
Statistical Inference
Lecture Three

https://people.bath.ac.uk/masss/APTS/2021-22/LectureThree.pdf

Simon Shaw

University of Bath

APTS, 13-17 December 2021

Simon Shaw (University of Bath) Statistical Inference Lecture Three APTS, 13-17 December 2021 1 / 25

https://people.bath.ac.uk/masss/APTS/2021-22/LectureThree.pdf


Principles for Statistical Inference Overview of Lecture Three

Overview of Lecture Three

In this lecture we will conclude the discussion of statistical principles, and
move on to consider decision theory.

Recall that two Bayesian models with the same prior distribution,
EB,1 = {X1,Θ, fX1(x1 | θ), π(θ)} and EB,2 = {X2,Θ, fX2(x2 | θ), π(θ)}
have the same posterior distribution when
fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ). Hence, the Bayesian approach
satisfies the SLP.

Many classical procedures violate the SLP as they depend on values
of the sample space X other than the observed value x .
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Principles for Statistical Inference Overview of Lecture Three

Overview of Lecture Three continued

Bayesian statistical decision problem, [Θ,D, π(θ), L(θ, d)].

The risk of decision d ∈ D under the distribution π(θ) is
ρ(π(θ), d) =

∫
θ L(θ, d)π(θ) dθ.

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ).

A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a Bayes rule against
π(θ).

A decision rule δ(x) is a function from X into D,

We view the set of decision rules, to be our possible set of inferences
about θ when the sample is observed so that Ev(E , x) is δ∗(x)

The Bayes rule for the posterior decision respects the strong
likelihood principle.
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Principles for Statistical Inference The Likelihood Principle in practice

Classical approaches

Maximum likelihood estimation clearly satisfies the SLP and methods,
such as penalised likelihood theory, have been generated to satisfy the
SLP.

However, inference tools used in the classical approach typically
violate the SLP.

Inference techniques depend upon the sampling distribution and so
they depend on the whole sample space X and not just the observed
x ∈ X .

Sampling distribution depends on values of fX other than
L(θ; x) = fX (x | θ).

For a statistic T (X ), MSE (T | θ) = Var(T | θ) + bias(T | θ)2 depends
upon the first and second moments of the distribution of T | θ.
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Principles for Statistical Inference The Likelihood Principle in practice

Example, Robert (2007)

Suppose that X1,X2 are iid N(θ, 1) so that

f (x1, x2 | θ) ∝ exp
{
−(x − θ)2

}
.

Consider the alternate model for the same parameter θ

g(x1, x2 | θ) = π−
3
2

exp
{
−(x − θ)2

}
1 + (x1 − x2)2

Thus, f (x1, x2 | θ) ∝ g(x1, x2 | θ) as a function of θ. If the SLP is
applied, then inference about θ should be the same in both models.

The distribution of g is quite different from that of f and so
estimators of θ will have different classical properties if they do not
depend only on x .

For example, g has heavier tails than f and so respective confidence
intervals may differ between the two.
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Principles for Statistical Inference The Likelihood Principle in practice

Binomial and Negative Binomial example

Let E1 = {X ,Θ, fX (x | θ)}, where X | θ ∼ Bin(n, θ) so that

fX (x | θ) =

(
n

x

)
θx(1− θ)n−x , x = 0, 1, . . . , n.

Let E2 = {Y,Θ, fY (y | θ)}, where Y | θ ∼ Nbin(r , θ), so that

fY (y | θ) =

(
y − 1

r − 1

)
θr (1− θ)y−r , y = r , r + 1, . . . .

Suppose we observe x = r = 3 and y = n = 12 then

fX (3 | θ) =

(
12

3

)
θ3(1− θ)9, fY (12 | θ) =

(
11

2

)
θ3(1− θ)9

Thus, fX (3 | θ) ∝ fY (12 | θ).
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Principles for Statistical Inference The Likelihood Principle in practice

Consider the hypothesis test H0 : θ = 1
2 versus H1 : θ < 1

2 at
significance level 5%.

Let Ev(E1, 3) be the result of the hypothesis test for the Binomial
model where small values of X support H1

P(X ≤ 3 | θ = 1/2) =
3∑

x=0

fX (x | θ = 1/2) = 0.0730.

Thus, Ev(E1, 3) is to not reject H0.

Let Ev(E2, 12) be the result of the hypothesis test for the Negative
Binomial model where large values of Y support H1

P(Y ≥ 12 | θ = 1/2) =
∞∑

y=12

fY (y | θ = 1/2) = 0.0327.

Thus, Ev(E2, 12) is to reject H0.

This inference method does not respect the SLP: the choice of the
model is relevant to the inference.
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Principles for Statistical Inference The Likelihood Principle in practice

Suppose that Ev(E , x) depends on the value of fX (x ′ | θ) for some
x ′ 6= x . Then, typically, Ev does not respect the SLP.

We could create an alternate experiment E1 = {X ,Θ, f1(x | θ)}
where:

I f1(x | θ) = fX (x | θ) for the observed x .
I f1(x | θ) 6= fX (x | θ) for all x ∈ X .

In particular, that f1(x ′ | θ) 6= fX (x ′ | θ).
I Let x̃ 6= x , x ′ and set

f1(x ′ | θ) = αfX (x ′ | θ) + βfX (x̃ | θ)

f1(x̃ | θ) = (1− α)fX (x ′ | θ) + (1− β)fX (x̃ | θ)

I By suitable choice of α, β we can redistribute the mass to ensure
f1(x ′ | θ) 6= fX (x ′ | θ). We then let f1 = fX elsewhere.

Consequently, whilst f1(x | θ) = fX (x | θ) we will not have that
Ev(E , x) = Ev(E1, x) and so will violate the SLP.
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Principles for Statistical Inference The Likelihood Principle in practice

The two main difficulties with violating the SLP are:

1 To reject the SLP is to reject at least one of the WIP and the WCP.
Yet both of these principles seem self-evident. Therefore violating the
SLP is either illogical or obtuse.

2 In their everyday practice, statisticians use the SRP (ignoring the
intentions of the experimenter) which is not self-evident, but is
implied by the SLP. If the SLP is violated, it needs an alternative
justification which has not yet been forthcoming.
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Principles for Statistical Inference Reflections

Reflections

This chapter does not explain how to choose Ev but instead describes
desirable properties of Ev.

What is evaluated is the algorithm, the method by which (E , x) is
turned into an inference about the parameter θ.

It is quite possible that statisticians of quite different persuasions will
produce effectively identical inferences from different algorithms.

A Bayesian statistician might produce a 95% High Density Region,
and a classical statistician a 95% confidence set, but they might be
effectively the same set.

Primary concern for the auditor is why the particular inference
method was chosen and they might also ask if the statistician is
worried about the SLP.

Classical statistician might argue a long-run frequency property but
the client might wonder about their interval.
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Statistical Decision Theory Introduction

Introduction

Statistical Decision Theory allows us to consider ways to construct
the Ev function that reflects our needs, which will vary from
application to application, and which assesses the consequences of
making a good or bad inference.

The set of possible inferences, or decisions, is termed the decision
space, denoted D.

For each d ∈ D, we want a way to assess the consequence of how
good or bad the choice of decision d was under the event θ.

Definition (Loss function)

A loss function is any function L from Θ×D to [0,∞).

The loss function measures the penalty or error, L(θ, d) of the
decision d when the parameter takes the value θ.

Thus, larger values indicate worse consequences.
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Statistical Decision Theory Introduction

The three main types of inference about θ are

1 point estimation,

2 set estimation,

3 hypothesis testing.

It is a great conceptual and practical simplification that Statistical
Decision Theory distinguishes between these three types simply according
to their decision spaces.

Type of inference Decision space D
Point estimation The parameter space, Θ.

Set estimation A set of subsets of Θ.

Hypothesis testing A specified partition of Θ, denoted H.
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Statistical Decision Theory Bayesian statistical decision theory

Bayesian statistical decision theory

In a Bayesian approach, a statistical decision problem [Θ,D, π(θ), L(θ, d)]
has the following ingredients.

1 The possible values of the parameter: Θ, the parameter space.

2 The set of possible decisions: D, the decision space.
3 The probability distribution on Θ, π(θ). For example,

1 this could be a prior distribution, π(θ) = f (θ).
2 this could be a posterior distribution, π(θ) = f (θ | x) following the

receipt of some data x .
3 this could be a posterior distribution π(θ) = f (θ | x , y) following the

receipt of some data x ,y .

4 The loss function L(θ, d).

In this setting, only θ is random and we can calculate the expected loss, or
risk.
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Statistical Decision Theory Bayesian statistical decision theory

Definition (Risk)

The risk of decision d ∈ D under the distribution π(θ) is

ρ(π(θ), d) =

∫
θ
L(θ, d)π(θ) dθ.

We choose d to minimise this risk.

Definition (Bayes rule and Bayes risk)

The Bayes risk ρ∗(π) minimises the expected loss,

ρ∗(π) = inf
d∈D

ρ(π, d)

with respect to π(θ). A decision d∗ ∈ D for which ρ(π, d∗) = ρ∗(π) is a
Bayes rule against π(θ).

The Bayes rule may not be unique, and in weird cases it might not exist.
We solve [Θ,D, π(θ), L(θ, d)] by finding ρ∗(π) and (at least one) d∗.
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss

Suppose that Θ ⊂ R and we wish to find a point estimate for θ. We
consider the loss function L(θ, d) = (θ − d)2.

The risk of decision d is

ρ(π, d) = E{L(θ, d) | θ ∼ π(θ)} = E(π){(θ − d)2}
= E(π)(θ2)− 2dE(π)(θ) + d2,

where E(π)(·) denotes the expectation with respect to π(θ).

Differentiating with respect to d we have

∂

∂d
ρ(π, d) = −2E(π)(θ) + 2d .

So, the Bayes rule is d∗ = E(π)(θ).
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Statistical Decision Theory Bayesian statistical decision theory

Example - quadratic loss (continued)

The corresponding Bayes risk is

ρ∗(π) = ρ(π, d∗) = E(π)(θ2)− 2d∗E(π)(θ) + (d∗)2

= Var(π)(θ) + (d∗ − E(π)(θ))2

= Var(π)(θ)

where Var(π)(θ) is the variance of θ computed with respect to π(θ).

1 If π(θ) = f (θ), a prior for θ, then the Bayes rule of an immediate
decision is d∗ = E(θ) with corresponding Bayes risk ρ∗ = Var(θ).

2 If we observe sample data x then the Bayes rule given this sample
information is d∗ = E(θ |X ) with corresponding Bayes risk
ρ∗ = Var(θ |X ) as π(θ) = f (θ | x).
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Statistical Decision Theory Bayesian statistical decision theory

Typically we solve:
1 [Θ,D, f (θ), L(θ, d)], the immediate decision problem,
2 [Θ,D, f (θ | x), L(θ, d)], the decision problem after sample information.

We may also want to consider the risk of the sampling procedure,
before observing the sample, to decide whether or not to sample.

We now consider both θ and X as random.

For each possible sample, we need to specify which decision to make.

Definition (Decision rule)

A decision rule δ(x) is a function from X into D,

δ : X → D.

If X = x is the observed value of the sample information then δ(x) is the
decision that will be taken. The collection of all decision rules is denoted
by ∆ so that δ ∈ ∆⇒ δ(x) ∈ D ∀x ∈ X .
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Statistical Decision Theory Bayesian statistical decision theory

We wish to solve the problem [Θ,∆, f (θ, x), L(θ, δ(x))].

Definition (Bayes (decision) rule and risk of the sampling procedure)

The decision rule δ∗ is a Bayes (decision) rule exactly when

E{L(θ, δ∗(X ))} ≤ E{L(θ, δ(X ))}

for all δ(x) ∈ D. The corresponding risk ρ∗ = E{L(θ, δ∗(X ))} is termed
the risk of the sampling procedure.

If the sample information consists of X = (X1, . . . ,Xn) then ρ∗ will be
a function of n and so can be used to help determine sample size
choice.
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Statistical Decision Theory Bayesian statistical decision theory

Bayes rule theorem, BRT

Suppose that a Bayes rule exists for [Θ,D, f (θ | x), L(θ, d)]. Then

δ∗(x) = arg min
d∈D

E(L(θ, d) |X = x).

Proof

Let δ be arbitrary. Then

E{L(θ, δ(X ))} =

∫
x

∫
θ
L(θ, δ(x))f (θ, x) dθdx

=

∫
x

∫
θ
L(θ, δ(x))f (θ | x)f (x) dθdx

=

∫
x

{∫
θ
L(θ, δ(x))f (θ | x) dθ

}
f (x) dx

=

∫
x
E{L(θ, δ(x)) |X}f (x) dx
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Statistical Decision Theory Bayesian statistical decision theory

Proof continued

Now, as f (x) > 0, the δ∗ ∈ ∆ which minimises E{L(θ, δ(X ))} may
equivalently be found as the δ∗ which satisfies

ρ(f (θ), δ∗) = inf
δ(x)∈D

E{L(θ, δ(x)) |X},

giving the result. 2

The minimisation of expected loss over the space of all functions from
X to D can be achieved by the pointwise minimisation over D of the
expected loss conditional on X = x .

The risk of the sampling procedure is ρ∗ = E[E{L(θ, δ∗(x)) |X}].

Example - quadratic loss

We have δ∗ = E(θ |X ) and ρ∗ = E{Var(θ |X )}.

Simon Shaw (University of Bath) Statistical Inference Lecture Three APTS, 13-17 December 2021 20 / 25



Statistical Decision Theory Bayesian statistical decision theory

We could consider ∆, the set of decision rules, to be our possible set of
inferences about θ when the sample is observed so that Ev(E , x) is δ∗(x).
We thus have the following result.

Theorem

The Bayes rule for the posterior decision respects the strong likelihood
principle.

Proof

If we have two Bayesian models with the same prior distribution then if
fX1(x1 | θ) = c(x1, x2)fX2(x2 | θ) the corresponding posterior distributions
are the same and so the corresponding Bayes rule (and risk) is the same. 2
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Statistical Decision Theory Admissible rules

Admissible rules

Bayes rules rely upon a prior distribution for θ: the risk is a function
of d only.

In classical statistics, there is no distribution for θ and so another
approach is needed.

Definition (The classical risk)

For a decision rule δ(x), the classical risk for the model
E = {X ,Θ, fX (x | θ)} is

R(θ, δ) =

∫
X
L(θ, δ(x))fX (x | θ) dx .

The classical risk is thus, for each δ, a function of θ.
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Statistical Decision Theory Admissible rules

Example

Let X = (X1, . . . ,Xn) where Xi ∼ N(θ, σ2) and σ2 is known. Suppose that
L(θ, d) = (θ − d)2 and consider a conjugate prior θ ∼ N(µ0, σ

2
0). Possible

decision functions include:

1 δ1(x) = x , the sample mean.

2 δ2(x) = med{x1, . . . , xn} = x̃ , the sample median.

3 δ3(x) = µ0, the prior mean.

4 δ4(x) = µn, the posterior mean where

µn =

(
1

σ2
0

+
n

σ2

)−1(µ0

σ2
0

+
nx

σ2

)
,

the weighted average of the prior and sample mean accorded to their
respective precisions.
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Statistical Decision Theory Admissible rules

Example - continued

The respective classical risks are

1 R(θ, δ1) = σ2

n , a constant for θ, since X ∼ N(θ, σ2/n).

2 R(θ, δ2) = πσ2

2n , a constant for θ, since X̃ ∼ N(θ, πσ2/2n)
(approximately).

3 R(θ, δ3) = (θ − µ0)2 = σ2
0

(
θ−µ0
σ0

)2
.

4 R(θ, δ4) =
(

1
σ2

0
+ n

σ2

)−2
{

1
σ2

0

(
θ−µ0
σ0

)2
+ n

σ2

}
.

Which decision do we choose? We observe that R(θ, δ1) < R(θ, δ2) for all
θ ∈ Θ but other comparisons depend upon θ.

The accepted approach for classical statisticians is to narrow the set
of possible decision rules by ruling out those that are obviously bad.

Simon Shaw (University of Bath) Statistical Inference Lecture Three APTS, 13-17 December 2021 24 / 25



Statistical Decision Theory Admissible rules

Definition (Admissible decision rule)

A decision rule δ0 is inadmissible if there exists a decision rule δ1 which
dominates it, that is

R(θ, δ1) ≤ R(θ, δ0)

for all θ ∈ Θ with R(θ, δ1) < R(θ, δ0) for at least one value θ0 ∈ Θ. If no
such δ1 exists then δ0 is admissible.

If δ0 is dominated by δ1 then the classical risk of δ0 is never smaller
than that of δ1 and δ1 has a smaller risk for θ0.

Thus, you would never want to use δ0.1

The accepted approach is to reduce the set of possible decision rules
under consideration by only using admissible rules.

1Here I am assuming that all other considerations are the same in the two cases: e.g.
for all x ∈ X , δ1(x) and δ0(x) take about the same amount of resource to compute.
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