Statistical Inference Lecture Seven https://people.bath.ac.uk/masss/APTS/2021-22/LectureSeven.pdf

Simon Shaw

University of Bath

APTS, 13-17 December 2021

1/16

Previously in Lecture Six

- A *p*-value p(X) is a statistic satisfying, for every $\alpha \in [0, 1]$, $\mathbb{P}(p(X) \le \alpha | \theta) \le \alpha$. It is super-uniform.
- Let $t : \mathcal{X} \to \mathbb{R}$ be a statistic. For each $x \in \mathcal{X}$ and $\theta_0 \in \Theta$ define

 $p_t(x;\theta_0) := \mathbb{P}(t(X) \ge t(x) | \theta_0).$

Then p_t is a family of significance procedures.

- For any finite sequence of scalar exchangeable random variables X_0, X_1, \ldots, X_m , then if R is the rank of X_0 in the sequence then R has a discrete uniform distribution on the integers $\{0, 1, \ldots, m\}$, and (R+1)/(m+1) has a super-uniform distribution.
- We utilise this result to compute the *p*-value *p_t(x; θ₀)* corresponding to the test statistic *t(X)* at *θ₀*.

- Fix the test statistic t(x) and define $T_i = t(X_i)$ where X_1, \ldots, X_m are independent and identically distributed random variables with density $f_X(\cdot | \theta_0)$.
- Typically, we may have to use simulation to obtain the sample and we'll need to specify θ_0 for this.
- Notice that $t(X), T_1, \ldots, T_m$ are exchangeable and thus $-t(X), -T_1, \ldots, -T_m$ are exchangeable.
- Let

$$R_t(x;\theta_0) := \sum_{i=1}^m \mathbb{1}_{\{-T_i \leq -t(x)\}} = \sum_{i=1}^m \mathbb{1}_{\{T_i \geq t(x)\}},$$

then the previous theorem implies that

$$P_t(x; \theta_0) := rac{R_t(x; \theta_0) + 1}{m+1}$$

has a super-uniform distribution under $X \sim f_X(\cdot \mid \theta_0)$.

- Note that $\mathbb{P}(T \ge t(x) | \theta_0) = \mathbb{E}(\mathbb{1}_{\{T \ge t(x)\}}).$
- Hence, the Weak Law of Large Numbers (WLLN) implies that

$$\lim_{m \to \infty} P_t(x; \theta_0) = \lim_{m \to \infty} \frac{R_t(x; \theta_0) + 1}{m + 1}$$
$$= \lim_{m \to \infty} \frac{R_t(x; \theta_0)}{m}$$
$$= \lim_{m \to \infty} \frac{\sum_{i=1}^m \mathbb{1}_{\{T_i \ge t(x)\}}}{m}$$
$$= \mathbb{P}(T \ge t(x) | \theta_0) = p_t(x; \theta_0).$$

- Therefore, not only is $P_t(x; \theta_0)$ super-uniform under θ_0 , so that P_t is a family of significance procedures for every *m*, but the limiting value of $P_t(x; \theta_0)$ as *m* becomes large is $p_t(x; \theta_0)$.
- In summary, if you can simulate from your model under θ_0 then you can produce a *p*-value for any test statistic *t*, namely $P_t(x; \theta_0)$, and if you can simulate cheaply, so that the number of simulations m is large, then $P_t(x; \theta_0) \approx p_t(x; \theta_0)$.

- However, this simulation-based approach is not well-adapted to constructing confidence sets.
- Let *C_t* be the family of confidence procedures induced by *p_t* using duality.
- With one set of *m* simulations, we can answer "Is $\theta_0 \in C_t(x; \alpha)$?"
 - These simulations give a value $P_t(x; \theta_0)$ which is either larger or not larger than α .
 - If $P_t(x; \theta_0) > \alpha$ then $\theta_0 \in C_t(x; \alpha)$, and otherwise it is not.
- However, this is not an effective way to enumerate all of the points in $C_t(x; \alpha)$ since we would need to do *m* simulations for each point in Θ .

くぼう くさう くさう しき

Interpretations

- It is a very common observation, made repeatedly over the last 50 years see, for example, Rubin (1984), that clients think more like Bayesians than classicists.
- For example, P(θ ∈ C(X; α) | θ) ≥ 1 − α is often interpreted as a probability over θ for the observed C(x; α).
- Classical statisticians thus have to wrestle with the issue that their clients will likely misinterpret their results.
- We conclude by looking at Bayesian approaches to hypothesis testing.
- In this approach, we can calculate the posterior probability of each hypothesis.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Consider a point-null hypothesis $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_1$.
- A possible prior is a mixture of a point mass on θ_0 and a distribution, $\pi_1(\theta)$, under H_1 :

$$\pi(\theta) = p_0 \mathbb{I}_{\{\theta = \theta_0\}} + (1 - p_0) \pi_1(\theta)$$

where $p_0 = \mathbb{P}(\theta = \theta_0)$.

 If f_X(x | θ) is the data generating model then the posterior probability of θ = θ₀ is

$$\mathbb{P}(\theta = \theta_0 \mid X) = \frac{p_0 f_X(x \mid \theta_0)}{\int f_X(x \mid \theta) \pi(\theta) d\theta} = \frac{p_0 f_X(x \mid \theta_0)}{p_0 f_X(x \mid \theta_0) + (1 - p_0) f_1(x)}$$

where $f_1(x)$ is the marginal distribution under H_1 ,

$$f_1(x) = \int_{\Theta_1} f_X(x \mid \theta) \pi_1(\theta) d\theta$$

• Thus, $\mathbb{P}(\theta = \theta_0 | X) = (1 + y)^{-1}$ where

$$y = \frac{1-p_0}{p_0} \frac{f_1(x)}{f_X(x \mid \theta_0)}.$$

Example: normal model for $H_0: \theta = 0$

- Let $\theta_0 = 0$ and suppose that $X \mid \theta \sim N(\theta, \sigma^2)$ for σ^2 known.
- For the prior under $H_1: \theta \neq 0$ we assert $\theta \sim N(0, \sigma_0^2)$ where σ_0^2 is known.
- Thus,

$$f_X(x \mid \theta = 0) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^2}x^2\right\},$$

$$f_1(x) = \int_{-\infty}^{\infty} f_X(x \mid \theta)\pi_1(\theta)d\theta$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma\sigma_0} \exp\left\{-\frac{1}{2\sigma^2}(x - \theta)^2 - \frac{1}{2\sigma_0^2}\theta^2\right\}d\theta$$

$$= \frac{(\sigma^2 + \sigma_0^2)^{-\frac{1}{2}}}{\sqrt{2\pi}}\left\{-\frac{x^2}{2(\sigma^2 + \sigma_0^2)}\right\}$$

so that $f_1(x)$ is the pdf of $N(0, \sigma^2 + \sigma_0^2)$.

イロト イボト イヨト イヨト

Example: normal model for $H_0: \theta = 0$

• Hence, $\mathbb{P}(\theta = 0 | X = x) = (1 + y)^{-1}$ where

$$y = \frac{1 - p_0}{p_0} \frac{f_1(x)}{f_X(x \mid \theta = 0)}$$

= $\left(\frac{1 - p_0}{p_0}\right) \left(\frac{\sigma^2}{\sigma^2 + \sigma_0^2}\right)^{\frac{1}{2}} \exp\left\{-\frac{1}{2}\left(\frac{1}{\sigma^2 + \sigma_0^2} - \frac{1}{\sigma^2}\right)x^2\right\}$
= $\left(\frac{1 - p_0}{p_0}\right) \left(\frac{\sigma^2}{\sigma^2 + \sigma_0^2}\right)^{\frac{1}{2}} \exp\left\{\frac{\sigma_0^2 x^2}{2(\sigma^2 + \sigma_0^2)\sigma^2}\right\}$

- A disperse prior for $H_1: \theta \neq 0$ is sometimes proposed and this can be achieved by increasing the prior variance σ_0^2 .
- If $\sigma_0^2 \to \infty$ then $y \to 0$ and $\mathbb{P}(\theta = 0 | X = x) \to 1$ for all x. This may be an issue with using improper priors: a proper prior has σ_0^2 finite.
- Note that y increases in |x| and so $\mathbb{P}(\theta = 0 | X = x)$ decreases.
- With a proper prior, as $|x| \to \infty$, $y \to \infty$ and $\mathbb{P}(\theta = 0 | X = x) \to 0$. The Bayesian analysis behaves reasonably.

Simon Shaw (University of Bath)

- Now consider taking *n* iid observations and consider the posterior probability given \overline{x} .
- Notice that, as X | θ ~ N(θ, σ²/n), our calculations will take the same form as previously but with x replaced by x and σ² by σ²/n.
- Thus, $\mathbb{P}(\theta = 0 | \overline{X} = \overline{x}) = (1 + y_n)^{-1}$ where

$$y_n = \left(\frac{1-p_0}{p_0}\right) \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2}\right)^{\frac{1}{2}} \exp\left\{\frac{n^2\sigma_0^2\overline{x}^2}{2(\sigma^2 + n\sigma_0^2)\sigma^2}\right\}$$
$$= \left(\frac{1-p_0}{p_0}\right) \left(\frac{\sigma^2}{\sigma^2 + n\sigma_0^2}\right)^{\frac{1}{2}} \exp\left\{\frac{n\sigma_0^2}{2(\sigma^2 + n\sigma_0^2)}z^2\right\}$$

and $z = \sqrt{n} |\overline{x}| / \sigma$.

- Suppose that $z = \sqrt{n\overline{x}}/\sigma$ is fixed as we increase *n*. Then $y_n \to 0$ and hence $\mathbb{P}(\theta = 0 | \overline{X} = \overline{x}) \to 1$.
- The Bayesian model favours H_0 over H_1 .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

10 / 16

- Now let's consider the classical approach to this problem using a p-value.
- Consider the test statistic $|\overline{X}|$ which will be large for departures from $H_0: \theta_0 = 0$. We have

$$\begin{aligned} p(|\overline{x}|;0) &= & \mathbb{P}(|\overline{X}| \geq |\overline{x}| \mid \theta = 0) \\ &= & \mathbb{P}(\sqrt{n}|\overline{X}|/\sigma \geq \mathbf{z} \mid \theta = 0). \end{aligned}$$

- Now, under H_0 , $\sqrt{nX}/\sigma \sim N(0,1)$. If $z = \sqrt{n}|\overline{x}|/\sigma$ is fixed for all n then the p-value is fixed for all n.
- Thus, if α ≥ p(|x|; 0) we reject H₀ for all values of n at significance level α.
- This is an illustration of what is termed Lindley's paradox (Lindley, 1957).

イロト 不得下 イヨト イヨト 二日

Lindley's paradox

The main idea of this seeming paradox can be expressed as follows.

- For a normal model $N(\theta, \sigma^2)$ with known variance σ^2 , consider the hypothesis test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.
- Assume $\mathbb{P}(\theta \in H_0) > 0$ and any regular prior on $\{\theta \neq \theta_0\}$. Then for any $\alpha \in [0, 1]$ we can find a sample size $n(\alpha)$ and iid data x_1, \ldots, x_n such that:
 - **1** The sample mean \overline{x} is significantly different from H_0 at level α .
 - **2** The posterior probability that $\theta = \theta_0$ is greater that 1α .
- The reasoning for this seeming paradox is that the classical and Bayesian approaches are asking different questions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Concluding remarks: understanding the problem

- A *p*-value *p*(*x*; θ₀) refers only to θ₀, making no reference at all to other hypotheses about θ.
 - ▶ If I reject *H*₀ using a *p*-value then *H*₀ is a poor explanation for the observation.
- A posterior probability $\pi(\theta_0 | x)$ contrasts θ_0 with the other values in Θ which θ might have taken.
 - If I favour H_0 then H_0 is a better explanation for the data x than H_1 .

< 回 > < 回 > < 回 >

- This difference in approach can be seen if I consider what I need to compute the posterior probability when I have a *p*-value.
- Suppose I observe $p(x; H_0) \le u$ then:

$$\begin{split} \mathbb{P}(H_0 \mid p(x; H_0) \leq u) &= \frac{\mathbb{P}(p(X; H_0) \leq u \mid H_0) \mathbb{P}(H_0)}{\mathbb{P}(p(X; H_0) \leq u)} \\ &\leq \frac{u \mathbb{P}(H_0)}{\mathbb{P}(p(X; H_0) \leq u)} \end{split}$$

since the *p*-value is super-uniform.

• Now,

$$\mathbb{P}(p(X;H_0) \leq u) = \sum_{i=0}^{1} \mathbb{P}(p(X;H_0) \leq u \mid H_i) \mathbb{P}(H_i)$$

and so I need to know the distribution of the *p*-value under H_1 to compute $\mathbb{P}(p(X; H_0) \le u \mid H_1)$.

APTS, 13-17 December 2021

< □ > < □ > < □ > < □ > < □ > < □ >

14/16

References

- Basu, D. (1975). Statistical information and likelihood (with discussion). *Sankhyā 37*(1), 1–71.
- Besag, J. and P. Clifford (1989). Generalized Monte Carlo significance tests. *Biometrika* 76(4), 633–642.
- Birnbaum, A. (1962). On the foundations of statistical inference. *Journal of the American Statistical Association 57*, 269–306.
- Birnbaum, A. (1972). More concepts of statistical evidence. *Journal* of the American Statistical Association 67, 858–861.
- Casella, G. and R.L. Berger (2002). *Statistical Inference* (2nd ed.). Pacific Grove, CA, USA: Duxbury.
- Cox, D.R. and D.V. Hinkley (1974). *Theoretical Statistics*. London, UK: Chapman and Hall.
- Dawid, A.P. (1977). Conformity of inference patterns. In J.R. Barra et al. (Eds.), *Recent Developments in Statistcs*. pp. 245–256. Amsterdam, The Netherlands: North-Holland Publishing Company.

Simon Shaw (University of Bath)

References continued

- DiCiccio, T.J. and B. Efron (1996). Bootstrap confidence intervals *Statistical Science 11*(3), 189–228.
- Lindley, D.V. (1957). A statistical paradox. Biometrika 44, 187–192.
- Robert, C.P. (2007). *The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation*. New York, USA: Springer.
- Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. *The Annals of Statistics 12*(4), 1151–1172.
- Savage, L.J. et al. (1962). *The Foundations of Statistical Inference*. London, UK: Methuen.
- Smith, J.Q. (2010). *Bayesian Decision Analysis: Principle and Practice*. Cambridge, UK: Cambridge University Press.
- Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. *The Annals of Mathematical Statistics 9*(1), 60–62.