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Confidence sets and p-values Overview of Lecture Six

Overview of Lecture Six

In Lecture Five we introduced confidence procedures.

Confidence procedure: A random set C (X ) ⊂ Θ is a
level-(1− α) confidence procedure exactly when
P(θ ∈ C (X ) | θ) ≥ 1− α.

Family of confidence procedures: occurs when C (X ;α) is a
level-(1− α) confidence procedure for every α ∈ [0, 1].

Level set property, LSP: present for a confidence procedure C when
C (x) = {θ : fX (x | θ) > g(x)} for some g : X → R.

In Lecture Six we’ll look at good choices of confidence procedures.

For the linear model we can construct an exact family of confidence
procedures which satisfy the LSP.

Wilks Confidence procedures and the likelihood ratio test.

Introduce the p-value.
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Confidence sets and p-values Overview of Lecture Six

Overview of Lecture Six continued

A p-value p(X ) is a statistic satisfying, for every α ∈ [0, 1],
P(p(X ) ≤ α | θ) ≤ α. It is super-uniform.

p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X )
is super-uniform under θ0.

We’ll show there is a duality between significance procedures and
confidence procedures.

We’ll show how to construct a family of significance procedures and
how to use simulation to compute the family.
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Confidence sets and p-values Good choices of confidence procedures

Ch(x ;α) := {θ ∈ Θ : fX (x | θ) > αh(x)}, where h is any probability
density function for X , is a family of confidence procedures, with the LSP.

Among the interesting choices for h, one possibility is
h(x) = fX (x | θ0), for some θ0 ∈ Θ.

As fX (x | θ0) > αfX (x | θ0) we can construct a level-(1− α)
confidence procedure whose confidence sets will always contain θ0.

This suggests an issue with confidence procedures: two statisticians
may come to two different conclusions about H0 : θ = θ0 depending
on the intervals they construct.

This illustrates why it is important to be able to account for the
choices you make as a statistician.

The theorem utilises Markov’s Inequality which is a very slack result.
It is likely that the coverage of the corresponding family of confidence
procedures will be much larger than (1− α) .

A more desirable strategy would be to use an exact family of
confidence procedures which satisfy the LSP, if one existed.
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Confidence sets and p-values The linear model

The linear model

We’ll briefly discuss the linear model and construct an exact family of
confidence procedures which satisfy the LSP.

Let Y = (Y1, . . . ,Yn) be an n-vector of observables with Y = Xθ+ ε.

I X is an (n × p) matrix1 of regressors,
I θ is a p-vector of regression coefficients,
I ε is an n-vector of residuals.

Assume that ε ∼ Nn(0, σ2In), the n-dimensional multivariate normal
distribution, where σ2 is known and In is the (n × n) identity matrix.

From properties of the multivariate normal distribution, it follows that
Y ∼ Nn(Xθ, σ2In).

1We typically use X to denote a generic random variable and so it is not ideal to use
it here for a specified matrix but this is the standard notation for linear models.

Simon Shaw (University of Bath) Statistical Inference Lecture Six APTS, 13-16 December 2022 5 / 24



Confidence sets and p-values The linear model

Now,

LY (θ; y) =
(
2πσ2

)− n
2 exp

{
− 1

2σ2
(y − Xθ)T (y − Xθ)

}
.

Let θ̂ = θ̂(y) =
(
XTX

)−1
XT y then

(y − Xθ)T (y − Xθ) = (y − X θ̂ + X θ̂ − Xθ)T (y − X θ̂ + X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (X θ̂ − Xθ)T (X θ̂ − Xθ)

= (y − X θ̂)T (y − X θ̂) + (θ̂ − θ)TXTX (θ̂ − θ).

Thus, (y − Xθ)T (y − Xθ) is minimised when θ = θ̂ and so,

θ̂ =
(
XTX

)−1
XT y is the mle of θ. The likelihood ratio is

λ(y) =
LY (θ; y)

LY (θ̂; y)

= exp

{
− 1

2σ2

[
(y − Xθ)T (y − Xθ)− (y − X θ̂)T (y − X θ̂)

]}
= exp

{
− 1

2σ2
(θ̂ − θ)TXTX (θ̂ − θ)

}
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Confidence sets and p-values The linear model

Thus, −2 log λ(y) = 1
σ2 (θ̂ − θ)TXTX (θ̂ − θ).

As θ̂(Y ) =
(
XTX

)−1
XTY then, as Y ∼ Nn(Xθ, σ2In),

θ̂(Y ) ∼ Np

(
θ, σ2

(
XTX

)−1
)

Consequently, −2 log λ(Y ) ∼ χ2
p.

Hence, with P(χ2
p ≥ χ2

p,α) = α,

C (y ;α) =

{
θ ∈ Rp : −2 log λ(y) = −2 log

fY (y | θ, σ2)

fY (y | θ̂, σ2)
< χ2

p,α

}

=

{
θ ∈ Rp : fY (y | θ, σ2) > exp

(
−
χ2
p,α

2

)
fY (y | θ̂, σ2)

}

is a family of exact confidence procedures for θ which has the LSP.

Simon Shaw (University of Bath) Statistical Inference Lecture Six APTS, 13-16 December 2022 7 / 24



Confidence sets and p-values Wilks confidence procedures

Wilks confidence procedures

This outcome, where we can find a family of exact confidence
procedures with the LSP, is more-or-less unique to the regression
parameters of the linear model.

It is however found, approximately, in the large n behaviour of a
much wider class of models.

Wilks’ Theorem

Let X = (X1, . . . ,Xn) where each Xi is independent and identically
distributed, Xi ∼ f (xi | θ), where f is a regular model and the parameter
space Θ is an open convex subset of Rp (and invariant to n). The
distribution of the statistic −2 log λ(X ) converges to a chi-squared
distribution with p degrees of freedom as n→∞.

A working guideline to regular model is that f must be smooth and
differentiable in θ; in particular, the support must not depend on θ.

Simon Shaw (University of Bath) Statistical Inference Lecture Six APTS, 13-16 December 2022 8 / 24



Confidence sets and p-values Wilks confidence procedures

The result dates back to Wilks (1938) and, as such, the resultant
confidence procedures are often termed Wilks confidence procedures.

Thus, if the conditions of Wilks’ Theorem are met,

C (x ;α) =

{
θ ∈ Rp : fX (x | θ) > exp

(
−
χ2
p,α

2

)
fX (x | θ̂)

}
is a family of approximately exact confidence procedures which satisfy
the LSP.

For a given model, the pertinent question is whether or not the
approximation is a good one.

We are thus interested in the level error, the difference between the
nominal level, typically (1− α) everywhere, and the actual level, the
actual minimum coverage everywhere,

level error = nominal level− actual level.

Methods, such as bootstrap calibration, described in DiCiccio and
Efron (1996), exist which attempt to correct for the level error.
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Confidence sets and p-values Significance procedures and duality

Significance procedures and duality

A hypothesis test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where

Θ0 ∪Θc
0 = Θ, at significance level of 5% (or any other specified value)

returns one bit of information, either we accept H0 or reject H0.

We do not know whether the decision was borderline or nearly
conclusive; i.e. whether, for rejection, H0 and C (x ; 0.05) were close,
or well-separated.

Of more interest is to consider the smallest value of α for which
C (x ;α) does not intersect H0. This value is termed the p-value.

Definition (p-value)

A p-value p(X ) is a statistic satisfying p(x) ∈ [0, 1] for every x ∈ X .
Small values of p(x) support the hypothesis that H1 is true. A p-value is
valid if, for every θ ∈ Θ0 and every α ∈ [0, 1],

P(p(X ) ≤ α | θ) ≤ α.
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Confidence sets and p-values Significance procedures and duality

If p(X ) is a valid p-value then a significance test that rejects H0 if
and only if p(X ) ≤ α is a test with significance level α.

In this part we introduce the idea of significance procedure at level α,
deriving a duality between it and a level 1− α confidence procedure.

Let X and Y be two scalar random variables. Then X stochastically
dominates Y exactly when P(X ≤ v) ≤ P(Y ≤ v) for all v ∈ R.

If U ∼ Unif(0, 1) then P(U ≤ u) = u for u ∈ [0, 1]. With this in mind,
we make the following definition.

Definition (Super-uniform)

The random variable X is super-uniform exactly when it stochastically
dominates a standard uniform random variable. That is

P(X ≤ u) ≤ u

for all u ∈ [0, 1].

Thus, for θ ∈ Θ0, the p-value p(X ) is super-uniform.
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Confidence sets and p-values Significance procedures and duality

We now define a significance procedure. Note the similarities with the
definitions of a confidence procedure which are not coincidental.

Definition (Significance procedure)

1 p : X → R is a significance procedure for θ0 ∈ Θ exactly when p(X )
is super-uniform under θ0. If p(X ) is uniform under θ0, then p is an
exact significance procedure for θ0.

2 For X = x , p(x) is a significance level or (observed) p-value for θ0

exactly when p is a significance procedure for θ0.

3 p : X ×Θ→ R is a family of significance procedures exactly when
p(x ; θ0) is a significance procedure for θ0 for every θ0 ∈ Θ.

We now show that there is a duality between significance procedures
and confidence procedures.
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Confidence sets and p-values Significance procedures and duality

Duality Theorem

1 Let p be a family of significance procedures. Then

C (x ;α) := {θ ∈ Θ : p(x ; θ) > α}

is a nesting family of confidence procedures.

2 Conversely, let C be a nesting family of confidence procedures. Then

p(x ; θ0) := inf{α : θ0 /∈ C (x ;α)}

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof

If p is a family of significance procedures then for any θ ∈ Θ,

P(θ ∈ C (X ;α) | θ) = P(p(X ; θ) > α | θ) = 1− P(p(X ; θ) ≤ α | θ).
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Confidence sets and p-values Significance procedures and duality

Proof continued

Now, as p is super-uniform for θ then P(p(X ; θ) ≤ α | θ) ≤ α. Thus,
P(θ ∈ C (X ;α) | θ) ≥ 1− α. Hence, C (X ;α) is a level-(1− α)
confidence procedure.

If α′ > α then if θ ∈ C (x ;α′) we have p(x ; θ) > α′ > α and so
θ ∈ C (x ;α) and so C is nesting.

If p is exact then the inequalities can be replaced by equalities and so
C is also exact.

We thus have 1.

Now, if C is a nesting family of confidence procedures thena

inf{α : θ0 /∈ C (x ;α)} ≤ u ⇐⇒ θ0 /∈ C (x ; u).

aHere we’re finessing the issue of the boundary of C by assuming that if
α∗ := inf{α : θ0 /∈ C(x ;α)} then θ0 /∈ C(x ;α∗).
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Confidence sets and p-values Significance procedures and duality

Proof continued

Let θ0 and u ∈ [0, 1] be arbitrary. Then,

P(p(X ; θ0) ≤ u | θ0) = P(θ0 /∈ C (X ; u) | θ0) ≤ u

as C (X ; u) is a level-(1− u) confidence procedure. Thus, p is
super-uniform.

If C is exact, then the inequality is replaced by an equality, and hence
p is exact as well. 2
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Confidence sets and p-values Families of significance procedures

Families of significance procedures

We now consider a very general way to construct a family of
significance procedures.

We will then show how to use simulation to compute the family.

Theorem

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures. If the distribution function
of t(X ) is continuous, then pt is exact.
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Confidence sets and p-values Families of significance procedures

Proof (Casella and Berger, 2002)

Now

pt(x ; θ0) = P(t(X ) ≥ t(x) | θ0) = P(−t(X ) ≤ −t(x) | θ0).

Let F denote the distribution function of Y (X ) = −t(X ) then
pt(x ; θ0) = F (−t(x) | θ0).

Assume that t(X ) is continuous so that Y (X ) = −t(X ) is
continuous. Using the Probability Integral Transform,

P(pt(X ; θ0) ≤ α | θ0) = P(F (Y ) ≤ α | θ0)

= P(Y ≤ F−1(α) | θ0) = F (F−1(α))= α.

Hence, pt is uniform under θ0.

It t(X ) is not continuous then, via the Probability Integral Transform,
P(F (Y ) ≤ α | θ0) ≤ α and so pt(X ; θ0) is super-uniform under θ0. 2
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Confidence sets and p-values Families of significance procedures

So there is a family of significance procedures for each possible
function t : X → R.

Clearly only a tiny fraction of these can be useful functions, and the
rest must be useless.

Some, like t(x) = c for some constant c , are always useless. Others,
like t(x) = sin(x) might sometimes be a little bit useful, while others,
like t(x) =

∑
i xi might be quite useful - but it all depends on the

circumstances.

Some additional criteria are required to separate out good from poor
choices of the test statistic t, when using the construction in the
theorem.
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Confidence sets and p-values Families of significance procedures

The most pertinent criterion is:

Select a test statistic for which t(X ) which will tend to be larger for
decision-relevant departures from θ0.

Example

For the likelihood ratio, λ(x), small observed values of λ(x) support
departures from θ0. Thus, t(X ) = −2 log λ(X ), is a test statistic for which
large values support departures from θ0.

Large values of t(X ) will correspond to small values of the p-value,
supporting the hypothesis that H1 is true.

This criterion ensures that pt(X ; θ0) will tend to be smaller under
decision-relevant departures from θ0; small p-values are more
interesting, precisely because significance procedures are
super-uniform under θ0.
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Confidence sets and p-values Computing p-values

Computing p-values
Only in very special cases will it be possible to find a closed-form
expression for pt from which we can compute the p-value pt(x ; θ0).

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X0,X1, . . . ,Xm, define
the rank of X0 in the sequence as

R :=
m∑
i=1

1{Xi≤X0}.

If X0,X1, . . . ,Xm are exchangeablea then R has a discrete uniform
distribution on the integers {0, 1, . . . ,m}, and (R + 1)/(m + 1) has a
super-uniform distribution.

aIf X0,X1, . . . ,Xm are exchangeable then their joint density function satisfies
f (x0, . . . , xm) = f (xπ(0), . . . , xπ(m)) for all permutations π defined on the set
{0, . . . ,m}.
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Confidence sets and p-values Computing p-values

Proof

By exchangeability, X0 has the same probability of having rank r as any of
the other Xi s, for any r , and therefore

P(R = r) =
1

m + 1

for r ∈ {0, 1, . . . ,m} and zero otherwise, proving the first claim. For the
second claim,

P
(
R + 1

m + 1
≤ u

)
= P(R + 1 ≤ u(m + 1)) = P(R + 1 ≤ bu(m + 1)c)

since R is an integer and bxc denotes the largest integer no larger than x .
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Confidence sets and p-values Computing p-values

Proof continued

Hence,

P
(
R + 1

m + 1
≤ u

)
=

bu(m+1)c−1∑
r=0

P(R = r) (1)

=

bu(m+1)c−1∑
r=0

1

m + 1
(2)

=
bu(m + 1)c

m + 1
≤ u,

as required where equation (2) follows from (1) by exchangeability. 2
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Confidence sets and p-values Computing p-values

We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.

Fix the test statistic t(x) and define Ti = t(Xi ) where X1, . . . ,Xm are
independent and identically distributed random variables with density
fX (· | θ0).

Typically, we may have to use simulation to obtain the sample and
we’ll need to specify θ0 for this.

Notice that t(X ),T1, . . . ,Tm are exchangeable and thus
−t(X ),−T1, . . . ,−Tm are exchangeable.

Let

Rt(x ; θ0) :=
m∑
i=1

1{−Ti≤−t(x)} =
m∑
i=1

1{Ti≥t(x)},

then the previous theorem implies that

Pt(x ; θ0) :=
Rt(x ; θ0) + 1

m + 1

has a super-uniform distribution under X ∼ fX (· | θ0).
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Confidence sets and p-values Computing p-values

Note that P(T ≥ t(x) | θ0) = E(1{T≥t(x)}).

Hence, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x ; θ0) = lim
m→∞

Rt(x ; θ0) + 1

m + 1

= lim
m→∞

Rt(x ; θ0)

m

= lim
m→∞

∑m
i=1 1{Ti≥t(x)}

m
= P(T ≥ t(x) | θ0) = pt(x ; θ0).

Therefore, not only is Pt(x ; θ0) super-uniform under θ0, so that Pt is
a family of significance procedures for every m, but the limiting value
of Pt(x ; θ0) as m becomes large is pt(x ; θ0).

In summary, if you can simulate from your model under θ0 then you
can produce a p-value for any test statistic t, namely Pt(x ; θ0), and if
you can simulate cheaply, so that the number of simulations m is
large, then Pt(x ; θ0) ≈ pt(x ; θ0).
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