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Principles for Statistical Inference Overview of Lecture One

Overview of Lecture One

We wish to consider inferences about a parameter θ given a
parametric model E = {X ,Θ, fX (x | θ)}

(E , x) � statistician, Ev
// Inference about θ.

We’ll consider a series of statistical principles to guide the way to
learn about θ.

Weak Indifference Principle, WIP: if fX (x | θ) = fX (x ′ | θ) for all θ ∈ Θ
then Ev(E , x) = Ev(E , x ′).

Distribution Principle, DP: if E = E ′, then Ev(E , x) = Ev(E ′, x).

Transformation Principle, TP: for the bijective g : X → Y, construct
Eg = {Y,Θ, fY (y | θ)}. Then Ev(E , x) = Ev(Eg , g(x)).

(DP ∧ TP )→WIP.
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Overview of Lecture One continued

Weak Conditionality Principle, WCP: if E∗ is the mixture of the
experiments E1, E2 according to mixture probabilities p1, p2 = 1− p1.
then Ev (E∗, (i , xi )) = Ev(Ei , xi ).

Strong Likelihood Principle, SLP: if fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ),
for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

Birnbaum’s Theorem: (WIP ∧WCP )↔ SLP.

Stopping Rule Principle, SRP: in a sequential experiment Eτ ,
Ev (Eτ , (x1, . . . , xn)) does not depend on the stopping rule τ .

SLP→ SRP.
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Principles for Statistical Inference Introduction

Introduction

We wish to consider inferences about a parameter θ given a
parametric model

E = {X ,Θ, fX (x | θ)}.

We assume that the model is true so that only θ ∈ Θ is unknown. We
wish to learn about θ from observations x (typically, vector valued) so
that E represents a model for this experiment.

Smith (2010) considers that there are three players in an inference
problem:

1 Client: person with the problem
2 Statistician: employed by the client to help solve the problem
3 Auditor: hired by the client to check the statistician’s work

The statistician is thus responsible for explaining the rationale behind the
choice of inference in a compelling way.

Simon Shaw (University of Bath) Statistical Inference Lecture One APTS, 13-16 December 2022 4 / 25



Principles for Statistical Inference Reasoning about inferences

Reasoning about inferences

We consider a series of statistical principles to guide the way to learn
about θ. The principles are meant to be either self-evident or logical
implications of principles which are self-evident.
We shall assume that X is finite: Basu (1975) argues that “infinite and
continuous models are to be looked upon as mere approximations to the
finite realities.”

Inspiration of Allan Birnbaum (1923-1976) to see how to construct
and reason about statistical principles given “evidence” from data.

The model E = {X ,Θ, fX (x | θ)} is accepted as a working hypothesis.

How the statistician chooses her inference statements about the true
value θ is entirely down to her and her client.

I as a point or a set in Θ;
I as a choice among alternative sets or actions;
I or maybe as something more complicated, not ruling out visualisations.

Simon Shaw (University of Bath) Statistical Inference Lecture One APTS, 13-16 December 2022 5 / 25

https://en.wikipedia.org/wiki/Allan_Birnbaum


Principles for Statistical Inference Reasoning about inferences

Following Dawid (1977), consider that the statistician defines, a
priori, a set of possible inferences about θ

Task is to choose an element of this set based on E and x .

The statistician should see herself as a function Ev: a mapping from
(E , x) into a predefined set of inferences about θ.

(E , x) � statistician, Ev
// Inference about θ.

For example, Ev(E , x) might be:
I the maximum likelihood estimator of θ
I a 95% confidence interval for θ

Birnbaum called E the experiment, x the outcome, and Ev the
evidence.
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Note:

1 There can be different experiments with the same θ.

2 Under some outcomes, we would agree that it is self-evident that
these different experiments provide the same evidence about θ.

Example

Consider two experiments with the same θ.

1 X ∼ Bin(n, θ), so we observe x successes in n trials.

2 Y ∼ NBin(r , θ), so we observe the rth success in the y th trial.

If we observe x = r and y = n, do we make the same inference about θ in
each case?
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Principles for Statistical Inference Reasoning about inferences

Consider two experiments E1 = {X1,Θ, fX1(x1 | θ)} and
E2 = {X2,Θ, fX2(x2 | θ)}.

Equivalence of evidence (Basu, 1975)

The equality or equivalence of Ev(E1, x1) and Ev(E2, x2) means that:

1 E1 and E2 are related to the same parameter θ.

2 Everything else being equal, the outcome x1 from E1 warrants the
same inference about θ as does the outcomes x2 from E2.

We now consider constructing statistical principles and demonstrate
how these principles imply other principles.

These principles all have the same form: under such and such
conditions, the evidence about θ should be the same.

Thus they serve only to rule out inferences that satisfy the conditions
but have different evidences. They do not tell us how to do an
inference, only what to avoid.
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The principle of indifference

Principle 1: Weak Indifference Principle, WIP

Let E = {X ,Θ, fX (x | θ)}. If fX (x | θ) = fX (x ′ | θ) for all θ ∈ Θ then
Ev(E , x) = Ev(E , x ′).

We are indifferent between two models of evidence if they differ only
in the manner of the labelling of sample points.

If X = (X1, . . . ,Xn) where the Xi s are a series of independent
Bernoulli trials with parameter θ then fX (x | θ) = fX (x ′ | θ) if x and x ′

contain the same number of successes.
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Principle 2: Distribution Principle, DP

If E = E ′, then Ev(E , x) = Ev(E ′, x).

Informally, (Dawid, 1977), only aspects of an experiment which are
relevant to inference are the sample space and the family of
distributions over it.

Principle 3: Transformation Principle, TP

Let E = {X ,Θ, fX (x | θ)}. For the bijective g : X → Y, let
Eg = {Y,Θ, fY (y | θ)}, the same experiment as E but expressed in terms
of Y = g(X ), rather than X . Then Ev(E , x) = Ev(Eg , g(x)).

Inferences should not depend on the way in which the sample space is
labelled, for example, X or X−1.
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Principles for Statistical Inference The principle of indifference

Theorem

(DP ∧ TP )→WIP.

Proof

Fix E , and suppose that x , x ′ ∈ X satisfy fX (x | θ) = fX (x ′ | θ) for all
θ ∈ Θ, as in the condition of the WIP.
Let g : X → X be the function which switches x for x ′, but leaves all of
the other elements of X unchanged. Then E = Eg and

Ev(E , x ′) = Ev(Eg , x ′) [by the DP]

= Ev(Eg , g(x))

= Ev(E , x), [by the TP]

which gives the WIP. 2
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The Likelihood Principle

Consider experiments Ei = {Xi ,Θ, fXi
(xi | θ)}, i = 1, 2, . . ., where the

parameter space Θ is the same for each experiment.

Let p1, p2, . . . be a set of known probabilities so that pi ≥ 0 and∑
i pi = 1.

Mixture experiment

The mixture E∗ of the experiments E1, E2, . . . according to mixture
probabilities p1, p2, . . . is the two-stage experiment

1 A random selection of one of the experiments: Ei is selected with
probability pi .

2 The experiment selected in stage 1. is performed.

Thus, each outcome of the experiment E∗ is a pair (i , xi ), where
i = 1, 2, . . . and xi ∈ Xi , and family of distributions

f ∗((i , xi ) | θ) = pi fXi
(xi | θ).
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Principle 4: Weak Conditionality Principle, WCP

Let E∗ be the mixture of the experiments E1, E2 according to mixture
probabilities p1, p2 = 1− p1. Then Ev (E∗, (i , xi )) = Ev(Ei , xi ).

The WCP says that inferences for θ depend only on the experiment
performed and not which experiments could have been performed.

Suppose that Ei is randomly chosen with probability pi and xi is
observed.

The WCP states that the same evidence about θ would have been
obtained if it was decided non-randomly to perform Ei from the
beginning and xi is observed.
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Principle 5: Strong Likelihood Principle, SLP

Let E1 and E2 be two experiments which have the same parameter θ. If
x1 ∈ X1 and x2 ∈ X2 satisfy fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ), that is

LX1(θ; x1) = c(x1, x2)LX2(θ; x2)

for some function c > 0 for all θ ∈ Θ then Ev(E1, x1) = Ev(E2, x2).

The SLP states that if two likelihood functions for the same
parameter have the same shape, then the evidence is the same.

A corollary of the SLP, obtained by setting E1 = E2 = E , is that
Ev(E , x) should depend on E and x only through LX (θ; x).
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Many classical statistical procedures violate the SLP and the following
result was something of the bombshell, when it first emerged in the 1960s.
The following form is due to Birnbaum (1972) and Basu (1975)

Birnbaum’s Theorem

(WIP ∧WCP )↔ SLP.

Proof

Both SLP→WIP and SLP→WCP are straightforward. The trick is to
prove (WIP ∧WCP )→ SLP.
Let E1 and E2 be two experiments which have the same parameter, and
suppose that x1 ∈ X1 and x2 ∈ X2 satisfy fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ)
where the function c > 0. As the value c is known (as the data has been
observed) then consider the mixture experiment with p1 = 1/(1 + c) and
p2 = c/(1 + c).
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Proof continued

f ∗((1, x1) | θ) =
1

1 + c
fX1(x1 | θ) =

c

1 + c
fX2(x2 | θ) = f ∗((2, x2) | θ)

Then the WIP implies that

Ev (E∗, (1, x1)) = Ev (E∗, (2, x2)) .

Applying the WCP to each side we infer that

Ev(E1, x1) = Ev(E2, x2),

as required. 2

Thus, either I accept the SLP, or I explain which of the two principles,
WIP and WCP, I refute. Methods, which include many classical
procedures, which violate the SLP face exactly this challenge.
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The Sufficiency Principle

Recall the idea of sufficiency: if S = s(X ) is sufficient for θ then

fX (x | θ) = fX |S(x | s, θ)fS(s | θ)

where fX |S(x | s, θ) does not depend upon θ.

Consequently, consider the experiment ES = {s(X ),Θ, fS(s | θ)}.

Principle 6: Strong Sufficiency Principle, SSP

If S = s(X ) is a sufficient statistic for E = {X ,Θ, fX (x | θ)} then
Ev(E , x) = Ev(ES , s(x)).

Principle 7: Weak Sufficiency Principle, WSP

If S = s(X ) is a sufficient statistic for E = {X ,Θ, fX (x | θ)} and
s(x) = s(x ′) then Ev(E , x) = Ev(E , x ′).
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Theorem

SLP→ SSP→WSP→WIP.

Proof

As s is sufficient, fX (x | θ) = cfS(s | θ) where c = fX |S(x | s, θ) does not

depend on θ. Applying the SLP, Ev(E , x) = Ev(ES , s(x)) which is the SSP.
Note, that from the SSP,

Ev(E , x) = Ev(ES , s(x)) (by the SSP)

= Ev(ES , s(x ′)) (as s(x) = s(x ′))

= Ev(E , x ′) (by the SSP)

We thus have the WSP. Finally, if fX (x | θ) = fX (x ′ | θ) as in the statement
of WIP then s(x) = x ′ is sufficient for x . Hence, from the WSP,
Ev(E , x) = Ev(E , x ′) giving the WIP. 2
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If we put together the last two theorems, we get the following corollary.

Corollary

(WIP ∧WCP)→ SSP.

Proof

From Birnbaum’s theorem, (WIP ∧WCP )↔ SLP and from the previous
theorem, SLP→ SSP. 2

Birnbaum’s (1962) original result combined sufficiency and
conditionality for the likelihood but he revised this to the WIP and
WCP in later work.

One advantage of this is that it reduces the dependency on
sufficiency: Pitman-Koopman-Darmois Theorem states that
sufficiency more-or-less characterises the exponential family.
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Stopping rules

Consider observing a sequence of random variables X1,X2, . . . where
the number of observations is not fixed in advance but depends on
the values seen so far.

I At time j , the decision to observe Xj+1 can be modelled by a
probability pj(x1, . . . , xj).

I We assume, resources being finite, that the experiment must stop at
specified time m, if it has not stopped already, hence
pm(x1, . . . , xm) = 0.

The stopping rule may then be denoted as τ = (p1, . . . , pm). This
gives an experiment Eτ with, for n = 1, 2, . . ., fn(x1, . . . , xn | θ) where
consistency requires that

fn(x1, . . . , xn | θ) =
∑
xn+1

· · ·
∑
xm

fm(x1, . . . , xn, xn+1, . . . xm | θ).

Simon Shaw (University of Bath) Statistical Inference Lecture One APTS, 13-16 December 2022 20 / 25



Principles for Statistical Inference Stopping rules

Motivation for the stopping rule principle (Basu, 1975)

Consider four different coin-tossing experiments (with some finite
limit on the number of tosses).

E1 Toss the coin exactly 10 times;
E2 Continue tossing until 6 heads appear;
E3 Continue tossing until 3 consecutive heads appear;
E4 Continue tossing until the accumulated number of heads exceeds that

of tails by exactly 2.

Suppose that all four experiments have the same outcome
x = (T,H,T,T,H,H,T,H,H,H).

We may feel that the evidence for θ, the probability of heads, is the
same in every case.

I Once the sequence of heads and tails is known, the intentions of the
original experimenter (i.e. the experiment she was doing) are
immaterial to inference about the probability of heads.

I The simplest experiment E1 can be used for inference.
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Principle 8: Stopping Rule Principle, SRP
a In a sequential experiment Eτ , Ev (Eτ , (x1, . . . , xn)) does not depend on
the stopping rule τ .

aBasu (1975) claims the SRP is due to George Barnard (1915-2002)

If it is accepted, the SRP is nothing short of revolutionary.

It implies that the intentions of the experimenter, represented by τ ,
are irrelevant for making inferences about θ, once the observations
(x1, . . . , xn) are known.

Once the data is observed, we can ignore the sampling plan.

The statistician could proceed as though the simplest possible
stopping rule were in effect, which is p1 = · · · = pn−1 = 1 and pn = 0,
an experiment with n fixed in advance, En = {X1:n,Θ, fn(x1:n | θ)}.
Can the SRP possibly be justified? Indeed it can.

Simon Shaw (University of Bath) Statistical Inference Lecture One APTS, 13-16 December 2022 22 / 25

https://en.wikipedia.org/wiki/George_Alfred_Barnard


Principles for Statistical Inference Stopping rules

Theorem

SLP→ SRP.

Proof

Let τ be an arbitrary stopping rule, and consider the outcome (x1, . . . , xn),
which we will denote as x1:n.

We take the first observation with probability one.

For j = 1, . . . , n − 1, the (j + 1)th observation is taken with
probability pj(x1:j).

We stop after the nth observation with probability 1− pn(x1:n).

Consequently, the probability of this outcome under τ is

fτ (x1:n | θ) = f1(x1 | θ)


n−1∏
j=1

pj(x1:j) fj+1(xj+1 | x1:j , θ)

 (1− pn(x1:n))
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Proof continued

fτ (x1:n | θ) =


n−1∏
j=1

pj(x1:j)

 (1− pn(x1:n)) f1(x1 | θ)
n∏

j=2

fj(xj | x1:(j−1), θ)

=


n−1∏
j=1

pj(x1:j)

 (1− pn(x1:n))fn(x1:n | θ).

Now observe that this equation has the form

fτ (x1:n | θ) = c(x1:n)fn(x1:n | θ) (1)

where c(x1:n) > 0. Thus the SLP implies that Ev(Eτ , x1:n) = Ev(En, x1:n)
where En = {X1:n,Θ, fn(x1:n | θ)}. Since the choice of stopping rule was
arbitrary, equation (1) holds for all stopping rules, showing that the choice
of stopping rule is irrelevant. 2
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A comment from Leonard Jimmie Savage (1917-1971), one of the great
statisticians of the Twentieth Century, captured the revolutionary and
transformative nature of the SRP.

May I digress to say publicly that I learned the stopping rule prin-
ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, I then thought it a scandal that anyone in the pro-
fession could advance an idea so patently wrong, even as today
I can scarcely believe that some people resist an idea so patently
right. (Savage et al., 1962, p76)
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