1 = \cdots = p_{n-1} = 1$ and $p_n = 0$, an experiment with *n* fixed in advance, $\mathcal{E}^n = \{\mathcal{X}_{1:n}, \Theta, f_n(x_{1:n} \mid \theta)\}.$
- Can the SRP possibly be justified? Indeed it can.

Theorem

 $SLP \rightarrow SRP$.

Proof

Let τ be an arbitrary stopping rule, and consider the outcome (x_1, \ldots, x_n) , which we will denote as $x_{1:n}$.

- We take the first observation with probability one.
- For j = 1, ..., n 1, the (j + 1)th observation is taken with probability $p_i(x_{1:i})$.
- We stop after the *n*th observation with probability $1 p_n(x_{1:n})$.

Consequently, the probability of this outcome under τ is

$$f_{\tau}(x_{1:n} \mid \theta) = f_{1}(x_{1} \mid \theta) \left\{ \prod_{j=1}^{n-1} p_{j}(x_{1:j}) f_{j+1}(x_{j+1} \mid x_{1:j}, \theta) \right\} (1 - p_{n}(x_{1:n}))$$

4日本4個本4日本4日本 日

Proof continued

$$f_{\tau}(x_{1:n} | \theta) = \left\{ \prod_{j=1}^{n-1} p_{j}(x_{1:j}) \right\} (1 - p_{n}(x_{1:n})) f_{1}(x_{1} | \theta) \prod_{j=2}^{n} f_{j}(x_{j} | x_{1:(j-1)}, \theta)$$

$$= \left\{ \prod_{j=1}^{n-1} p_{j}(x_{1:j}) \right\} (1 - p_{n}(x_{1:n})) f_{n}(x_{1:n} | \theta).$$

Now observe that this equation has the form

$$f_{\tau}(x_{1:n} | \theta) = c(x_{1:n}) f_{n}(x_{1:n} | \theta)$$
 (1)

where $c(x_{1:n}) > 0$. Thus the SLP implies that $\text{Ev}(\mathcal{E}^{\tau}, x_{1:n}) = \text{Ev}(\mathcal{E}^{n}, x_{1:n})$ where $\mathcal{E}^{n} = \{\mathcal{X}_{1:n}, \Theta, f_{n}(x_{1:n} | \theta)\}$. Since the choice of stopping rule was arbitrary, equation (1) holds for all stopping rules, showing that the choice of stopping rule is irrelevant.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

A comment from Leonard Jimmie Savage (1917-1971), one of the great statisticians of the Twentieth Century, captured the revolutionary and transformative nature of the SRP.

May I digress to say publicly that I learned the stopping rule principle from Professor Barnard, in conversation in the summer of 1952. Frankly, I then thought it a scandal that anyone in the profession could advance an idea so patently wrong, even as today I can scarcely believe that some people resist an idea so patently right. (Savage et al., 1962, p76)

A stronger form of the WCP

- We consider the concept of ancillarity.
- This has several different definitions in the Statistics literature; the one we use is close to that of Cox and Hinkley (1974, Section 2.2).

Definition (Ancillarity)

Y is ancillary in the experiment $\mathcal{E} = \{\mathcal{X} \times \mathcal{Y}, \Theta, f_{X,Y}(x,y \mid \theta)\}$ exactly when $f_{X,Y}$ factorises as

$$f_{X,Y}(x,y \mid \theta) = f_Y(y)f_{X|Y}(x \mid y,\theta).$$

- The marginal distribution of Y is completely specified: it does not depend on θ .
- We could extend this to consider an extended parameter set, say (λ, θ) where λ is a nuisance parameter and θ is the parameter of interest.
- Ancillarity would be that f_Y doesn't depend on θ but may on λ whilst $f_{X|Y}$ depends on θ but doesn't depend on λ .

APTS, 13-16 December 2022 13

- Not all families of distributions will factorise in this way, but when they do, there are new possibilities for inference, based around stronger forms of the WCP.
- A familiar example is that of a random sample size: in a sample $x = (x_1, \dots, x_n)$, n may be the outcome of a random variable N.
- We seldom concern ourselves with the distribution of N when we evaluate x; instead we treat N as known.
- Equivalently, we treat N as ancillary and condition on N = n.
- In this case, we might think that inferences drawn from observing (n, x) should be the same as those for x conditioned on x = x.

When Y is ancillary, we can consider the conditional experiment

$$\mathcal{E}^{X \mid y} = \{ \mathcal{X}, \Theta, f_{X \mid Y}(x \mid y, \theta) \}.$$

• That is, we treat Y as known, and treat X (conditional on Y = y) as the only random variable.

Principle 9: Strong Conditionality Principle, SCP

If Y is ancillary in \mathcal{E} , then $\text{Ev}(\mathcal{E},(x,y)) = \text{Ev}(\mathcal{E}^{X|y},x)$.

- The SCP is invoked (implicitly) when we perform a regression of Y on X: (X,Y) is random, but X is treated as ancillary for the parameters in $f_{Y|X}$. We model Y conditionally on X, treating X as known.
- Clearly the SCP implies the WCP, with the experiment indicator $I \in \{1, 2\}$ being ancillary, since p is known.

4 D > 4 B > 4 B > 4 B > 9 Q P

Theorem

 $SLP \rightarrow SCP$.

Proof

Suppose that Y is ancillary in $\mathcal{E} = \{ \mathcal{X} \times \mathcal{Y}, \Theta, f_{X,Y}(x,y \mid \theta) \}$. Thus, for all $\theta \in \Theta$.

$$f_{X,Y}(x,y \mid \theta) = f_{Y}(y)f_{X\mid Y}(x \mid y,\theta)$$
$$= c(y)f_{X\mid Y}(x \mid y,\theta)$$

Then the SLP implies that

$$\mathsf{Ev}\left(\mathcal{E},(x,y)\right) \ = \ \mathsf{Ev}(\mathcal{E}^{X|y},x),$$

as required.

• From Birnbaum's Theorem, (WIP \land WCP) \leftrightarrow SLP so, as $SLP \rightarrow SCP$, the WIP allows us to 'upgrade' the WCP to the SCP.

The Likelihood Principle in practice

• We consider whether there is any inferential approach which respects the SLP? Or do all inferential approaches respect it?

A Bayesian statistical model is the collection

$$\mathcal{E}_B = \{\mathcal{X}, \Theta, f_X(x \mid \theta), \pi(\theta)\}.$$

The posterior distribution is $\pi(\theta \mid x) = c(x)f_X(x \mid \theta)\pi(\theta)$ where c(x) is the normalising constant,

$$c(x) = \left\{ \int_{\Theta} f_X(x \mid \theta) \pi(\theta) d\theta \right\}^{-1}.$$

- All knowledge about θ given the data x are represented by $\pi(\theta \mid x)$.
- ullet Any inferences made about heta are derived from this distribution.

- Consider two Bayesian models with the same prior distribution, $\mathcal{E}_{B,1} = \{ \mathcal{X}_1, \Theta, f_{X_1}(x_1 | \theta), \pi(\theta) \}$ and $\mathcal{E}_{B,2} = \{ \mathcal{X}_2, \Theta, f_{X_2}(x_2 | \theta), \pi(\theta) \}$
- Suppose that $f_{X_1}(x_1 | \theta) = c(x_1, x_2) f_{X_2}(x_2 | \theta)$. Then

$$\pi_1(\theta \mid x_1) = c(x_1) f_{X_1}(x_1 \mid \theta) \pi(\theta) = c(x_1) c(x_1, x_2) f_{X_2}(x_2 \mid \theta) \pi(\theta)$$
$$= \pi_2(\theta \mid x_2)$$

- Hence, the posterior distributions are the same. Consequently, the same inferences are drawn from either model and so the Bayesian approach satisfies the SLP.
- This assumes that $\pi(\theta)$ does not depend upon the form of the data.
- Some methods for making default choices for $\pi(\theta)$ depend on $f_X(x \mid \theta)$, notably Jeffreys priors and reference priors. These methods violate the SLP.

- Maximum likelihood estimation clearly satisfies the SLP and methods, such as penalised likelihood theory, have been generated to satisfy the SLP.
- However, inference tools used in the classical approach typically violate the SLP.
- Inference techniques depend upon the sampling distribution and so they depend on the whole sample space \mathcal{X} and not just the observed $x \in \mathcal{X}$
- Sampling distribution depends on values of f_X other than $L(\theta; x) = f_X(x | \theta).$
- For a statistic T(X), $MSE(T | \theta) = Var(T | \theta) + bias(T | \theta)^2$ depends upon the first and second moments of the distribution of $T \mid \theta$.

Example, Robert (2007)

• Suppose that X_1, X_2 are iid $N(\theta, 1)$ so that

$$f(x_1, x_2 \mid \theta) \propto \exp \left\{-(\overline{x} - \theta)^2\right\}.$$

ullet Consider the alternate model for the same parameter heta

$$g(x_1, x_2 | \theta) = \pi^{-\frac{3}{2}} \frac{\exp \left\{-(\overline{x} - \theta)^2\right\}}{1 + (x_1 - x_2)^2}$$

- Thus, $f(x_1, x_2 | \theta) \propto g(x_1, x_2 | \theta)$ as a function of θ . If the SLP is applied, then inference about θ should be the same in both models.
- The distribution of g is quite different from that of f and so estimators of θ will have different classical properties if they do not depend only on $\overline{\mathbf{x}}$.
- For example, g has heavier tails than f and so respective confidence intervals may differ between the two.

Binomial and Negative Binomial example

• Let $\mathcal{E}_1 = \{\mathcal{X}, \Theta, f_X(x \mid \theta)\}$, where $X \mid \theta \sim Bin(n, \theta)$ so that

$$f_X(x | \theta) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}, \quad x = 0, 1, \dots, n.$$

• Let $\mathcal{E}_2 = \{\mathcal{Y}, \Theta, f_Y(y \mid \theta)\}$, where $Y \mid \theta \sim Nbin(r, \theta)$, so that

$$f_Y(y | \theta) = {y-1 \choose r-1} \theta^r (1-\theta)^{y-r}, y = r, r+1, \dots$$

• Suppose we observe x = r = 3 and y = n = 12 then

$$f_X(3 \mid \theta) = \binom{12}{3} \theta^3 (1 - \theta)^9, \ f_Y(12 \mid \theta) = \binom{11}{2} \theta^3 (1 - \theta)^9$$

• Thus, $f_X(3 \mid \theta) \propto f_Y(12 \mid \theta)$.

- Consider the hypothesis test $H_0: \theta = \frac{1}{2}$ versus $H_1: \theta < \frac{1}{2}$ at significance level 5%.
- Let $\text{Ev}(\mathcal{E}_1,3)$ be the result of the hypothesis test for the Binomial model where small values of X support H_1

$$\mathbb{P}(X \le 3 \mid \theta = 1/2) = \sum_{x=0}^{3} f_X(x \mid \theta = 1/2) = 0.0730.$$

- Thus, $\text{Ev}(\mathcal{E}_1,3)$ is to not reject H_0 .
- Let $\text{Ev}(\mathcal{E}_2, 12)$ be the result of the hypothesis test for the Negative Binomial model where large values of Y support H_1

$$\mathbb{P}(Y \ge 12 \mid \theta = 1/2) = \sum_{y=12}^{\infty} f_Y(y \mid \theta = 1/2) = 0.0327.$$

- Thus, $\text{Ev}(\mathcal{E}_2, 12)$ is to reject H_0 .
- This inference method does not respect the SLP: the choice of the model is relevant to the inference.

- Suppose that $\text{Ev}(\mathcal{E}, x)$ depends on the value of $f_X(x' \mid \theta)$ for some $x' \neq x$. Then, typically, Ev does not respect the SLP.
- We could create an alternate experiment $\mathcal{E}_1 = \{\mathcal{X}, \Theta, f_1(x \mid \theta)\}$ where:
 - $f_1(x \mid \theta) = f_X(x \mid \theta)$ for the observed x.
 - $f_1(x \mid \theta) \neq f_X(x \mid \theta)$ for all $x \in \mathcal{X}$.
- In particular, that $f_1(x' | \theta) \neq f_X(x' | \theta)$.
 - ▶ Let $\tilde{x} \neq x, x'$ and set

$$f_1(x'|\theta) = \alpha f_X(x'|\theta) + \beta f_X(\tilde{x}|\theta)$$

$$f_1(\tilde{x}|\theta) = (1-\alpha)f_X(x'|\theta) + (1-\beta)f_X(\tilde{x}|\theta)$$

- ▶ By suitable choice of α , β we can redistribute the mass to ensure $f_1(x'|\theta) \neq f_X(x'|\theta)$. We then let $f_1 = f_X$ elsewhere.
- Consequently, whilst $f_1(x \mid \theta) = f_X(x \mid \theta)$ we will not have that $\text{Ev}(\mathcal{E}, x) = \text{Ev}(\mathcal{E}_1, x)$ and so will violate the SLP.

The two main difficulties with violating the SLP are:

- To reject the SLP is to reject at least one of the WIP and the WCP. Yet both of these principles seem self-evident. Therefore violating the SLP is either illogical or obtuse.
- In their everyday practice, statisticians use the SRP (ignoring the intentions of the experimenter) which is not self-evident, but is implied by the SLP. If the SLP is violated, it needs an alternative justification which has not yet been forthcoming.

Reflections

- This chapter does not explain how to choose Ev but instead describes desirable properties of Ev.
- What is evaluated is the algorithm, the method by which (\mathcal{E}, x) is turned into an inference about the parameter θ .
- It is quite possible that statisticians of quite different persuasions will produce effectively identical inferences from different algorithms.
- A Bayesian statistician might produce a 95% High Density Region, and a classical statistician a 95% confidence set, but they might be effectively the same set.
- Primary concern for the auditor is why the particular inference method was chosen and they might also ask if the statistician is worried about the SLP
- Classical statistician might argue a long-run frequency property but the client might wonder about their interval.

