Statistical Inference Lecture Six https://people.bath.ac.uk/masss/APTS/2022-23/LectureSix.pdf

Simon Shaw

University of Bath

APTS, 13-16 December 2022

Overview of Lecture Six

In Lecture Five we introduced confidence procedures.

- Confidence procedure: A random set $C(X) \subset \Theta$ is a level- (1α) confidence procedure exactly when $\mathbb{P}(\theta \in C(X) | \theta) \geq 1 \alpha$.
- Family of confidence procedures: occurs when C(X; α) is a level-(1 − α) confidence procedure for every α ∈ [0, 1].
- Level set property, LSP: present for a confidence procedure *C* when $C(x) = \{\theta : f_X(x | \theta) > g(x)\}$ for some $g : \mathcal{X} \to \mathbb{R}$.
- In Lecture Six we'll look at good choices of confidence procedures.
 - For the linear model we can construct an exact family of confidence procedures which satisfy the LSP.
 - Wilks Confidence procedures and the likelihood ratio test.
 - Introduce the *p*-value.

- 3

イロト イポト イヨト イヨト

Overview of Lecture Six continued

- A *p*-value p(X) is a statistic satisfying, for every $\alpha \in [0, 1]$, $\mathbb{P}(p(X) \le \alpha | \theta) \le \alpha$. It is super-uniform.
- $p: \mathcal{X} \to \mathbb{R}$ is a significance procedure for $\theta_0 \in \Theta$ exactly when p(X) is super-uniform under θ_0 .
- We'll show there is a duality between significance procedures and confidence procedures.
- We'll show how to construct a family of significance procedures and how to use simulation to compute the family.

 $C_h(x; \alpha) := \{\theta \in \Theta : f_X(x | \theta) > \alpha h(x)\}$, where *h* is any probability density function for *X*, is a family of confidence procedures, with the LSP.

- Among the interesting choices for h, one possibility is $h(x) = f_X(x | \theta_0)$, for some $\theta_0 \in \Theta$.
- As $f_X(x | \theta_0) > \alpha f_X(x | \theta_0)$ we can construct a level- (1α) confidence procedure whose confidence sets will always contain θ_0 .
- This suggests an issue with confidence procedures: two statisticians may come to two different conclusions about $H_0: \theta = \theta_0$ depending on the intervals they construct.
- This illustrates why it is important to be able to account for the choices you make as a statistician.
- The theorem utilises Markov's Inequality which is a very slack result. It is likely that the coverage of the corresponding family of confidence procedures will be much larger than $(1 - \alpha)$.
- A more desirable strategy would be to use an exact family of confidence procedures which satisfy the LSP, if one existed.

3

伺下 イヨト イヨト

The linear model

- We'll briefly discuss the linear model and construct an exact family of confidence procedures which satisfy the LSP.
- Let $Y = (Y_1, \dots, Y_n)$ be an *n*-vector of observables with $Y = X\theta + \epsilon$.
 - X is an $(n \times p)$ matrix¹ of regressors,
 - θ is a *p*-vector of regression coefficients,
 - ϵ is an *n*-vector of residuals.
- Assume that $\epsilon \sim N_n(0, \sigma^2 I_n)$, the *n*-dimensional multivariate normal distribution, where σ^2 is known and I_n is the $(n \times n)$ identity matrix.
- From properties of the multivariate normal distribution, it follows that $Y \sim N_n(X\theta, \sigma^2 I_n)$.

Simon Shaw (University of Bath)

¹We typically use X to denote a generic random variable and so it is not ideal to use it here for a specified matrix but this is the standard notation for linear models. = -900

Now,

$$L_{Y}(\theta; y) = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^{2}}(y - X\theta)^{T}(y - X\theta)\right\}.$$

Let $\hat{\theta} = \hat{\theta}(y) = (X^T X)^{-1} X^T y$ then

$$\begin{aligned} (y - X\theta)^{\mathsf{T}}(y - X\theta) &= (y - X\hat{\theta} + X\hat{\theta} - X\theta)^{\mathsf{T}}(y - X\hat{\theta} + X\hat{\theta} - X\theta) \\ &= (y - X\hat{\theta})^{\mathsf{T}}(y - X\hat{\theta}) + (X\hat{\theta} - X\theta)^{\mathsf{T}}(X\hat{\theta} - X\theta) \\ &= (y - X\hat{\theta})^{\mathsf{T}}(y - X\hat{\theta}) + (\hat{\theta} - \theta)^{\mathsf{T}}X^{\mathsf{T}}X(\hat{\theta} - \theta). \end{aligned}$$

Thus, $(y - X\theta)^T (y - X\theta)$ is minimised when $\theta = \hat{\theta}$ and so, $\hat{\theta} = (X^T X)^{-1} X^T y$ is the mle of θ . The likelihood ratio is

$$\lambda(y) = \frac{L_{Y}(\theta; y)}{L_{Y}(\hat{\theta}; y)}$$

= $\exp\left\{-\frac{1}{2\sigma^{2}}\left[(y - X\theta)^{T}(y - X\theta) - (y - X\hat{\theta})^{T}(y - X\hat{\theta})\right]\right\}$
= $\exp\left\{-\frac{1}{2\sigma^{2}}(\hat{\theta} - \theta)^{T}X^{T}X(\hat{\theta} - \theta)\right\}$

Simon Shaw (University of Bath)

6/24

• Thus, $-2\log \lambda(y) = \frac{1}{\sigma^2}(\hat{\theta} - \theta)^T X^T X(\hat{\theta} - \theta).$

• As $\hat{\theta}(Y) = (X^T X)^{-1} X^T Y$ then, as $Y \sim N_n(X\theta, \sigma^2 I_n)$,

$$\hat{\theta}(\mathbf{Y}) \sim N_{p}\left(\theta, \sigma^{2}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\right)$$

• Consequently, $-2\log \lambda(Y) \sim \chi_p^2$.

Hence, with $\mathbb{P}(\chi_{p}^{2} \geq \chi_{p,\alpha}^{2}) = \alpha$,

$$C(y;\alpha) = \left\{ \theta \in \mathbb{R}^{p} : -2\log\lambda(y) = -2\log\frac{f_{Y}(y \mid \theta, \sigma^{2})}{f_{Y}(y \mid \hat{\theta}, \sigma^{2})} < \chi^{2}_{p,\alpha} \right\}$$
$$= \left\{ \theta \in \mathbb{R}^{p} : f_{Y}(y \mid \theta, \sigma^{2}) > \exp\left(-\frac{\chi^{2}_{p,\alpha}}{2}\right) f_{Y}(y \mid \hat{\theta}, \sigma^{2}) \right\}$$

is a family of exact confidence procedures for θ which has the LSP.

Wilks confidence procedures

- This outcome, where we can find a family of exact confidence procedures with the LSP, is more-or-less unique to the regression parameters of the linear model.
- It is however found, approximately, in the large *n* behaviour of a much wider class of models.

Wilks' Theorem

Let $X = (X_1, \ldots, X_n)$ where each X_i is independent and identically distributed, $X_i \sim f(x_i | \theta)$, where f is a regular model and the parameter space Θ is an open convex subset of \mathbb{R}^p (and invariant to n). The distribution of the statistic $-2\log \lambda(X)$ converges to a chi-squared distribution with p degrees of freedom as $n \to \infty$.

 A working guideline to regular model is that f must be smooth and differentiable in θ; in particular, the support must not depend on θ.

Simon Shaw (University of Bath)

- The result dates back to Wilks (1938) and, as such, the resultant confidence procedures are often termed Wilks confidence procedures.
- Thus, if the conditions of Wilks' Theorem are met,

$$\mathcal{C}(x;\alpha) = \left\{ \theta \in \mathbb{R}^p : f_X(x \mid \theta) > \exp\left(-\frac{\chi^2_{p,\alpha}}{2}\right) f_X(x \mid \hat{\theta}) \right\}$$

is a family of approximately exact confidence procedures which satisfy the LSP.

- For a given model, the pertinent question is whether or not the approximation is a good one.
- We are thus interested in the level error, the difference between the nominal level, typically (1α) everywhere, and the actual level, the actual minimum coverage everywhere,

level error = nominal level – actual level.

• Methods, such as bootstrap calibration, described in DiCiccio and Efron (1996), exist which attempt to correct for the level error.

Significance procedures and duality

- A hypothesis test of $H_0 : \theta \in \Theta_0$ versus $H_1 : \theta \in \Theta_0^c$, where $\Theta_0 \cup \Theta_0^c = \Theta$, at significance level of 5% (or any other specified value) returns one bit of information, either we accept H_0 or reject H_0 .
- We do not know whether the decision was borderline or nearly conclusive; i.e. whether, for rejection, H_0 and C(x; 0.05) were close, or well-separated.
- Of more interest is to consider the smallest value of α for which
 C(x; α) does not intersect H₀. This value is termed the *p*-value.

Definition (p-value)

A *p*-value p(X) is a statistic satisfying $p(x) \in [0, 1]$ for every $x \in \mathcal{X}$. Small values of p(x) support the hypothesis that H_1 is true. A *p*-value is valid if, for every $\theta \in \Theta_0$ and every $\alpha \in [0, 1]$,

$$\mathbb{P}(p(X) \leq \alpha \,|\, \theta) \leq \alpha.$$

- If p(X) is a valid p-value then a significance test that rejects H₀ if and only if p(X) ≤ α is a test with significance level α.
- In this part we introduce the idea of significance procedure at level α, deriving a duality between it and a level 1 - α confidence procedure.
- Let X and Y be two scalar random variables. Then X stochastically dominates Y exactly when P(X ≤ v) ≤ P(Y ≤ v) for all v ∈ R.
- If $U \sim \text{Unif}(0, 1)$ then $\mathbb{P}(U \leq u) = u$ for $u \in [0, 1]$. With this in mind, we make the following definition.

Definition (Super-uniform)

The random variable X is super-uniform exactly when it stochastically dominates a standard uniform random variable. That is

$$\mathbb{P}(X \leq u) \leq u$$

for all $u \in [0, 1]$.

• Thus, for $\theta \in \Theta_0$, the *p*-value p(X) is super-uniform.

• We now define a significance procedure. Note the similarities with the definitions of a confidence procedure which are not coincidental.

Definition (Significance procedure)

- $p: \mathcal{X} \to \mathbb{R}$ is a significance procedure for $\theta_0 \in \Theta$ exactly when p(X) is super-uniform under θ_0 . If p(X) is uniform under θ_0 , then p is an exact significance procedure for θ_0 .
- For X = x, p(x) is a significance level or (observed) *p*-value for θ_0 exactly when *p* is a significance procedure for θ_0 .
- *p*: X × Θ → ℝ is a family of significance procedures exactly when
 p(x; θ₀) is a significance procedure for θ₀ for every θ₀ ∈ Θ.
 - We now show that there is a duality between significance procedures and confidence procedures.

12 / 24

Duality Theorem

• Let p be a family of significance procedures. Then

 $C(x;\alpha) := \{\theta \in \Theta : p(x;\theta) > \alpha\}$

is a nesting family of confidence procedures.

 $\textcircled{O} Conversely, let \ \emph{C} be a nesting family of confidence procedures. Then$

 $p(x; \theta_0) := \inf\{\alpha : \theta_0 \notin C(x; \alpha)\}$

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof

• If p is a family of significance procedures then for any $\theta \in \Theta$,

$$\mathbb{P}(\theta \in C(X; \alpha) \,|\, \theta) \;=\; \mathbb{P}(p(X; \theta) > \alpha \,|\, \theta) \;=\; 1 - \mathbb{P}(p(X; \theta) \leq \alpha \,|\, \theta).$$

Proof continued

- Now, as p is super-uniform for θ then $\mathbb{P}(p(X; \theta) \le \alpha | \theta) \le \alpha$. Thus, $\mathbb{P}(\theta \in C(X; \alpha) | \theta) \ge 1 \alpha$. Hence, $C(X; \alpha)$ is a level- (1α) confidence procedure.
- If $\alpha' > \alpha$ then if $\theta \in C(x; \alpha')$ we have $p(x; \theta) > \alpha' > \alpha$ and so $\theta \in C(x; \alpha)$ and so C is nesting.
- If p is exact then the inequalities can be replaced by equalities and so C is also exact.

We thus have 1.

• Now, if C is a nesting family of confidence procedures then^a

$$\inf\{\alpha : \theta_0 \notin C(x; \alpha)\} \le u \iff \theta_0 \notin C(x; u).$$

^aHere we're finessing the issue of the boundary of C by assuming that if $\alpha^* := \inf\{\alpha : \theta_0 \notin C(x; \alpha)\}$ then $\theta_0 \notin C(x; \alpha^*)$.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof continued

• Let θ_0 and $u \in [0, 1]$ be arbitrary. Then,

$$\mathbb{P}(p(X;\theta_0) \le u \,|\, \theta_0) = \mathbb{P}(\theta_0 \notin C(X;u) \,|\, \theta_0) \le u$$

as C(X; u) is a level-(1 - u) confidence procedure. Thus, p is super-uniform.

If C is exact, then the inequality is replaced by an equality, and hence
 p is exact as well.

<日

<</p>

Families of significance procedures

- We now consider a very general way to construct a family of significance procedures.
- We will then show how to use simulation to compute the family.

Theorem

Let $t : \mathcal{X} \to \mathbb{R}$ be a statistic. For each $x \in \mathcal{X}$ and $\theta_0 \in \Theta$ define

 $p_t(x;\theta_0) := \mathbb{P}(t(X) \ge t(x) | \theta_0).$

Then p_t is a family of significance procedures. If the distribution function of t(X) is continuous, then p_t is exact.

< 回 > < 回 > < 回 >

Proof (Casella and Berger, 2002)

Now

$$p_t(x;\theta_0) = \mathbb{P}(t(X) \ge t(x) | \theta_0) = \mathbb{P}(-t(X) \le -t(x) | \theta_0).$$

- Let *F* denote the distribution function of Y(X) = -t(X) then $p_t(x; \theta_0) = F(-t(x) | \theta_0)$.
- Assume that t(X) is continuous so that Y(X) = -t(X) is continuous. Using the Probability Integral Transform,

$$\begin{split} \mathbb{P}(p_t(X;\theta_0) \leq \alpha \,|\, \theta_0) &= \mathbb{P}(F(Y) \leq \alpha \,|\, \theta_0) \\ &= \mathbb{P}(Y \leq F^{-1}(\alpha) \,|\, \theta_0) = F(F^{-1}(\alpha)) = \alpha. \end{split}$$

Hence, p_t is uniform under θ_0 .

• It t(X) is not continuous then, via the Probability Integral Transform, $\mathbb{P}(F(Y) \le \alpha | \theta_0) \le \alpha$ and so $p_t(X; \theta_0)$ is super-uniform under θ_0 . \Box

3

17 / 24

・ロト ・四ト ・ヨト ・ヨト

- So there is a family of significance procedures for each possible function $t : \mathcal{X} \to \mathbb{R}$.
- Clearly only a tiny fraction of these can be useful functions, and the rest must be useless.
- Some, like t(x) = c for some constant c, are always useless. Others, like $t(x) = \sin(x)$ might sometimes be a little bit useful, while others, like $t(x) = \sum_{i} x_{i}$ might be quite useful but it all depends on the circumstances.
- Some additional criteria are required to separate out good from poor choices of the test statistic *t*, when using the construction in the theorem.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The most pertinent criterion is:

• Select a test statistic for which t(X) which will tend to be larger for decision-relevant departures from θ_0 .

Example

For the likelihood ratio, $\lambda(x)$, small observed values of $\lambda(x)$ support departures from θ_0 . Thus, $t(X) = -2 \log \lambda(X)$, is a test statistic for which large values support departures from θ_0 .

- Large values of t(X) will correspond to small values of the *p*-value, supporting the hypothesis that H_1 is true.
- This criterion ensures that p_t(X; θ₀) will tend to be smaller under decision-relevant departures from θ₀; small p-values are more interesting, precisely because significance procedures are super-uniform under θ₀.

イロト 不得 トイラト イラト 一日

19/24

Computing p-values

Only in very special cases will it be possible to find a closed-form expression for p_t from which we can compute the *p*-value $p_t(x; \theta_0)$.

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X_0, X_1, \ldots, X_m , define the rank of X_0 in the sequence as

$$R := \sum_{i=1}^{m} \mathbb{1}_{\{X_i \leq X_0\}}.$$

If X_0, X_1, \ldots, X_m are exchangeable^{*a*} then *R* has a discrete uniform distribution on the integers $\{0, 1, \ldots, m\}$, and (R + 1)/(m + 1) has a super-uniform distribution.

^a If X_0, X_1, \ldots, X_m are exchangeable then their joint density function satisfies $f(x_0, \ldots, x_m) = f(x_{\pi(0)}, \ldots, x_{\pi(m)})$ for all permutations π defined on the set $\{0, \ldots, m\}$.

Proof

By exchangeability, X_0 has the same probability of having rank r as any of the other X_i s, for any r, and therefore

$$\mathbb{P}(R=r) = rac{1}{m+1}$$

for $r \in \{0, 1, ..., m\}$ and zero otherwise, proving the first claim. For the second claim,

$$\mathbb{P}\left(rac{R+1}{m+1} \leq u
ight) \;=\; \mathbb{P}(R+1 \leq u(m+1)) \;=\; \mathbb{P}(R+1 \leq \lfloor u(m+1)
floor)$$

since R is an integer and $\lfloor x \rfloor$ denotes the largest integer no larger than x.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Proof continued Hence,

$$\mathbb{P}\left(\frac{R+1}{m+1} \le u\right) = \sum_{r=0}^{\lfloor u(m+1) \rfloor - 1} \mathbb{P}(R=r)$$
(1)
$$= \sum_{r=0}^{\lfloor u(m+1) \rfloor - 1} \frac{1}{m+1}$$
(2)
$$= \frac{\lfloor u(m+1) \rfloor}{m+1} \le u,$$

as required where equation (2) follows from (1) by exchangeability.

Simon Shaw (University of Bath)

< 回 > < 三 > < 三 >

э

22 / 24

- We utilise this result to compute the *p*-value *p_t(x; θ₀)* corresponding to the test statistic *t(X)* at *θ₀*.
- Fix the test statistic t(x) and define $T_i = t(X_i)$ where X_1, \ldots, X_m are independent and identically distributed random variables with density $f_X(\cdot | \theta_0)$.
- Typically, we may have to use simulation to obtain the sample and we'll need to specify θ_0 for this.
- Notice that $t(X), T_1, \ldots, T_m$ are exchangeable and thus $-t(X), -T_1, \ldots, -T_m$ are exchangeable.
- Let

$$R_t(x;\theta_0) := \sum_{i=1}^m \mathbb{1}_{\{-T_i \leq -t(x)\}} = \sum_{i=1}^m \mathbb{1}_{\{T_i \geq t(x)\}},$$

then the previous theorem implies that

$$P_t(x; \theta_0) := \frac{R_t(x; \theta_0) + 1}{m+1}$$

has a super-uniform distribution under $X \sim f_X(\cdot \mid \theta_0)$.

- Note that $\mathbb{P}(T \ge t(x) | \theta_0) = \mathbb{E}(\mathbb{1}_{\{T \ge t(x)\}}).$
- Hence, the Weak Law of Large Numbers (WLLN) implies that

$$\lim_{m \to \infty} P_t(x; \theta_0) = \lim_{m \to \infty} \frac{R_t(x; \theta_0) + 1}{m + 1}$$
$$= \lim_{m \to \infty} \frac{R_t(x; \theta_0)}{m}$$
$$= \lim_{m \to \infty} \frac{\sum_{i=1}^m \mathbb{1}_{\{T_i \ge t(x)\}}}{m}$$
$$= \mathbb{P}(T \ge t(x) | \theta_0) = p_t(x; \theta_0).$$

- Therefore, not only is $P_t(x; \theta_0)$ super-uniform under θ_0 , so that P_t is a family of significance procedures for every m, but the limiting value of $P_t(x; \theta_0)$ as m becomes large is $p_t(x; \theta_0)$.
- In summary, if you can simulate from your model under θ_0 then you can produce a p-value for any test statistic t, namely $P_t(x; \theta_0)$, and if you can simulate cheaply, so that the number of simulations m is large, then $P_t(x; \theta_0) \approx p_t(x; \theta_0)$. イロト 不得 トイヨト イヨト