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Confidence sets and p-values Previously in Lecture Six

A p-value p(X ) is a statistic satisfying, for every α ∈ [0, 1],
P(p(X ) ≤ α | θ) ≤ α. It is super-uniform.

Coming up in Lecture Seven

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures.

For any finite sequence of scalar exchangeable random variables
X0,X1, . . . ,Xm, then if R is the rank of X0 in the sequence then R
has a discrete uniform distribution on the integers {0, 1, . . . ,m}, and
(R + 1)/(m + 1) has a super-uniform distribution.

We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.

We’ll briefly look at Bayesian hypothesis testing and Lindley’s
Paradox.
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Confidence sets and p-values Families of significance procedures

Families of significance procedures

We now consider a very general way to construct a family of
significance procedures.

We will then show how to use simulation to compute the family.

Theorem

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures. If the distribution function
of t(X ) is continuous, then pt is exact.
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Confidence sets and p-values Families of significance procedures

Proof (Casella and Berger, 2002)

Now

pt(x ; θ0) = P(t(X ) ≥ t(x) | θ0) = P(−t(X ) ≤ −t(x) | θ0).

Let F denote the distribution function of Y (X ) = −t(X ) then
pt(x ; θ0) = F (−t(x) | θ0).

Assume that t(X ) is continuous so that Y (X ) = −t(X ) is
continuous. Using the Probability Integral Transform,

P(pt(X ; θ0) ≤ α | θ0) = P(F (Y ) ≤ α | θ0)

= P(Y ≤ F−1(α) | θ0) = F (F−1(α))= α.

Hence, pt is uniform under θ0.

It t(X ) is not continuous then, via the Probability Integral Transform,
P(F (Y ) ≤ α | θ0) ≤ α and so pt(X ; θ0) is super-uniform under θ0. 2
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Confidence sets and p-values Families of significance procedures

So there is a family of significance procedures for each possible
function t : X → R.

Clearly only a tiny fraction of these can be useful functions, and the
rest must be useless.

Some, like t(x) = c for some constant c , are always useless. Others,
like t(x) = sin(x) might sometimes be a little bit useful, while others,
like t(x) =

∑
i xi might be quite useful - but it all depends on the

circumstances.

Some additional criteria are required to separate out good from poor
choices of the test statistic t, when using the construction in the
theorem.
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Confidence sets and p-values Families of significance procedures

The most pertinent criterion is:

Select a test statistic for which t(X ) which will tend to be larger for
decision-relevant departures from θ0.

Example

For the likelihood ratio, λ(x), small observed values of λ(x) support
departures from θ0. Thus, t(X ) = −2 log λ(X ), is a test statistic for which
large values support departures from θ0.

Large values of t(X ) will correspond to small values of the p-value,
supporting the hypothesis that H1 is true.

This criterion ensures that pt(X ; θ0) will tend to be smaller under
decision-relevant departures from θ0; small p-values are more
interesting, precisely because significance procedures are
super-uniform under θ0.
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Confidence sets and p-values Computing p-values

Computing p-values
Only in very special cases will it be possible to find a closed-form
expression for pt from which we can compute the p-value pt(x ; θ0).

Theorem (Adapted from Besag and Clifford, 1989)

For any finite sequence of scalar random variables X0,X1, . . . ,Xm, define
the rank of X0 in the sequence as

R :=
m∑
i=1

1{Xi≤X0}.

If X0,X1, . . . ,Xm are exchangeablea then R has a discrete uniform
distribution on the integers {0, 1, . . . ,m}, and (R + 1)/(m + 1) has a
super-uniform distribution.

aIf X0,X1, . . . ,Xm are exchangeable then their joint density function satisfies
f (x0, . . . , xm) = f (xπ(0), . . . , xπ(m)) for all permutations π defined on the set
{0, . . . ,m}.
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Confidence sets and p-values Computing p-values

Proof

By exchangeability, X0 has the same probability of having rank r as any of
the other Xi s, for any r , and therefore

P(R = r) =
1

m + 1

for r ∈ {0, 1, . . . ,m} and zero otherwise, proving the first claim. For the
second claim,

P
(
R + 1

m + 1
≤ u

)
= P(R + 1 ≤ u(m + 1)) = P(R + 1 ≤ bu(m + 1)c)

since R is an integer and bxc denotes the largest integer no larger than x .
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Confidence sets and p-values Computing p-values

Proof continued

Hence,

P
(
R + 1

m + 1
≤ u

)
=

bu(m+1)c−1∑
r=0

P(R = r) (1)

=

bu(m+1)c−1∑
r=0

1

m + 1
(2)

=
bu(m + 1)c

m + 1
≤ u,

as required where equation (2) follows from (1) by exchangeability. 2
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Confidence sets and p-values Computing p-values

We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.

Fix the test statistic t(x) and define Ti = t(Xi ) where X1, . . . ,Xm are
independent and identically distributed random variables with density
fX (· | θ0).

Typically, we may have to use simulation to obtain the sample and
we’ll need to specify θ0 for this.

Notice that t(X ),T1, . . . ,Tm are exchangeable and thus
−t(X ),−T1, . . . ,−Tm are exchangeable.

Let

Rt(x ; θ0) :=
m∑
i=1

1{−Ti≤−t(x)} =
m∑
i=1

1{Ti≥t(x)},

then the previous theorem implies that

Pt(x ; θ0) :=
Rt(x ; θ0) + 1

m + 1

has a super-uniform distribution under X ∼ fX (· | θ0).
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Confidence sets and p-values Computing p-values

Note that P(T ≥ t(x) | θ0) = E(1{T≥t(x)}).

Hence, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x ; θ0) = lim
m→∞

Rt(x ; θ0) + 1

m + 1

= lim
m→∞

Rt(x ; θ0)

m

= lim
m→∞

∑m
i=1 1{Ti≥t(x)}

m
= P(T ≥ t(x) | θ0) = pt(x ; θ0).

Therefore, not only is Pt(x ; θ0) super-uniform under θ0, so that Pt is
a family of significance procedures for every m, but the limiting value
of Pt(x ; θ0) as m becomes large is pt(x ; θ0).

In summary, if you can simulate from your model under θ0 then you
can produce a p-value for any test statistic t, namely Pt(x ; θ0), and if
you can simulate cheaply, so that the number of simulations m is
large, then Pt(x ; θ0) ≈ pt(x ; θ0).
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Confidence sets and p-values Computing p-values

However, this simulation-based approach is not well-adapted to
constructing confidence sets.

Let Ct be the family of confidence procedures induced by pt using
duality.

With one set of m simulations, we can answer ”Is θ0 ∈ Ct(x ;α)?”
I These simulations give a value Pt(x ; θ0) which is either larger or not

larger than α.
I If Pt(x ; θ0) > α then θ0 ∈ Ct(x ;α), and otherwise it is not.

However, this is not an effective way to enumerate all of the points in
Ct(x ;α) since we would need to do m simulations for each point in Θ.
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Confidence sets and p-values Computing p-values

Interpretations

It is a very common observation, made repeatedly over the last 50
years see, for example, Rubin (1984), that clients think more like
Bayesians than classicists.

For example, P(θ ∈ C (X ;α) | θ) ≥ 1− α is often interpreted as a
probability over θ for the observed C (x ;α).

Classical statisticians thus have to wrestle with the issue that their
clients will likely misinterpret their results.

We will now briefly look at Bayesian approaches to hypothesis testing.

In this approach, we can calculate the posterior probability of each
hypothesis.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Consider a point-null hypothesis H0 : θ = θ0 versus H1 : θ 6= θ0.
A possible prior is a mixture of a point mass on θ0 and a distribution,
π1(θ), under H1:

π(θ) = p0I{θ=θ0} + (1− p0)π1(θ)

where p0 = P(θ = θ0).
If fX (x | θ) is the data generating model then the posterior probability
of θ = θ0 is

P(θ = θ0 |X ) =
p0fX (x | θ0)∫
fX (x | θ)π(θ)dθ

=
p0fX (x | θ0)

p0fX (x | θ0) + (1− p0)f1(x)

where f1(x) is the marginal distribution under H1,

f1(x) =

∫
Θ1

fX (x | θ)π1(θ)dθ

Thus, P(θ = θ0 |X ) = (1 + y)−1 where

y =
1− p0

p0

f1(x)

fX (x | θ0)
.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for H0 : θ = 0

Let θ0 = 0 and suppose that X | θ ∼ N(θ, σ2) for σ2 known.

For the prior under H1 : θ 6= 0 we assert θ ∼ N(0, σ2
0) where σ2

0 is
known.

Thus,

fX (x | θ = 0) =
1√
2πσ

exp

{
− 1

2σ2
x2

}
,

f1(x) =

∫ ∞
−∞

fX (x | θ)π1(θ)dθ

=

∫ ∞
−∞

1

2πσσ0
exp

{
− 1

2σ2
(x − θ)2 − 1

2σ2
0

θ2

}
dθ

=
(σ2 + σ2

0)−
1
2

√
2π

{
− x2

2(σ2 + σ2
0)

}
so that f1(x) is the pdf of N(0, σ2 + σ2

0).
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for H0 : θ = 0

Hence, P(θ = 0 |X = x) = (1 + y)−1 where

y =
1− p0

p0

f1(x)

fX (x | θ = 0)

=

(
1− p0

p0

)(
σ2

σ2 + σ2
0

) 1
2

exp

{
−1

2

(
1

σ2 + σ2
0

− 1

σ2

)
x2

}

=

(
1− p0

p0

)(
σ2

σ2 + σ2
0

) 1
2

exp

{
σ2

0x
2

2(σ2 + σ2
0)σ2

}
A disperse prior for H1 : θ 6= 0 is sometimes proposed and this can be
achieved by increasing the prior variance σ2

0.

If σ2
0 →∞ then y → 0 and P(θ = 0 |X = x)→ 1 for all x . This may

be an issue with using improper priors: a proper prior has σ2
0 finite.

Note that y increases in |x | and so P(θ = 0 |X = x) decreases.

With a proper prior, as |x | → ∞, y →∞ and P(θ = 0 |X = x)→ 0.
The Bayesian analysis behaves reasonably.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Now consider taking n iid observations and consider the posterior
probability given x .

Notice that, as X | θ ∼ N(θ, σ2/n), our calculations will take the
same form as previously but with x replaced by x and σ2 by σ2/n.

Thus, P(θ = 0 |X = x) = (1 + yn)−1 where

yn =

(
1− p0

p0

)(
σ2

σ2 + nσ2
0

) 1
2

exp

{
n2σ2

0x
2

2(σ2 + nσ2
0)σ2

}

=

(
1− p0

p0

)(
σ2

σ2 + nσ2
0

) 1
2

exp

{
nσ2

0

2(σ2 + nσ2
0)
z2

}
and z =

√
n|x |/σ.

Note that if H0 is true then
√
nX/σ ∼ N(0, 1) so Z 2 ∼ χ2

1.

Suppose that z =
√
n|x |/σ is fixed as we increase n. Then yn → 0

and hence P(θ = 0 |X = x)→ 1.

The Bayesian model favours H0 over H1.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Now let’s consider the classical approach to this problem using a
p-value.

Consider the test statistic |X | which will be large for departures from
H0 : θ0 = 0. We have

p(|x |; 0) = P(|X | ≥ |x | | θ = 0)

= P(
√
n|X |/σ ≥ z | θ = 0).

Now, under H0,
√
nX/σ ∼ N(0, 1). If z =

√
n|x |/σ is fixed for all n

then the p-value is fixed for all n.

Thus, if α ≥ p(|x |; 0) we reject H0 for all values of n at significance
level α.

This is an illustration of what is termed Lindley’s paradox (Lindley,
1957).
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Lindley’s paradox

The main idea of this seeming paradox can be expressed as follows.

For a normal model N(θ, σ2) with known variance σ2, consider the
hypothesis test H0 : θ = θ0 versus H1 : θ 6= θ0.

Assume P(θ ∈ H0) > 0 and any regular prior on {θ 6= θ0}. Then for
any α ∈ [0, 1] we can find a sample size n(α) and iid data x1, . . . , xn
such that:

1 The sample mean x is significantly different from H0 at level α.
2 The posterior probability that θ = θ0 is greater that 1− α.

In our example, if we set σ2 = σ2
0 = 1, n = 16818, and

x = 1.96(16818)−
1
2 = 0.015 then z = 1.96 and

P(θ = 0 |X = x) = 0.95

The reasoning for this seeming paradox is that the classical and
Bayesian approaches are asking different questions.
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Confidence sets and p-values Concluding remarks

Concluding remarks: understanding the problem

A p-value p(x ; θ0) refers only to θ0, making no reference at all to
other hypotheses about θ.

I A p-value can be viewed as measuring the fit of a model, that under
H0, to the observed data.

I If I reject H0 using a p-value then H0 is a poor explanation for the
observation.

I However, a large p-value indicates only that the data is not unusual
under the model but it does not imply that the model is correct.

I For example, there may be many other models defined by other
hypotheses which may be exhibit greater consistency with the observed
data.

A posterior probability π(θ0 | x) contrasts θ0 with the other values in
Θ which θ might have taken.

I If I favour H0 then H0 is a better explanation for the data x than H1.
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Confidence sets and p-values Concluding remarks

Wasserstein and Lazar (2016) is a statement from the American
Statistical Association (ASA) on statistical significance and p-values.

The statement gives six principles for the correct use and
interpretation of p-values.

These principles, in particular Principles 3 and 4, reflect values that
should be at the heart of any work that we do.

Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

Practices that reduce data analysis or scientific inference to
mechanical “bright-line” rules (such as “p < 0.05”) for justifying
scientific claims or conclusions can lead to erroneous beliefs and poor
decision making.

Researchers should bring many contextual factors into play to derive
scientific inferences, including the design of a study, the quality of the
measurements, the external evidence for the phenomenon under
study, and the validity of assumptions that underlie the data analysis.
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Confidence sets and p-values Concluding remarks

Proper inference requires full reporting and transparency.

Whenever a researcher chooses what to present based on statistical
results, valid interpretation of those results is severely compromised if
the reader is not informed of the choice and its basis.

Researchers should disclose the number of hypotheses explored during
the study, all data collection decisions, all statistical analyses
conducted, and all p-values computed.
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