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Confidence sets and p-values Previously in Lecture Six

Previously in Lecture Six

A p-value p(X ) is a statistic satisfying, for every α ∈ [0, 1],
P(p(X ) ≤ α | θ) ≤ α. It is super-uniform.

Let t : X → R be a statistic. For each x ∈ X and θ0 ∈ Θ define

pt(x ; θ0) := P(t(X ) ≥ t(x) | θ0).

Then pt is a family of significance procedures.

For any finite sequence of scalar exchangeable random variables
X0,X1, . . . ,Xm, then if R is the rank of X0 in the sequence then R
has a discrete uniform distribution on the integers {0, 1, . . . ,m}, and
(R + 1)/(m + 1) has a super-uniform distribution.

We utilise this result to compute the p-value pt(x ; θ0) corresponding
to the test statistic t(X ) at θ0.
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Fix the test statistic t(x) and define Ti = t(Xi ) where X1, . . . ,Xm are
independent and identically distributed random variables with density
fX (· | θ0).

Typically, we may have to use simulation to obtain the sample and
we’ll need to specify θ0 for this.

Notice that t(X ),T1, . . . ,Tm are exchangeable and thus
−t(X ),−T1, . . . ,−Tm are exchangeable.

Let

Rt(x ; θ0) :=
m∑
i=1

1{−Ti≤−t(x)} =
m∑
i=1

1{Ti≥t(x)},

then the previous theorem implies that

Pt(x ; θ0) :=
Rt(x ; θ0) + 1

m + 1

has a super-uniform distribution under X ∼ fX (· | θ0).
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Confidence sets and p-values Computing p-values

Note that P(T ≥ t(x) | θ0) = E(1{T≥t(x)}).

Hence, the Weak Law of Large Numbers (WLLN) implies that

lim
m→∞

Pt(x ; θ0) = lim
m→∞

Rt(x ; θ0) + 1

m + 1

= lim
m→∞

Rt(x ; θ0)

m

= lim
m→∞

∑m
i=1 1{Ti≥t(x)}

m
= P(T ≥ t(x) | θ0) = pt(x ; θ0).

Therefore, not only is Pt(x ; θ0) super-uniform under θ0, so that Pt is
a family of significance procedures for every m, but the limiting value
of Pt(x ; θ0) as m becomes large is pt(x ; θ0).

In summary, if you can simulate from your model under θ0 then you
can produce a p-value for any test statistic t, namely Pt(x ; θ0), and if
you can simulate cheaply, so that the number of simulations m is
large, then Pt(x ; θ0) ≈ pt(x ; θ0).
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However, this simulation-based approach is not well-adapted to
constructing confidence sets.

Let Ct be the family of confidence procedures induced by pt using
duality.

With one set of m simulations, we can answer ”Is θ0 ∈ Ct(x ;α)?”
I These simulations give a value Pt(x ; θ0) which is either larger or not

larger than α.
I If Pt(x ; θ0) > α then θ0 ∈ Ct(x ;α), and otherwise it is not.

However, this is not an effective way to enumerate all of the points in
Ct(x ;α) since we would need to do m simulations for each point in Θ.
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Interpretations

It is a very common observation, made repeatedly over the last 50
years see, for example, Rubin (1984), that clients think more like
Bayesians than classicists.

For example, P(θ ∈ C (X ;α) | θ) ≥ 1− α is often interpreted as a
probability over θ for the observed C (x ;α).

Classical statisticians thus have to wrestle with the issue that their
clients will likely misinterpret their results.

We conclude by looking at Bayesian approaches to hypothesis testing.

In this approach, we can calculate the posterior probability of each
hypothesis.

Simon Shaw (University of Bath) Statistical Inference Lecture Seven APTS, 13-17 December 2021 6 / 16



Confidence sets and p-values Bayesian approaches to hypothesis testing

Consider a point-null hypothesis H0 : θ = θ0 versus H1 : θ 6= θ1.
A possible prior is a mixture of a point mass on θ0 and a distribution,
π1(θ), under H1:

π(θ) = p0I{θ=θ0} + (1− p0)π1(θ)

where p0 = P(θ = θ0).
If fX (x | θ) is the data generating model then the posterior probability
of θ = θ0 is

P(θ = θ0 |X ) =
p0fX (x | θ0)∫
fX (x | θ)π(θ)dθ

=
p0fX (x | θ0)

p0fX (x | θ0) + (1− p0)f1(x)

where f1(x) is the marginal distribution under H1,

f1(x) =

∫
Θ1

fX (x | θ)π1(θ)dθ

Thus, P(θ = θ0 |X ) = (1 + y)−1 where

y =
1− p0

p0

f1(x)

fX (x | θ0)
.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for H0 : θ = 0

Let θ0 = 0 and suppose that X | θ ∼ N(θ, σ2) for σ2 known.

For the prior under H1 : θ 6= 0 we assert θ ∼ N(0, σ2
0) where σ2

0 is
known.

Thus,

fX (x | θ = 0) =
1√
2πσ

exp

{
− 1

2σ2
x2

}
,

f1(x) =

∫ ∞
−∞

fX (x | θ)π1(θ)dθ

=

∫ ∞
−∞

1

2πσσ0
exp

{
− 1

2σ2
(x − θ)2 − 1

2σ2
0

θ2

}
dθ

=
(σ2 + σ2

0)−
1
2

√
2π

{
− x2

2(σ2 + σ2
0)

}
so that f1(x) is the pdf of N(0, σ2 + σ2

0).
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for H0 : θ = 0

Hence, P(θ = 0 |X = x) = (1 + y)−1 where

y =
1− p0

p0

f1(x)

fX (x | θ = 0)

=

(
1− p0

p0

)(
σ2

σ2 + σ2
0

) 1
2

exp

{
−1

2

(
1

σ2 + σ2
0

− 1

σ2

)
x2

}

=

(
1− p0

p0

)(
σ2

σ2 + σ2
0

) 1
2

exp

{
σ2

0x
2

2(σ2 + σ2
0)σ2

}
A disperse prior for H1 : θ 6= 0 is sometimes proposed and this can be
achieved by increasing the prior variance σ2

0.

If σ2
0 →∞ then y → 0 and P(θ = 0 |X = x)→ 1 for all x . This may

be an issue with using improper priors: a proper prior has σ2
0 finite.

Note that y increases in |x | and so P(θ = 0 |X = x) decreases.

With a proper prior, as |x | → ∞, y →∞ and P(θ = 0 |X = x)→ 0.
The Bayesian analysis behaves reasonably.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Now consider taking n iid observations and consider the posterior
probability given x .

Notice that, as X | θ ∼ N(θ, σ2/n), our calculations will take the
same form as previously but with x replaced by x and σ2 by σ2/n.

Thus, P(θ = 0 |X = x) = (1 + yn)−1 where

yn =

(
1− p0

p0

)(
σ2

σ2 + nσ2
0

) 1
2

exp

{
n2σ2

0x
2

2(σ2 + nσ2
0)σ2

}

=

(
1− p0

p0

)(
σ2

σ2 + nσ2
0

) 1
2

exp

{
nσ2

0

2(σ2 + nσ2
0)
z2

}
and z =

√
n|x |/σ.

Suppose that z =
√
nx/σ is fixed as we increase n. Then yn → 0 and

hence P(θ = 0 |X = x)→ 1.

The Bayesian model favours H0 over H1.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Now let’s consider the classical approach to this problem using a
p-value.

Consider the test statistic |X | which will be large for departures from
H0 : θ0 = 0. We have

p(|x |; 0) = P(|X | ≥ |x | | θ = 0)

= P(
√
n|X |/σ ≥ z | θ = 0).

Now, under H0,
√
nX/σ ∼ N(0, 1). If z =

√
n|x |/σ is fixed for all n

then the p-value is fixed for all n.

Thus, if α ≥ p(|x |; 0) we reject H0 for all values of n at significance
level α.

This is an illustration of what is termed Lindley’s paradox (Lindley,
1957).
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Lindley’s paradox

The main idea of this seeming paradox can be expressed as follows.

For a normal model N(θ, σ2) with known variance σ2, consider the
hypothesis test H0 : θ = θ0 versus H1 : θ 6= θ0.

Assume P(θ ∈ H0) > 0 and any regular prior on {θ 6= θ0}. Then for
any α ∈ [0, 1] we can find a sample size n(α) and iid data x1, . . . , xn
such that:

1 The sample mean x is significantly different from H0 at level α.
2 The posterior probability that θ = θ0 is greater that 1− α.

The reasoning for this seeming paradox is that the classical and
Bayesian approaches are asking different questions.
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Concluding remarks: understanding the problem

A p-value p(x ; θ0) refers only to θ0, making no reference at all to
other hypotheses about θ.

I If I reject H0 using a p-value then H0 is a poor explanation for the
observation.

A posterior probability π(θ0 | x) contrasts θ0 with the other values in
Θ which θ might have taken.

I If I favour H0 then H0 is a better explanation for the data x than H1.
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This difference in approach can be seen if I consider what I need to
compute the posterior probability when I have a p-value.

Suppose I observe p(x ;H0) ≤ u then:

P(H0 | p(x ;H0) ≤ u) =
P(p(X ;H0) ≤ u |H0)P(H0)

P(p(X ;H0) ≤ u)

≤ uP(H0)

P(p(X ;H0) ≤ u)

since the p-value is super-uniform.

Now,

P(p(X ;H0) ≤ u) =
1∑

i=0

P(p(X ;H0) ≤ u |Hi )P(Hi )

and so I need to know the distribution of the p-value under H1 to
compute P(p(X ;H0) ≤ u |H1).
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