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Confidence sets and p-values Previously in Lecture Six

Previously in Lecture Six

@ A p-value p(X) is a statistic satisfying, for every a € [0, 1],
P(p(X) < a|0) < a. It is super-uniform.

@ Let t : X — R be a statistic. For each x € X and 0y € © define
pelxifo) == P((X) = t(x)] o).

Then p; is a family of significance procedures.

@ For any finite sequence of scalar exchangeable random variables
Xo, X1,...,Xm, then if R is the rank of Xj in the sequence then R
has a discrete uniform distribution on the integers {0,1,..., m}, and
(R+1)/(m+ 1) has a super-uniform distribution.

@ We utilise this result to compute the p-value p;(x; ) corresponding
to the test statistic ¢(X) at 6p.
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Confidence sets and p-values Previously in Lecture Six

o Fix the test statistic t(x) and define T; = t(X;) where Xi,...,

Xm are

independent and identically distributed random variables with density

fx(-]6o).

o Typically, we may have to use simulation to obtain the sample and

we'll need to specify 0y for this.

e Notice that t(X), T1,..., Tpy are exchangeable and thus
—t(X),—Ty,...,— Ty are exchangeable.

o Let

Ri(x;6p) = Z]l{ Ti<—t(x)} ZH{T>t

then the previous theorem implies that

Rt(X; 90) +1

P:(x;00) = 1

has a super-uniform distribution under X ~ fx(-|6p).
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@ Note that P(T > t(X) ‘ 90) = E(H{th(x)}).
@ Hence, the Weak Law of Large Numbers (WLLN) implies that

. ) . . Re(x;60) + 1
Aim Pilbabo) = lim =

— jim Rebxifo)
m—00 m
molir
_pm Zim M7
m—o00 m

P(T > t(x)|6o) = pe(x;00).

@ Therefore, not only is P:(x; 0p) super-uniform under 6o, so that Py is
a family of significance procedures for every m, but the limiting value
of P:(x;6p) as m becomes large is p:(x; o).

@ In summary, if you can simulate from your model under 0y then you
can produce a p-value for any test statistic t, namely P:(x;0p), and if
you can simulate cheaply, so that the number of simulations m is
large, then P:(x;00) =~ p:(x; 6o).
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[TV ENICREESENRVEIIE Computing p-values

@ However, this simulation-based approach is not well-adapted to
constructing confidence sets.

@ Let C; be the family of confidence procedures induced by p; using
duality.

e With one set of m simulations, we can answer "ls 6y € C;(x; )?"

» These simulations give a value P;(x; 0y) which is either larger or not
larger than a.
> If Pi(x;6p) > a then 0y € Ci(x; @), and otherwise it is not.

@ However, this is not an effective way to enumerate all of the points in
Ci(x; ) since we would need to do m simulations for each point in ©.
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[TV ENICREESENRVEIIE Computing p-values

Interpretations

@ It is a very common observation, made repeatedly over the last 50
years see, for example, Rubin (1984), that clients think more like
Bayesians than classicists.

@ For example, P(0 € C(X;a)|6) > 1 — « is often interpreted as a
probability over 0 for the observed C(x; «).

@ Classical statisticians thus have to wrestle with the issue that their
clients will likely misinterpret their results.

@ We conclude by looking at Bayesian approaches to hypothesis testing.

@ In this approach, we can calculate the posterior probability of each
hypothesis.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

@ Consider a point-null hypothesis Hy : 6 = 6y versus Hy : 0 # 0.
@ A possible prior is a mixture of a point mass on 6y and a distribution,
71(0), under Hy:
m(0) = polfg—g, + (1 — po)m1(0)
where pg = P(6 = 0p).
o If fx(x|6) is the data generating model then the posterior probability
of 6 =0 is

pofx (x| o) Pofx (x| 6o)
PO =6y X) = =
0=00X) S x(x[0)m(0)d0  pofx(x|00) + (1 — po)fi(x)
where f1(x) is the marginal distribution under Hj,

flx) = /@ i (x| )1 (6)d6

@ Thus, P(6 =0y | X) = (1 + y) ! where
_ 1-po Ax)
po  fx(x|6o)
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for Hy : 6 =0

o Let 0p = 0 and suppose that X |0 ~ N(,52) for % known.
o For the prior under H; : 0 # 0 we assert 6 ~ N(0,c3) where 03 is

known.
@ Thus,
1 1
fx(x|0=0) = — X
X(X| ) o exp { 20_2X } )

i(x) = /OO fx(x|0)m(0)do

—00

o 1 , 1,
_ lw%mfm{zﬂ“ 0) 2ﬁ9}w

- 32—05)_; {‘2(051 08)}

so that fi(x) is the pdf of N(0,0? + 03).
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Confidence sets and p-values Bayesian approaches to hypothesis testing

Example: normal model for Hy : 6 =0
@ Hence, P( = 0| X = x) = (1 + y)~! where

1—po  fi(x)
PO fx(X ’ 0= O)

1
1—po o2 2 . 1 1 1\ ,
= Xps —= | 5 — — | x
Po o2+ o3 P12 02 +02 o2
1
1— po o2 2 . o3x?
= X e —
Po 02 +of P 2(02 + 03)0?

@ A disperse prior for Hy : 6 = 0 is sometimes proposed and this can be
achieved by increasing the prior variance o3.

o If 03 — oo then y — 0 and P() = 0| X = x) — 1 for all x. This may
be an issue with using improper priors: a proper prior has 08 finite.

@ Note that y increases in |x| and so P(6 = 0| X = x) decreases.

e With a proper prior, as |x| — 0o, y — oo and P(0 = 0| X = x) — 0.
The Bayesian analysis behaves reasonably.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

@ Now consider taking n iid observations and consider the posterior
probability given x.

e Notice that, as X |0 ~ N(#,?/n), our calculations will take the

same form as previously but with x replaced by x and 2 by o2/n.

@ Thus, P(0 = 0| X =%) = (14 y,) " where

1
1—po o2 2 n20872
= expl
Yr Po 02+ no3 P 2(02 + nod)o?

1
1—po o? 2 no3 5
= 5 5| &P 5 7
Po o° + noj 2(0? + nog)

and z = \/n[x|/o.

@ Suppose that z = \/nx/o is fixed as we increase n. Then y, — 0 and

hence P() = 0| X =x) — 1.

@ The Bayesian model favours Hy over Hj.
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Confidence sets and p-values Bayesian approaches to hypothesis testing

@ Now let’s consider the classical approach to this problem using a
p-value.

e Consider the test statistic | X| which will be large for departures from
Hp : 6o = 0. We have

p([x;0) = P(IX|>[x||6 =0)
= P(V/n[X|/o > 2|0 =0).

e Now, under Hg, \/nX /o ~ N(0,1). If z= \/n|x|/c is fixed for all n
then the p-value is fixed for all n.

@ Thus, if & > p(|x|; 0) we reject Hp for all values of n at significance
level a.

@ This is an illustration of what is termed Lindley's paradox (Lindley,
1957).
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- )
Lindley’s paradox

The main idea of this seeming paradox can be expressed as follows.

2 consider the

@ For a normal model N(6,0?) with known variance o
hypothesis test Hy : 8 = 0y versus Hy : 0 # 6.

@ Assume P(6 € Hp) > 0 and any regular prior on {6 # 6p}. Then for
any « € [0, 1] we can find a sample size n(«) and iid data xy, ..., X,

such that:
@ The sample mean X is significantly different from Hy at level a.
@ The posterior probability that 8 = 6y is greater that 1 — .

@ The reasoning for this seeming paradox is that the classical and
Bayesian approaches are asking different questions.
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(VT ENICREEEEN RIS Concluding remarks

Concluding remarks: understanding the problem

e A p-value p(x; ) refers only to 0y, making no reference at all to
other hypotheses about 6.

> If | reject Hp using a p-value then Hy is a poor explanation for the
observation.

@ A posterior probability 7(fp | x) contrasts 0y with the other values in
© which 0 might have taken.

» If | favour Hy then Hy is a better explanation for the data x than Hs.
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(VT ENICREEEEN RIS Concluding remarks

@ This difference in approach can be seen if | consider what | need to
compute the posterior probability when | have a p-value.

@ Suppose | observe p(x; Hy) < u then:

P(p(X: Ho) < u| Ho)P(Ho)
P(p(X; Ho) < u)
UP(H())

— P(p(X; Ho) < u)

P(Ho | p(x; Ho) < u) =

since the p-value is super-uniform.

o Now,

1
P(p(X;Ho) <u) = > P(p(X;Ho) < u| Hi)P(H;)
i=0

and so | need to know the distribution of the p-value under H; to
compute P(p(X; Hy) < u| H1).
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